osmo-msc/src/libmsc/msc_a_remote.c

391 lines
13 KiB
C
Raw Normal View History

large refactoring: support inter-BSC and inter-MSC Handover 3GPP TS 49.008 '4.3 Roles of MSC-A, MSC-I and MSC-T' defines distinct roles: - MSC-A is responsible for managing subscribers, - MSC-I is the gateway to the RAN. - MSC-T is a second transitory gateway to another RAN during Handover. After inter-MSC Handover, the MSC-I is handled by a remote MSC instance, while the original MSC-A retains the responsibility of subscriber management. MSC-T exists in this patch but is not yet used, since Handover is only prepared for, not yet implemented. Facilitate Inter-MSC and inter-BSC Handover by the same internal split of MSC roles. Compared to inter-MSC Handover, mere inter-BSC has the obvious simplifications: - all of MSC-A, MSC-I and MSC-T roles will be served by the same osmo-msc instance, - messages between MSC-A and MSC-{I,T} don't need to be routed via E-interface (GSUP), - no call routing between MSC-A and -I via MNCC necessary. This is the largest code bomb I have submitted, ever. Out of principle, I apologize to everyone trying to read this as a whole. Unfortunately, I see no sense in trying to split this patch into smaller bits. It would be a huge amount of work to introduce these changes in separate chunks, especially if each should in turn be useful and pass all test suites. So, unfortunately, we are stuck with this code bomb. The following are some details and rationale for this rather huge refactoring: * separate MSC subscriber management from ran_conn struct ran_conn is reduced from the pivotal subscriber management entity it has been so far to a mere storage for an SCCP connection ID and an MSC subscriber reference. The new pivotal subscriber management entity is struct msc_a -- struct msub lists the msc_a, msc_i, msc_t roles, the vast majority of code paths however use msc_a, since MSC-A is where all the interesting stuff happens. Before handover, msc_i is an FSM implementation that encodes to the local ran_conn. After inter-MSC Handover, msc_i is a compatible but different FSM implementation that instead forwards via/from GSUP. Same goes for the msc_a struct: if osmo-msc is the MSC-I "RAN proxy" for a remote MSC-A role, the msc_a->fi is an FSM implementation that merely forwards via/from GSUP. * New SCCP implementation for RAN access To be able to forward BSSAP and RANAP messages via the GSUP interface, the individual message layers need to be cleanly separated. The IuCS implementation used until now (iu_client from libosmo-ranap) did not provide this level of separation, and needed a complete rewrite. It was trivial to implement this in such a way that both BSSAP and RANAP can be handled by the same SCCP code, hence the new SCCP-RAN layer also replaces BSSAP handling. sccp_ran.h: struct sccp_ran_inst provides an abstract handler for incoming RAN connections. A set of callback functions provides implementation specific details. * RAN Abstraction (BSSAP vs. RANAP) The common SCCP implementation did set the theme for the remaining refactoring: make all other MSC code paths entirely RAN-implementation-agnostic. ran_infra.c provides data structures that list RAN implementation specifics, from logging to