osmo-pcu/src/gprs_rlcmac.cpp

615 lines
20 KiB
C++
Raw Blame History

/* gprs_rlcmac.cpp
*
* Copyright (C) 2012 Ivan Klyuchnikov
* Copyright (C) 2012 Andreas Eversberg <jolly@eversberg.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <gprs_bssgp_pcu.h>
#include <pcu_l1_if.h>
#include <gprs_rlcmac.h>
#include <gsmL1prim.h>
LLIST_HEAD(gprs_rlcmac_tbfs);
void *rlcmac_tall_ctx;
/* FIXME: spread ressources on multiple TRX */
int tfi_alloc(uint8_t *_trx, uint8_t *_ts)
{
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
struct gprs_rlcmac_pdch *pdch;
uint8_t trx, ts, tfi;
for (trx = 0; trx < 8; trx++) {
for (ts = 0; ts < 8; ts++) {
pdch = &bts->trx[trx].pdch[ts];
if (!pdch->enable)
continue;
break;
}
if (ts < 8)
break;
}
if (trx == 8) {
LOGP(DRLCMAC, LOGL_NOTICE, "No PDCH available.\n");
return -EINVAL;
}
LOGP(DRLCMAC, LOGL_DEBUG, "Searching for first unallocated TFI: "
"TRX=%d TS=%d\n", trx, ts);
for (tfi = 0; tfi < 32; tfi++) {
if (!pdch->tbf[tfi])
break;
}
if (tfi < 32) {
LOGP(DRLCMAC, LOGL_DEBUG, " Found TFI=%d.\n", tfi);
*_trx = trx;
*_ts = ts;
return tfi;
}
LOGP(DRLCMAC, LOGL_NOTICE, "No TFI available.\n");
return -1;
}
int find_free_usf(uint8_t trx, uint8_t ts)
{
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
struct gprs_rlcmac_pdch *pdch;
struct gprs_rlcmac_tbf *tbf;
uint8_t usf_map = 0;
uint8_t tfi, usf;
if (trx >= 8 || ts >= 8)
return -EINVAL;
pdch = &bts->trx[trx].pdch[ts];
/* make map of used USF */
for (tfi = 0; tfi < 32; tfi++) {
tbf = pdch->tbf[tfi];
if (!tbf)
continue;
if (tbf->direction != GPRS_RLCMAC_UL_TBF)
continue;
usf_map |= (1 << tbf->dir.ul.usf);
}
/* look for USF, don't use USF=7 */
for (usf = 0; usf < 7; usf++) {
if (!(usf_map & (1 << usf))) {
LOGP(DRLCMAC, LOGL_DEBUG, " Found USF=%d.\n", usf);
return usf;
}
}
LOGP(DRLCMAC, LOGL_NOTICE, "No USF available.\n");
return -1;
}
/* lookup TBF Entity (by TFI) */
#warning FIXME: use pdch instance by trx and ts, because tfi is local
struct gprs_rlcmac_tbf *tbf_by_tfi(uint8_t tfi, int direction)
{
struct gprs_rlcmac_tbf *tbf;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
if (tbf->state != GPRS_RLCMAC_RELEASING
&& tbf->tfi == tfi
&& tbf->direction == direction)
return tbf;
}
return NULL;
}
/* search for active downlink or uplink tbf */
struct gprs_rlcmac_tbf *tbf_by_tlli(uint32_t tlli, int direction)
{
struct gprs_rlcmac_tbf *tbf;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
if (tbf->state != GPRS_RLCMAC_RELEASING
&& tbf->tlli == tlli
&& tbf->direction == direction)
return tbf;
}
return NULL;
}
#warning FIXME: use pdch instance by trx and ts, because polling is local
struct gprs_rlcmac_tbf *tbf_by_poll_fn(uint32_t fn)
{
struct gprs_rlcmac_tbf *tbf;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
