osmo-trx/Transceiver52M/radioInterfaceDiversity.cpp

244 lines
5.9 KiB
C++

/*
* SSE Convolution
* Copyright (C) 2013 Thomas Tsou <tom@tsou.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <radioInterface.h>
#include <Logger.h>
#include "Resampler.h"
extern "C" {
#include "convert.h"
}
/* Resampling parameters for 64 MHz clocking */
#define RESAMP_64M_INRATE 20
#define RESAMP_64M_OUTRATE 80
/* Downlink block size */
#define CHUNK 625
/* Universal resampling parameters */
#define NUMCHUNKS 48
/*
* Resampling filter bandwidth scaling factor
* This narrows the filter cutoff relative to the output bandwidth
* of the polyphase resampler. At 4 samples-per-symbol using the
* 2 pulse Laurent GMSK approximation gives us below 0.5 degrees
* RMS phase error at the resampler output.
*/
#define RESAMP_TX4_FILTER 0.45
static size_t resamp_inrate = 0;
static size_t resamp_inchunk = 0;
static size_t resamp_outrate = 0;
static size_t resamp_outchunk = 0;
RadioInterfaceDiversity::RadioInterfaceDiversity(RadioDevice *wRadio,
size_t sps, size_t chans)
: RadioInterface(wRadio, sps, chans, 2), outerRecvBuffer(NULL),
mDiversity(false), mFreqSpacing(0.0)
{
}
RadioInterfaceDiversity::~RadioInterfaceDiversity()
{
close();
}
void RadioInterfaceDiversity::close()
{
delete outerRecvBuffer;
delete dnsampler;
dnsampler = NULL;
outerRecvBuffer = NULL;
if (recvBuffer.size())
recvBuffer[0] = NULL;
RadioInterface::close();
}
bool RadioInterfaceDiversity::setupDiversityChannels()
{
size_t inner_rx_len;
/* Inner and outer rates */
resamp_inrate = RESAMP_64M_INRATE;
resamp_outrate = RESAMP_64M_OUTRATE;
resamp_inchunk = resamp_inrate * 4;
resamp_outchunk = resamp_outrate * 4;
/* Buffer lengths */
inner_rx_len = NUMCHUNKS * resamp_inchunk;
/* Inside buffer must hold at least 2 bursts */
if (inner_rx_len < 157 * mSPSRx * 2) {
LOG(ALERT) << "Invalid inner buffer size " << inner_rx_len;
return false;
}
dnsampler = new Resampler(resamp_inrate, resamp_outrate);
if (!dnsampler->init()) {
LOG(ALERT) << "Rx resampler failed to initialize";
return false;
}
/* One Receive buffer and downsampler per diversity channel */
for (size_t i = 0; i < mMIMO * mChans; i++) {
recvBuffer[i] = new RadioBuffer(NUMCHUNKS,
resamp_inchunk, 0, false);
}
return true;
}
/* Initialize I/O specific objects */
bool RadioInterfaceDiversity::init(int type)
{
int outer_rx_len;
if ((mMIMO != 2) || (mChans != 2)) {
LOG(ALERT) << "Unsupported channel configuration " << mChans;
return false;
}
/* Resize for channel combination */
sendBuffer.resize(mChans);
recvBuffer.resize(mChans * mMIMO);
convertSendBuffer.resize(mChans);
convertRecvBuffer.resize(mChans);
mReceiveFIFO.resize(mChans);
phases.resize(mChans);
if (!setupDiversityChannels())
return false;
outer_rx_len = resamp_outchunk;
for (size_t i = 0; i < mChans; i++) {
/* Full rate float and integer outer receive buffers */
convertRecvBuffer[i] = new short[outer_rx_len * 2];
/* Send buffers (not-resampled) */
sendBuffer[i] = new RadioBuffer(NUMCHUNKS, CHUNK * mSPSTx, 0, true);
convertSendBuffer[i] = new short[CHUNK * mSPSTx * 2];
}
outerRecvBuffer = new signalVector(outer_rx_len, dnsampler->len());
return true;
}
bool RadioInterfaceDiversity::tuneRx(double freq, size_t chan)
{
double f0, f1;
if (chan > 1)
return false;
if (!mRadio->setRxFreq(freq, chan))
return false;
f0 = mRadio->getRxFreq(0);
f1 = mRadio->getRxFreq(1);
mFreqSpacing = f1 - f0;
if (abs(mFreqSpacing) <= 600e3)
mDiversity = true;
else
mDiversity = false;
return true;
}
/* Receive a timestamped chunk from the device */
void RadioInterfaceDiversity::pullBuffer()
{
bool local_underrun;
int rc, num, path0, path1;
signalVector *shift, *base;
float *in, *out, rate = -mFreqSpacing * 2.0 * M_PI / 1.08333333e6;
if (recvBuffer[0]->getFreeSegments() <= 0)
return;
/* Outer buffer access size is fixed */
num = mRadio->readSamples(convertRecvBuffer,
resamp_outchunk,
&overrun,
readTimestamp,
&local_underrun);
if ((size_t) num != resamp_outchunk) {
LOG(ALERT) << "Receive error " << num;
return;
}
for (size_t i = 0; i < mChans; i++) {
convert_short_float((float *) outerRecvBuffer->begin(),
convertRecvBuffer[i], 2 * resamp_outchunk);
if (!i) {
path0 = 0;
path1 = 2;
} else {
path0 = 3;
path1 = 1;
}
/* Diversity path 1 */
base = outerRecvBuffer;
in = (float *) base->begin();
out = (float *) recvBuffer[path0]->getWriteSegment();
rc = dnsampler->rotate(in, resamp_outchunk,
out, resamp_inchunk);
if (rc < 0) {
LOG(ALERT) << "Sample rate downsampling error";
}
/* Enable path 2 if Nyquist bandwidth is sufficient */
if (!mDiversity)
continue;
/* Diversity path 2 */
shift = new signalVector(base->size(), base->getStart());
in = (float *) shift->begin();
out = (float *) recvBuffer[path1]->getWriteSegment();
rate = i ? -rate : rate;
if (!frequencyShift(shift, base, rate, phases[i], &phases[i])) {
LOG(ALERT) << "Frequency shift failed";
}
rc = dnsampler->rotate(in, resamp_outchunk,
out, resamp_inchunk);
if (rc < 0) {
LOG(ALERT) << "Sample rate downsampling error";
}
delete shift;
}
underrun |= local_underrun;
readTimestamp += (TIMESTAMP) resamp_outchunk;
}