RAN de-/encoding to SCCP callbacks and timers. A ran_infra pointer hence allows complete abstraction of RAN implementations: - managing connected RAN peers (BSC, RNC) in ran_peer.c, - classifying and de-/encoding RAN PDUs, - recording connected LACs and cell IDs and sending out Paging requests to matching RAN peers. * RAN RESET now also for RANAP ran_peer.c absorbs the reset_fsm from a_reset.c; in consequence, RANAP also supports proper RESET semantics now. Hence osmo-hnbgw now also needs to provide proper RESET handling, which it so far duly ignores. (TODO) * RAN de-/encoding abstraction The RAN abstraction mentioned above serves not only to separate RANAP and BSSAP implementations transparently, but also to be able to optionally handle RAN on distinct levels. Before Handover, all RAN messages are handled by the MSC-A role. However, after an inter-MSC Handover, a standalone MSC-I will need to decode RAN PDUs, at least in order to manage Assignment of RTP streams between BSS/RNC and MNCC call forwarding. ran_msg.h provides a common API with abstraction for: - receiving events from RAN, i.e. passing RAN decode from the BSC/RNC and MS/UE: struct ran_dec_msg represents RAN messages decoded from either BSSMAP or RANAP; - sending RAN events: ran_enc_msg is the counterpart to compose RAN messages that should be encoded to either BSSMAP or RANAP and passed down to the BSC/RNC and MS/UE. The RAN-specific implementations are completely contained by ran_msg_a.c and ran_msg_iu.c. In particular, Assignment and Ciphering have so far been distinct code paths for BSSAP and RANAP, with switch(via_ran){...} statements all over the place. Using RAN_DEC_* and RAN_ENC_* abstractions, these are now completely unified. Note that SGs does not qualify for RAN abstraction: the SGs interface always remains with the MSC-A role, and SGs messages follow quite distinct semantics from the fairly similar GERAN and UTRAN. * MGW and RTP stream management So far, managing MGW endpoints via MGCP was tightly glued in-between GSM-04.08-CC on the one and MNCC on the other side. Prepare for switching RTP streams between different RAN peers by moving to object-oriented implementations: implement struct call_leg and struct rtp_stream with distinct FSMs each. For MGW communication, use the osmo_mgcpc_ep API that has originated from osmo-bsc and recently moved to libosmo-mgcp-client for this purpose. Instead of implementing a sequence of events with code duplication for the RAN and CN sides, the idea is to manage each RTP stream separately by firing and receiving events as soon as codecs and RTP ports are negotiated, and letting the individual FSMs take care of the MGW management "asynchronously". The caller provides event IDs and an FSM instance that should be notified of RTP stream setup progress. Hence it becomes possible to reconnect RTP streams from one GSM-04.08-CC to another (inter-BSC Handover) or between CC and MNCC RTP peers (inter-MSC Handover) without duplicating the MGCP code for each transition. The number of FSM implementations used for MGCP handling may seem a bit of an overkill. But in fact, the number of perspectives on RTP forwarding are far from trivial: - an MGW endpoint is an entity with N connections, and MGCP "sessions" for configuring them by talking to the MGW; - an RTP stream is a remote peer connected to one of the endpoint's connections, which is asynchronously notified of codec and RTP port choices; - a call leg is the higher level view on either an MT or MO side of a voice call, a combination of two RTP streams to forward between two remote peers. BSC MGW PBX CI CI [MGW-endpoint] [--rtp_stream--] [--rtp_stream--] [----------------call_leg----------------] * Use counts Introduce using the new osmo_use_count API added to libosmocore for this purpose. Each use token has a distinct name in the logging, which can be a globally constant name or ad-hoc, like the local __func__ string constant. Use in the new struct msc_a, as well as change vlr_subscr to the new osmo_use_count API. * FSM Timeouts Introduce using the new osmo_tdef API, which provides a common VTY implementation for all timer numbers, and FSM state transitions with the correct timeout. Originated in osmo-bsc, recently moved to libosmocore. Depends: Ife31e6798b4e728a23913179e346552a7dd338c0 (libosmocore) Ib9af67b100c4583342a2103669732dab2e577b04 (libosmocore) Id617265337f09dfb6ddfe111ef5e578cd3dc9f63 (libosmocore) Ie9e2add7bbfae651c04e230d62e37cebeb91b0f5 (libosmo-sccp) I26be5c4b06a680f25f19797407ab56a5a4880ddc (osmo-mgw) Ida0e59f9a1f2dd18efea0a51680a67b69f141efa (osmo-mgw) I9a3effd38e72841529df6c135c077116981dea36 (osmo-mgw) Change-Id: I27e4988e0371808b512c757d2b52ada1615067bd
2018-12-07 13:47:34 +00:00
/* The MSC-A role implementation variant that forwards requests to/from a remote MSC. */
/*
* (C) 2019 by sysmocom - s.m.f.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* SPDX-License-Identifier: AGPL-3.0+
*
* Author: Neels Hofmeyr
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <inttypes.h>
#include <osmocom/core/fsm.h>
#include <osmocom/gsm/gsup.h>
#include <osmocom/msc/debug.h>
#include <osmocom/msc/gsm_data.h>
#include <osmocom/msc/msc_a_remote.h>
#include <osmocom/msc/msc_roles.h>
#include <osmocom/msc/msub.h>
#include <osmocom/msc/msc_a.h>
#include <osmocom/msc/msc_t.h>
#include <osmocom/msc/e_link.h>
#include <osmocom/msc/vlr.h>
#include <osmocom/msc/ran_peer.h>
static struct osmo_fsm msc_a_remote_fsm;
static struct msc_a *msc_a_remote_priv(struct osmo_fsm_inst *fi)
{
OSMO_ASSERT(fi);
OSMO_ASSERT(fi->fsm == &msc_a_remote_fsm);
OSMO_ASSERT(fi->priv);
return fi->priv;
}
/* The idea is that this msc_a role is event-compatible to the "real" msc_a.c FSM, but instead of acting on the events
* directly, it forwards the events to a remote MSC-A role, via E-over-GSUP.
*
* [MSC-A---------------------] [MSC-B---------------------]
* msc_a <-- msc_{i,t}_remote <---GSUP---- msc_a_remote <-- msc_{i,t} <--BSSMAP--- [BSS]
* ^you are here
*/
static int msc_a_remote_msg_up_to_remote_msc(struct msc_a *msc_a,
enum msc_role from_role,
enum osmo_gsup_message_type message_type,
struct an_apdu *an_apdu)
{
struct osmo_gsup_message m;
struct e_link *e = msc_a->c.remote_to;
if (!e) {
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "No E link to remote MSC, cannot send AN-APDU\n");
return -1;
}
if (e_prep_gsup_msg(e, &m)) {
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "Error composing E-interface GSUP message\n");
return -1;
}