if (tbf->state != GPRS_RLCMAC_RELEASING
&& tbf->poll_state == GPRS_RLCMAC_POLL_SCHED
&& tbf->poll_fn == fn)
return tbf;
}
return NULL;
}
struct gprs_rlcmac_tbf *tbf_alloc(uint8_t tfi, uint8_t trx, uint8_t ts)
{
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
struct gprs_rlcmac_pdch *pdch;
struct gprs_rlcmac_tbf *tbf;
LOGP(DRLCMAC, LOGL_INFO, "********** TBF starts here **********\n");
LOGP(DRLCMAC, LOGL_INFO, "Allocating TBF with TFI=%d.\n", tfi);
if (trx >= 8 || ts >= 8 || tfi >= 32)
return NULL;
pdch = &bts->trx[trx].pdch[ts];
tbf = talloc_zero(rlcmac_tall_ctx, struct gprs_rlcmac_tbf);
if (!tbf)
return NULL;
tbf->tfi = tfi;
tbf->trx = trx;
tbf->ts = ts;
tbf->arfcn = bts->trx[trx].arfcn;
tbf->tsc = bts->trx[trx].pdch[ts].tsc;
tbf->pdch = pdch;
tbf->ws = 64;
tbf->sns = 128;
INIT_LLIST_HEAD(&tbf->llc_queue);
llist_add(&tbf->list, &gprs_rlcmac_tbfs);
pdch->tbf[tfi] = tbf;
return tbf;
}
void tbf_free(struct gprs_rlcmac_tbf *tbf)
{
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
struct gprs_rlcmac_pdch *pdch;
struct msgb *msg;
LOGP(DRLCMAC, LOGL_INFO, "Free TBF=%d with TLLI=0x%08x.\n", tbf->tfi,
tbf->tlli);
tbf_timer_stop(tbf);
while ((msg = msgb_dequeue(&tbf->llc_queue)))
msgb_free(msg);
pdch = &bts->trx[tbf->trx].pdch[tbf->ts];
pdch->tbf[tbf->tfi] = NULL;
llist_del(&tbf->list);
LOGP(DRLCMAC, LOGL_INFO, "********** TBF ends here **********\n");
talloc_free(tbf);
}
const char *tbf_state_name[] = {
"NULL",
"ASSIGN",
"FLOW",
"FINISHED",
"WAIT RELEASE",
"RELEASING",
};
void tbf_new_state(struct gprs_rlcmac_tbf *tbf,
enum gprs_rlcmac_tbf_state state)
{
LOGP(DRLCMAC, LOGL_INFO, "TBF=%d changes state from %s to %s\n",
tbf->tfi, tbf_state_name[tbf->state], tbf_state_name[state]);
tbf->state = state;
}
void tbf_timer_start(struct gprs_rlcmac_tbf *tbf, unsigned int T,
unsigned int seconds, unsigned int microseconds)
{
if (!osmo_timer_pending(&tbf->timer))
LOGP(DRLCMAC, LOGL_DEBUG, "Starting TBF=%d timer %u.\n",
tbf->tfi, T);
else
LOGP(DRLCMAC, LOGL_DEBUG, "Restarting TBF=%d timer %u while "
"old timer %u pending \n", tbf->tfi, T, tbf->T);
tbf->T = T;
tbf->num_T_exp = 0;
/* Tunning timers can be safely re-scheduled. */
tbf->timer.data = tbf;
tbf->timer.cb = &tbf_timer_cb;
osmo_timer_schedule(&tbf->timer, seconds, microseconds);
}
void tbf_timer_stop(struct gprs_rlcmac_tbf *tbf)
{
if (osmo_timer_pending(&tbf->timer)) {
LOGP(DRLCMAC, LOGL_DEBUG, "Stopping TBF=%d timer %u.\n",
tbf->tfi, tbf->T);
osmo_timer_del(&tbf->timer);
}
}
#if 0
static void tbf_gsm_timer_cb(void *_tbf)
{
struct gprs_rlcmac_tbf *tbf = (struct gprs_rlcmac_tbf *)_tbf;
tbf->num_fT_exp++;
switch (tbf->fT) {
case 0:
hier alles <20>berdenken
// This is timer for delay RLC/MAC data sending after Downlink Immediate Assignment on CCCH.