m.message_type = message_type;
if (an_apdu) {
if (gsup_msg_assign_an_apdu(&m, an_apdu)) {
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "Error composing E-interface GSUP message\n");
return -1;
}
}
return e_tx(e, &m);
}
/* [MSC-A-----------------] [MSC-B-----------------]
* msc_a --> msc_t_remote ----GSUP---> msc_a_remote --> msc_t ---BSSMAP--> [BSS]
* ^you are here
*/
static void msc_a_remote_rx_gsup_to_msc_t(struct msc_a *msc_a, const struct osmo_gsup_message *gsup_msg)
{
uint32_t event;
struct an_apdu an_apdu;
switch (gsup_msg->message_type) {
case OSMO_GSUP_MSGT_E_PREPARE_HANDOVER_REQUEST:
event = MSC_T_EV_FROM_A_PREPARE_HANDOVER_REQUEST;
break;
case OSMO_GSUP_MSGT_E_SEND_END_SIGNAL_REQUEST:
case OSMO_GSUP_MSGT_E_FORWARD_ACCESS_SIGNALLING_REQUEST:
event = MSC_T_EV_FROM_A_FORWARD_ACCESS_SIGNALLING_REQUEST;
break;
case OSMO_GSUP_MSGT_E_CLOSE:
case OSMO_GSUP_MSGT_E_ABORT:
case OSMO_GSUP_MSGT_E_ROUTING_ERROR:
/* TODO: maybe some non-"normal" release with error cause? */
msc_a_release_cn(msc_a);
return;
default:
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "Unhandled GSUP message type: %s\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
return;
};
gsup_msg_to_an_apdu(&an_apdu, gsup_msg);
msub_role_dispatch(msc_a->c.msub, MSC_ROLE_T, event, &an_apdu);
if (an_apdu.msg)
msgb_free(an_apdu.msg);
}
/* [MSC-A-----------------] [MSC-B-----------------]
* msc_a --> msc_i_remote ----GSUP---> msc_a_remote --> msc_i ---BSSMAP--> [BSS]
* ^you are here
*/
static void msc_a_remote_rx_gsup_to_msc_i(struct msc_a *msc_a, const struct osmo_gsup_message *gsup_msg)
{
uint32_t event;
struct an_apdu an_apdu;
switch (gsup_msg->message_type) {
case OSMO_GSUP_MSGT_E_FORWARD_ACCESS_SIGNALLING_REQUEST:
event = MSC_I_EV_FROM_A_FORWARD_ACCESS_SIGNALLING_REQUEST;
break;
case OSMO_GSUP_MSGT_E_SEND_END_SIGNAL_ERROR:
case OSMO_GSUP_MSGT_E_SEND_END_SIGNAL_RESULT:
event = MSC_I_EV_FROM_A_SEND_END_SIGNAL_RESPONSE;
break;
case OSMO_GSUP_MSGT_E_PREPARE_SUBSEQUENT_HANDOVER_RESULT:
case OSMO_GSUP_MSGT_E_PREPARE_SUBSEQUENT_HANDOVER_ERROR:
event = MSC_I_EV_FROM_A_PREPARE_SUBSEQUENT_HANDOVER_RESULT;
break;
case OSMO_GSUP_MSGT_E_CLOSE:
case OSMO_GSUP_MSGT_E_ABORT:
case OSMO_GSUP_MSGT_E_ROUTING_ERROR:
/* TODO: maybe some non-"normal" release with error cause? */
msc_a_release_cn(msc_a);
return;
default:
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "Unhandled GSUP message type: %s\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
return;
};
gsup_msg_to_an_apdu(&an_apdu, gsup_msg);
msub_role_dispatch(msc_a->c.msub, MSC_ROLE_I, event, &an_apdu);
if (an_apdu.msg)
msgb_free(an_apdu.msg);
}
static void msc_a_remote_send_handover_failure(struct msc_a *msc_a, enum gsm0808_cause cause)
{
struct ran_msg ran_enc_msg = {
.msg_type = RAN_MSG_HANDOVER_FAILURE,
.handover_failure = {
.cause = cause,
},
};
struct an_apdu an_apdu = {
.an_proto = msc_a->c.ran->an_proto,
.msg = msc_role_ran_encode(msc_a->c.fi, &ran_enc_msg),
};
if (!an_apdu.msg)
return;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T, OSMO_GSUP_MSGT_E_PREPARE_HANDOVER_ERROR, &an_apdu);
}
/* [MSC-A---------------------] [MSC-B---------------------]
* msc_a --> msc_{i,t}_remote ----GSUP---> msc_a_remote --> msc_{i,t} ---BSSMAP--> [BSS]
* ^you are here
*/