gprs_rlcmac_segment_llc_pdu(tbf);
LOGP(DRLCMAC, LOGL_NOTICE, "TBF: [DOWNLINK] END TFI: %u TLLI: 0x%08x \n", tbf->tfi, tbf->tlli);
tbf_free(tbf);
break;
default:
LOGP(DRLCMAC, LOGL_NOTICE, "Timer expired in unknown mode: %u \n", tbf->fT);
}
}
static void tbf_gsm_timer_start(struct gprs_rlcmac_tbf *tbf, unsigned int fT,
int frames)
{
if (osmo_gsm_timer_pending(&tbf->gsm_timer))
LOGP(DRLCMAC, LOGL_NOTICE, "Starting TBF timer %u while old timer %u pending \n", fT, tbf->fT);
tbf->fT = fT;
tbf->num_fT_exp = 0;
/* FIXME: we should do this only once ? */
tbf->gsm_timer.data = tbf;
tbf->gsm_timer.cb = &tbf_gsm_timer_cb;
osmo_gsm_timer_schedule(&tbf->gsm_timer, frames);
}
eine stop-funktion, auch im tbf_free aufrufen
#endif
#if 0
void gprs_rlcmac_enqueue_block(bitvec *block, int len)
{
struct msgb *msg = msgb_alloc(len, "rlcmac_dl");
bitvec_pack(block, msgb_put(msg, len));
msgb_enqueue(&block_queue, msg);
}
#endif
/* received RLC/MAC block from L1 */
int gprs_rlcmac_rcv_block(uint8_t *data, uint8_t len, uint32_t fn)
{
unsigned payload = data[0] >> 6;
bitvec *block;
int rc = 0;
switch (payload) {
case GPRS_RLCMAC_DATA_BLOCK:
rc = gprs_rlcmac_rcv_data_block_acknowledged(data, len);
break;
case GPRS_RLCMAC_CONTROL_BLOCK:
block = bitvec_alloc(len);
if (!block)
return -ENOMEM;
bitvec_unpack(block, data);
rc = gprs_rlcmac_rcv_control_block(block, fn);
bitvec_free(block);
break;
case GPRS_RLCMAC_CONTROL_BLOCK_OPT:
LOGP(DRLCMAC, LOGL_NOTICE, "GPRS_RLCMAC_CONTROL_BLOCK_OPT block payload is not supported.\n");
default:
LOGP(DRLCMAC, LOGL_NOTICE, "Unknown RLCMAC block payload.\n");
rc = -EINVAL;
}
return rc;
}
// GSM 04.08 9.1.18 Immediate assignment
int write_immediate_assignment(bitvec * dest, uint8_t downlink, uint8_t ra,
uint32_t fn, uint8_t ta, uint16_t arfcn, uint8_t ts, uint8_t tsc,
uint8_t tfi, uint8_t usf, uint32_t tlli,
uint8_t polling, uint32_t poll_fn)
{
unsigned wp = 0;
bitvec_write_field(dest, wp,0x0,4); // Skip Indicator
bitvec_write_field(dest, wp,0x6,4); // Protocol Discriminator
bitvec_write_field(dest, wp,0x3F,8); // Immediate Assignment Message Type
// 10.5.2.25b Dedicated mode or TBF
bitvec_write_field(dest, wp,0x0,1); // spare
bitvec_write_field(dest, wp,0x0,1); // TMA : Two-message assignment: No meaning
bitvec_write_field(dest, wp,downlink,1); // Downlink : Downlink assignment to mobile in packet idle mode
bitvec_write_field(dest, wp,0x1,1); // T/D : TBF or dedicated mode: this message assigns a Temporary Block Flow (TBF).
bitvec_write_field(dest, wp,0x0,4); // Page Mode
// GSM 04.08 10.5.2.25a Packet Channel Description
bitvec_write_field(dest, wp,0x1,5); // Channel type
bitvec_write_field(dest, wp,ts,3); // TN
bitvec_write_field(dest, wp,tsc,3); // TSC
bitvec_write_field(dest, wp,0x0,3); // non-hopping RF channel configuraion
bitvec_write_field(dest, wp,arfcn,10); // ARFCN
//10.5.2.30 Request Reference
bitvec_write_field(dest, wp,ra,8); // RA
bitvec_write_field(dest, wp,(fn / (26 * 51)) % 32,5); // T1'
bitvec_write_field(dest, wp,fn % 51,6); // T3
bitvec_write_field(dest, wp,fn % 26,5); // T2
// 10.5.2.40 Timing Advance
bitvec_write_field(dest, wp,0x0,2); // spare
bitvec_write_field(dest, wp,ta,6); // Timing Advance value
// No mobile allocation in non-hopping systems.
// A zero-length LV. Just write L=0.
bitvec_write_field(dest, wp,0,8);
if (downlink)
{
// GSM 04.08 10.5.2.16 IA Rest Octets
bitvec_write_field(dest, wp, 3, 2); // "HH"
bitvec_write_field(dest, wp, 1, 2); // "01" Packet Downlink Assignment
bitvec_write_field(dest, wp,tlli,32); // TLLI
bitvec_write_field(dest, wp,0x1,1); // switch TFI : on
bitvec_write_field(dest, wp,tfi,5); // TFI
bitvec_write_field(dest, wp,0x0,1); // RLC acknowledged mode
bitvec_write_field(dest, wp,0x0,1); // ALPHA = not present
bitvec_write_field(dest, wp,0x0,5); // GAMMA power control parameter
bitvec_write_field(dest, wp,polling,1); // Polling Bit
bitvec_write_field(dest, wp,!polling,1); // TA_VALID ???
bitvec_write_field(dest, wp,0x1,1); // switch TIMING_ADVANCE_INDEX = on
bitvec_write_field(dest, wp,0x0,4); // TIMING_ADVANCE_INDEX
if (polling) {
bitvec_write_field(dest, wp,0x1,1); // TBF Starting TIME present
bitvec_write_field(dest, wp,(poll_fn / (26 * 51)) % 32,5); // T1'
bitvec_write_field(dest, wp,poll_fn % 51,6); // T3
bitvec_write_field(dest, wp,poll_fn % 26,5); // T2
} else {
bitvec_write_field(dest, wp,0x0,1); // TBF Starting TIME present
}
bitvec_write_field(dest, wp,0x0,1); // P0 not present
// bitvec_write_field(dest, wp,0x1,1); // P0 not present
// bitvec_write_field(dest, wp,0xb,4);
}
else
{
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
// GMS 04.08 10.5.2.37b 10.5.2.16
bitvec_write_field(dest, wp, 3, 2); // "HH"
bitvec_write_field(dest, wp, 0, 2); // "0" Packet Uplink Assignment
bitvec_write_field(dest, wp, 1, 1); // Block Allocation : Not Single Block Allocation
bitvec_write_field(dest, wp, tfi, 5); // TFI_ASSIGNMENT Temporary Flow Identity
bitvec_write_field(dest, wp, 0, 1); // POLLING
bitvec_write_field(dest, wp, 0, 1); // ALLOCATION_TYPE: dynamic
bitvec_write_field(dest, wp, usf, 3); // USF
bitvec_write_field(dest, wp, 0, 1); // USF_GRANULARITY
bitvec_write_field(dest, wp, 0 , 1); // "0" power control: Not Present
bitvec_write_field(dest, wp, bts->initial_cs-1, 2); // CHANNEL_CODING_COMMAND
bitvec_write_field(dest, wp, 1, 1); // TLLI_BLOCK_CHANNEL_CODING
bitvec_write_field(dest, wp, 1 , 1); // "1" Alpha : Present
bitvec_write_field(dest, wp, 0, 4); // Alpha
bitvec_write_field(dest, wp, 0, 5); // Gamma
bitvec_write_field(dest, wp, 0, 1); // TIMING_ADVANCE_INDEX_FLAG
bitvec_write_field(dest, wp, 0, 1); // TBF_STARTING_TIME_FLAG
}
if (wp%8)
return wp/8+1;
else
return wp/8;
}
/* generate uplink assignment */
void write_packet_uplink_assignment(bitvec * dest, uint8_t old_tfi,
uint8_t old_downlink, uint32_t tlli, uint8_t use_tlli, uint8_t new_tfi,
uint8_t usf, uint16_t arfcn, uint8_t tn, uint8_t ta, uint8_t tsc,
uint8_t poll)
{
// TODO We should use our implementation of encode RLC/MAC Control messages.