static void msc_a_remote_rx_gsup(struct msc_a *msc_a, const struct osmo_gsup_message *gsup_msg)
{
struct msc_t *msc_t = msc_a_msc_t(msc_a);
struct msc_i *msc_i = msc_a_msc_i(msc_a);
/* If starting a new Handover, this subscriber *must* be new and completely unattached. Create a new msc_t role
* to receive below event. */
if (gsup_msg->message_type == OSMO_GSUP_MSGT_E_PREPARE_HANDOVER_REQUEST) {
if (msc_t || msc_i) {
LOG_MSC_A_REMOTE_CAT(msc_a, DLGSUP, LOGL_ERROR,
"Already have an MSC-T or -I role, cannot Rx %s from remote MSC\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
msc_a_remote_send_handover_failure(msc_a, GSM0808_CAUSE_EQUIPMENT_FAILURE);
return;
}
msc_t = msc_t_alloc_without_ran_peer(msc_a->c.msub, msc_a->c.ran);
}
/* We are on a remote MSC-B. If an msub has an MSC-T role, this is the remote target of a handover, and all
* messages from MSC-A *must* be intended for the MSC-T role. As soon as the Handover is successful, the MSC-T
* role disappears and an MSC-I role appears. */
if (msc_t) {
LOG_MSC_A_REMOTE_CAT(msc_a, DLGSUP, LOGL_DEBUG, "Routing to MSC-T: %s\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
msc_a_remote_rx_gsup_to_msc_t(msc_a, gsup_msg);
} else if (msc_i) {
LOG_MSC_A_REMOTE_CAT(msc_a, DLGSUP, LOGL_DEBUG, "Routing to MSC-I: %s\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
msc_a_remote_rx_gsup_to_msc_i(msc_a, gsup_msg);
} else {
LOG_MSC_A_REMOTE_CAT(msc_a, DLGSUP, LOGL_ERROR,
"No MSC-T nor MSC-I role present, cannot Rx GSUP %s\n",
osmo_gsup_message_type_name(gsup_msg->message_type));
}
}
static void msc_a_remote_fsm_communicating(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct msc_a *msc_a = msc_a_remote_priv(fi);
struct an_apdu *an_apdu;
switch (event) {
case MSC_REMOTE_EV_RX_GSUP:
/* [MSC-A---------------------] [MSC-B---------------------]
* msc_a --> msc_{i,t}_remote ----GSUP---> msc_a_remote --> msc_{i,t} ---BSSMAP--> [BSS]
* ^you are here
*/
msc_a_remote_rx_gsup(msc_a, (const struct osmo_gsup_message*)data);
return;
/* For all remaining cases:
* [MSC-A---------------------] [MSC-B---------------------]
* msc_a <-- msc_{i,t}_remote <---GSUP---- msc_a_remote <-- msc_{i,t} <--BSSMAP--- [BSS]
* you are here^
*/
case MSC_A_EV_FROM_I_PROCESS_ACCESS_SIGNALLING_REQUEST:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_I,
OSMO_GSUP_MSGT_E_PROCESS_ACCESS_SIGNALLING_REQUEST, an_apdu);
return;
case MSC_A_EV_FROM_I_PREPARE_SUBSEQUENT_HANDOVER_REQUEST:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_I,
OSMO_GSUP_MSGT_E_PREPARE_SUBSEQUENT_HANDOVER_REQUEST, an_apdu);
return;
case MSC_A_EV_FROM_I_SEND_END_SIGNAL_REQUEST:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_I,
OSMO_GSUP_MSGT_E_SEND_END_SIGNAL_REQUEST, an_apdu);
return;
case MSC_A_EV_FROM_T_PREPARE_HANDOVER_RESPONSE:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T,
OSMO_GSUP_MSGT_E_PREPARE_HANDOVER_RESULT, an_apdu);
return;
case MSC_A_EV_FROM_T_PREPARE_HANDOVER_FAILURE:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T,
OSMO_GSUP_MSGT_E_PREPARE_HANDOVER_ERROR, an_apdu);
return;
case MSC_A_EV_FROM_T_PROCESS_ACCESS_SIGNALLING_REQUEST:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T,
OSMO_GSUP_MSGT_E_PROCESS_ACCESS_SIGNALLING_REQUEST, an_apdu);
return;