struct gprs_rlcmac_bts *bts = gprs_rlcmac_bts;
unsigned wp = 0;
int i;
bitvec_write_field(dest, wp,0x1,2); // Payload Type
bitvec_write_field(dest, wp,0x0,2); // Uplink block with TDMA framenumber (N+13)
bitvec_write_field(dest, wp,poll,1); // Suppl/Polling Bit
bitvec_write_field(dest, wp,0x0,3); // Uplink state flag
bitvec_write_field(dest, wp,0xa,6); // MESSAGE TYPE
bitvec_write_field(dest, wp,0x0,2); // Page Mode
bitvec_write_field(dest, wp,0x0,1); // switch PERSIST_LEVEL: off
if (use_tlli) {
bitvec_write_field(dest, wp,0x2,2); // switch TLLI : on
bitvec_write_field(dest, wp,tlli,32); // TLLI
} else {
bitvec_write_field(dest, wp,0x0,1); // switch TFI : on
bitvec_write_field(dest, wp,old_downlink,1); // 0=UPLINK TFI, 1=DL TFI
bitvec_write_field(dest, wp,old_tfi,5); // TFI
}
bitvec_write_field(dest, wp,0x0,1); // Message escape
bitvec_write_field(dest, wp, bts->initial_cs-1, 2); // CHANNEL_CODING_COMMAND
bitvec_write_field(dest, wp,0x1,1); // TLLI_BLOCK_CHANNEL_CODING
bitvec_write_field(dest, wp,0x1,1); // switch TIMING_ADVANCE_VALUE = on
bitvec_write_field(dest, wp,ta,6); // TIMING_ADVANCE_VALUE
bitvec_write_field(dest, wp,0x0,1); // switch TIMING_ADVANCE_INDEX = off
#if 1
bitvec_write_field(dest, wp,0x1,1); // Frequency Parameters information elements = present
bitvec_write_field(dest, wp,tsc,3); // Training Sequence Code (TSC)
bitvec_write_field(dest, wp,0x0,2); // ARFCN = present
bitvec_write_field(dest, wp,arfcn,10); // ARFCN
#else
bitvec_write_field(dest, wp,0x0,1); // Frequency Parameters = off
#endif
bitvec_write_field(dest, wp,0x1,2); // Dynamic Allocation
bitvec_write_field(dest, wp,0x0,1); // Extended Dynamic Allocation = off
bitvec_write_field(dest, wp,0x0,1); // P0 = off
bitvec_write_field(dest, wp,0x0,1); // USF_GRANULARITY
bitvec_write_field(dest, wp,0x1,1); // switch TFI : on
bitvec_write_field(dest, wp,new_tfi,5);// TFI
bitvec_write_field(dest, wp,0x0,1); //
bitvec_write_field(dest, wp,0x0,1); // TBF Starting Time = off
bitvec_write_field(dest, wp,0x0,1); // Timeslot Allocation
for (i = 0; i < 8; i++) {
if (tn == i) {
bitvec_write_field(dest, wp,0x1,1); // USF_TN(i): on
bitvec_write_field(dest, wp,usf,3); // USF_TN(i)
} else
bitvec_write_field(dest, wp,0x0,1); // USF_TN(i): off
}
// bitvec_write_field(dest, wp,0x0,1); // Measurement Mapping struct not present
}
/* generate downlink assignment */
void write_packet_downlink_assignment(bitvec * dest, uint8_t old_tfi,
uint8_t old_downlink, uint8_t new_tfi, uint16_t arfcn,
uint8_t tn, uint8_t ta, uint8_t tsc, uint8_t poll)
{
// TODO We should use our implementation of encode RLC/MAC Control messages.