case MSC_A_EV_FROM_T_SEND_END_SIGNAL_REQUEST:
an_apdu = data;
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T,
OSMO_GSUP_MSGT_E_SEND_END_SIGNAL_REQUEST, an_apdu);
return;
case MSC_A_EV_CN_CLOSE:
case MSC_A_EV_MO_CLOSE:
osmo_fsm_inst_state_chg(msc_a->c.fi, MSC_A_ST_RELEASING, 0, 0);
return;
default:
OSMO_ASSERT(false);
}
}
static void msc_a_remote_fsm_releasing_onenter(struct osmo_fsm_inst *fi, uint32_t prev_state)
{
osmo_fsm_inst_term(fi, OSMO_FSM_TERM_REGULAR, fi);
}
static void msc_a_remote_fsm_cleanup(struct osmo_fsm_inst *fi, enum osmo_fsm_term_cause cause)
{
struct msc_a *msc_a = msc_a_remote_priv(fi);
if (msc_a->c.msub->role[MSC_ROLE_I])
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_I, OSMO_GSUP_MSGT_E_CLOSE, NULL);
if (msc_a->c.msub->role[MSC_ROLE_T])
msc_a_remote_msg_up_to_remote_msc(msc_a, MSC_ROLE_T, OSMO_GSUP_MSGT_E_CLOSE, NULL);
}
#define S(x) (1 << (x))
/* FSM events are by definition compatible with msc_a_fsm. States could be a separate enum, but so that
* msc_a_is_accepted() also works on remote msc_a, this FSM shares state numbers with the msc_a_fsm_states. */
static const struct osmo_fsm_state msc_a_remote_fsm_states[] = {
/* Whichever MSC_A_ST would be the first for the real MSC-A implementation, a fresh FSM instance will start in
* state == 0 and we just need to be able to transition out of it. */
[0] = {
.name = "INIT-REMOTE",
.out_state_mask = 0
| S(MSC_A_ST_COMMUNICATING)
| S(MSC_A_ST_RELEASING)
,
},
[MSC_A_ST_COMMUNICATING] = {
.name = "COMMUNICATING",
.action = msc_a_remote_fsm_communicating,
.in_event_mask = 0
| S(MSC_REMOTE_EV_RX_GSUP)
| S(MSC_A_EV_FROM_I_PROCESS_ACCESS_SIGNALLING_REQUEST)
| S(MSC_A_EV_FROM_I_PREPARE_SUBSEQUENT_HANDOVER_REQUEST)
| S(MSC_A_EV_FROM_I_SEND_END_SIGNAL_REQUEST)
| S(MSC_A_EV_FROM_T_PREPARE_HANDOVER_RESPONSE)
| S(MSC_A_EV_FROM_T_PREPARE_HANDOVER_FAILURE)
| S(MSC_A_EV_FROM_T_PROCESS_ACCESS_SIGNALLING_REQUEST)
| S(MSC_A_EV_FROM_T_SEND_END_SIGNAL_REQUEST)
| S(MSC_A_EV_CN_CLOSE)
| S(MSC_A_EV_MO_CLOSE)
,
.out_state_mask = 0
| S(MSC_A_ST_RELEASING)
,
},
[MSC_A_ST_RELEASING] = {
.name = "RELEASING",
.onenter = msc_a_remote_fsm_releasing_onenter,
},
};
static struct osmo_fsm msc_a_remote_fsm = {
.name = "msc_a_remote",
.states = msc_a_remote_fsm_states,
.num_states = ARRAY_SIZE(msc_a_remote_fsm_states),
.log_subsys = DMSC,
.event_names = msc_a_fsm_event_names,
.cleanup = msc_a_remote_fsm_cleanup,
};
static __attribute__((constructor)) void msc_a_remote_fsm_init(void)
{
OSMO_ASSERT(osmo_fsm_register(&msc_a_remote_fsm) == 0);
}
struct msc_a *msc_a_remote_alloc(struct msub *msub, struct ran_infra *ran,
const uint8_t *remote_msc_name, size_t remote_msc_name_len)
{
struct msc_a *msc_a;
msub_role_alloc(msub, MSC_ROLE_A, &msc_a_remote_fsm, struct msc_a, ran);
msc_a = msub_msc_a(msub);
if (!msc_a) {
LOG_MSUB(msub, LOGL_ERROR, "Error setting up MSC-A remote role\n");
return NULL;
}
msc_a->c.remote_to = e_link_alloc(msub_net(msub)->gcm, msc_a->c.fi, remote_msc_name, remote_msc_name_len);
if (!msc_a->c.remote_to) {
LOG_MSC_A_REMOTE(msc_a, LOGL_ERROR, "Failed to set up E link\n");
msc_a_release_cn(msc_a);
return NULL;
}
msc_a_update_id(msc_a);
/* Immediately get out of state 0. */
osmo_fsm_inst_state_chg(msc_a->c.fi, MSC_A_ST_COMMUNICATING, 0, 0);
return msc_a;
}