unsigned wp = 0;
int i;
bitvec_write_field(dest, wp,0x1,2); // Payload Type
bitvec_write_field(dest, wp,0x0,2); // Uplink block with TDMA framenumber (FN+13)
bitvec_write_field(dest, wp,poll,1); // Suppl/Polling Bit
bitvec_write_field(dest, wp,0x0,3); // Uplink state flag
bitvec_write_field(dest, wp,0x2,6); // MESSAGE TYPE
bitvec_write_field(dest, wp,0x0,2); // Page Mode
bitvec_write_field(dest, wp,0x0,1); // switch PERSIST_LEVEL: off
bitvec_write_field(dest, wp,0x0,1); // switch TFI : on
bitvec_write_field(dest, wp,old_downlink,1); // 0=UPLINK TFI, 1=DL TFI
bitvec_write_field(dest, wp,old_tfi,5); // TFI
bitvec_write_field(dest, wp,0x0,1); // Message escape
bitvec_write_field(dest, wp,0x0,2); // Medium Access Method: Dynamic Allocation
bitvec_write_field(dest, wp,0x0,1); // RLC acknowledged mode
bitvec_write_field(dest, wp,old_downlink,1); // the network establishes no new downlink TBF for the mobile station
bitvec_write_field(dest, wp,0x80 >> tn,8); // timeslot(s)
bitvec_write_field(dest, wp,0x1,1); // switch TIMING_ADVANCE_VALUE = on
bitvec_write_field(dest, wp,ta,6); // TIMING_ADVANCE_VALUE
bitvec_write_field(dest, wp,0x0,1); // switch TIMING_ADVANCE_INDEX = off
bitvec_write_field(dest, wp,0x0,1); // switch POWER CONTROL = off
bitvec_write_field(dest, wp,0x1,1); // Frequency Parameters information elements = present
bitvec_write_field(dest, wp,tsc,3); // Training Sequence Code (TSC) = 2
bitvec_write_field(dest, wp,0x0,2); // ARFCN = present
bitvec_write_field(dest, wp,arfcn,10); // ARFCN
bitvec_write_field(dest, wp,0x1,1); // switch TFI : on
bitvec_write_field(dest, wp,new_tfi,5);// TFI
bitvec_write_field(dest, wp,0x1,1); // Power Control Parameters IE = present
bitvec_write_field(dest, wp,0x0,4); // ALPHA power control parameter
for (i = 0; i < 8; i++)
bitvec_write_field(dest, wp,(tn == i),1); // switch GAMMA_TN[i] = on or off
bitvec_write_field(dest, wp,0x0,5); // GAMMA_TN[tn]
bitvec_write_field(dest, wp,0x0,1); // TBF Starting TIME IE not present
bitvec_write_field(dest, wp,0x0,1); // Measurement Mapping struct not present
bitvec_write_field(dest, wp,0x0,1);
}
/* generate uplink ack */
void write_packet_uplink_ack(bitvec * dest, struct gprs_rlcmac_tbf *tbf,
uint8_t final)
{
char show_v_n[65];
// TODO We should use our implementation of encode RLC/MAC Control messages.
unsigned wp = 0;
uint16_t i, bbn;
uint16_t mod_sns_half = (tbf->sns >> 1) - 1;
char bit;
LOGP(DRLCMACUL, LOGL_DEBUG, "Sending Ack/Nack for TBF=%d "
"(final=%d)\n", tbf->tfi, final);
bitvec_write_field(dest, wp,0x1,2); // payload
bitvec_write_field(dest, wp,0x0,2); // Uplink block with TDMA framenumber (N+13)
bitvec_write_field(dest, wp,final,1); // Suppl/Polling Bit
bitvec_write_field(dest, wp,0x0,3); // Uplink state flag
//bitvec_write_field(dest, wp,0x0,1); // Reduced block sequence number
//bitvec_write_field(dest, wp,BSN+6,5); // Radio transaction identifier
//bitvec_write_field(dest, wp,0x1,1); // Final segment
//bitvec_write_field(dest, wp,0x1,1); // Address control
//bitvec_write_field(dest, wp,0x0,2); // Power reduction: 0
//bitvec_write_field(dest, wp,TFI,5); // Temporary flow identifier
//bitvec_write_field(dest, wp,0x1,1); // Direction
bitvec_write_field(dest, wp,0x09,6); // MESSAGE TYPE
bitvec_write_field(dest, wp,0x0,2); // Page Mode
bitvec_write_field(dest, wp,0x0,2);
bitvec_write_field(dest, wp,tbf->tfi,5); // Uplink TFI
bitvec_write_field(dest, wp,0x0,1);
bitvec_write_field(dest, wp,0x0,2); // CS1
bitvec_write_field(dest, wp,final,1); // FINAL_ACK_INDICATION
bitvec_write_field(dest, wp,tbf->dir.ul.v_r,7); // STARTING_SEQUENCE_NUMBER
// RECEIVE_BLOCK_BITMAP
for (i = 0, bbn = (tbf->dir.ul.v_r - 64) & mod_sns_half; i < 64;
i++, bbn = (bbn + 1) & mod_sns_half) {
bit = tbf->dir.ul.v_n[bbn];
if (bit == 0)
bit = ' ';
show_v_n[i] = bit;
bitvec_write_field(dest, wp,(bit == 'R'),1);
}
show_v_n[64] = '\0';
LOGP(DRLCMACUL, LOGL_DEBUG, "- V(N): \"%s\" R=Received "
"N=Not-Received\n", show_v_n);
bitvec_write_field(dest, wp,0x1,1); // CONTENTION_RESOLUTION_TLLI = present
bitvec_write_field(dest, wp,tbf->tlli,8*4);
bitvec_write_field(dest, wp,0x00,4); //spare
bitvec_write_field(dest, wp,0x5,4); //0101
}
/* Send Uplink unit-data to SGSN. */
int gprs_rlcmac_tx_ul_ud(gprs_rlcmac_tbf *tbf)
{
const uint8_t qos_profile = QOS_PROFILE;
struct msgb *llc_pdu;
unsigned msg_len = NS_HDR_LEN + BSSGP_HDR_LEN + tbf->llc_index;
LOGP(DBSSGP, LOGL_NOTICE, "TX: [PCU -> SGSN ] TFI: %u TLLI: 0x%08x DataLen: %u\n", tbf->tfi, tbf->tlli, tbf->llc_index);
if (!bctx) {
LOGP(DBSSGP, LOGL_ERROR, "No bctx\n");
return -EIO;
}
//LOGP(DBSSGP, LOGL_NOTICE, " Data = ");
//for (unsigned i = 0; i < tbf->llc_index; i++)
// LOGPC(DBSSGP, LOGL_NOTICE, "%02x ", tbf->llc_frame[i]);
llc_pdu = msgb_alloc_headroom(msg_len, msg_len,"llc_pdu");
msgb_tvlv_push(llc_pdu, BSSGP_IE_LLC_PDU, sizeof(uint8_t)*tbf->llc_index, tbf->llc_frame);
bssgp_tx_ul_ud(bctx, tbf->tlli, &qos_profile, llc_pdu);
return 0;
}