osmo-msc/src/libmsc/mncc.c

410 lines
12 KiB
C
Raw Normal View History

/* mncc.c - utility routines for the MNCC API between the 04.08
* message parsing and the actual Call Control logic */
/* (C) 2008-2018 by Harald Welte <laforge@gnumonks.org>
* (C) 2009 by Andreas Eversberg <Andreas.Eversberg@versatel.de>
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/utils.h>
#include <osmocom/msc/gsm_04_08.h>
#include <osmocom/msc/debug.h>
#include <osmocom/msc/mncc.h>
#include <osmocom/msc/gsm_data.h>
#include <osmocom/msc/transaction.h>
2009-06-20 20:36:41 +00:00
static const struct value_string mncc_names[] = {
{ MNCC_SETUP_REQ, "MNCC_SETUP_REQ" },
{ MNCC_SETUP_IND, "MNCC_SETUP_IND" },
{ MNCC_SETUP_RSP, "MNCC_SETUP_RSP" },
{ MNCC_SETUP_CNF, "MNCC_SETUP_CNF" },
{ MNCC_SETUP_COMPL_REQ, "MNCC_SETUP_COMPL_REQ" },
{ MNCC_SETUP_COMPL_IND, "MNCC_SETUP_COMPL_IND" },
{ MNCC_CALL_CONF_IND, "MNCC_CALL_CONF_IND" },
{ MNCC_CALL_PROC_REQ, "MNCC_CALL_PROC_REQ" },
{ MNCC_PROGRESS_REQ, "MNCC_PROGRESS_REQ" },
{ MNCC_ALERT_REQ, "MNCC_ALERT_REQ" },
{ MNCC_ALERT_IND, "MNCC_ALERT_IND" },
{ MNCC_NOTIFY_REQ, "MNCC_NOTIFY_REQ" },
{ MNCC_NOTIFY_IND, "MNCC_NOTIFY_IND" },
{ MNCC_DISC_REQ, "MNCC_DISC_REQ" },
{ MNCC_DISC_IND, "MNCC_DISC_IND" },
{ MNCC_REL_REQ, "MNCC_REL_REQ" },
{ MNCC_REL_IND, "MNCC_REL_IND" },
{ MNCC_REL_CNF, "MNCC_REL_CNF" },
{ MNCC_FACILITY_REQ, "MNCC_FACILITY_REQ" },
{ MNCC_FACILITY_IND, "MNCC_FACILITY_IND" },
{ MNCC_START_DTMF_IND, "MNCC_START_DTMF_IND" },
{ MNCC_START_DTMF_RSP, "MNCC_START_DTMF_RSP" },
{ MNCC_START_DTMF_REJ, "MNCC_START_DTMF_REJ" },
{ MNCC_STOP_DTMF_IND, "MNCC_STOP_DTMF_IND" },
{ MNCC_STOP_DTMF_RSP, "MNCC_STOP_DTMF_RSP" },
{ MNCC_MODIFY_REQ, "MNCC_MODIFY_REQ" },
{ MNCC_MODIFY_IND, "MNCC_MODIFY_IND" },
{ MNCC_MODIFY_RSP, "MNCC_MODIFY_RSP" },
{ MNCC_MODIFY_CNF, "MNCC_MODIFY_CNF" },
{ MNCC_MODIFY_REJ, "MNCC_MODIFY_REJ" },
{ MNCC_HOLD_IND, "MNCC_HOLD_IND" },
{ MNCC_HOLD_CNF, "MNCC_HOLD_CNF" },
{ MNCC_HOLD_REJ, "MNCC_HOLD_REJ" },
{ MNCC_RETRIEVE_IND, "MNCC_RETRIEVE_IND" },
{ MNCC_RETRIEVE_CNF, "MNCC_RETRIEVE_CNF" },
{ MNCC_RETRIEVE_REJ, "MNCC_RETRIEVE_REJ" },
{ MNCC_USERINFO_REQ, "MNCC_USERINFO_REQ" },
{ MNCC_USERINFO_IND, "MNCC_USERINFO_IND" },
{ MNCC_REJ_REQ, "MNCC_REJ_REQ" },
{ MNCC_REJ_IND, "MNCC_REJ_IND" },
{ MNCC_BRIDGE, "MNCC_BRIDGE" },
{ MNCC_FRAME_RECV, "MNCC_FRAME_RECV" },
{ MNCC_FRAME_DROP, "MNCC_FRAME_DROP" },
{ MNCC_LCHAN_MODIFY, "MNCC_LCHAN_MODIFY" },
{ MNCC_RTP_CREATE, "MNCC_RTP_CREATE" },
{ MNCC_RTP_CONNECT, "MNCC_RTP_CONNECT" },
{ MNCC_RTP_FREE, "MNCC_RTP_FREE" },
{ GSM_TCHF_FRAME, "GSM_TCHF_FRAME" },
{ GSM_TCHF_FRAME_EFR, "GSM_TCHF_FRAME_EFR" },
{ GSM_TCHH_FRAME, "GSM_TCHH_FRAME" },
{ GSM_TCH_FRAME_AMR, "GSM_TCH_FRAME_AMR" },
{ GSM_BAD_FRAME, "GSM_BAD_FRAME" },
{ 0, NULL },
};
const char *get_mncc_name(int value)
{
return get_value_string(mncc_names, value);
}
void mncc_set_cause(struct gsm_mncc *data, int loc, int val)
{
data->fields |= MNCC_F_CAUSE;
data->cause.coding = GSM48_CAUSE_CODING_GSM;
data->cause.location = loc;
data->cause.value = val;
}
/***********************************************************************
* MNCC validation code. Move to libosmocore once headers are merged
************************************************************************/
static int check_string_terminated(const char *str, unsigned int size)
{
int i;
for (i = 0; i < size; i++) {
if (str[i] == 0)
return 0;
}
return -EINVAL;
}
static int mncc_check_number(const struct gsm_mncc_number *num, const char *str)
{
int rc;
rc = check_string_terminated(num->number, ARRAY_SIZE(num->number));
if (rc < 0)
LOGP(DMNCC, LOGL_ERROR, "MNCC %s number not terminated\n", str);
return rc;
}
static int mncc_check_cause(const struct gsm_mncc_cause *cause)
{
if (cause->diag_len > sizeof(cause->diag))
return -EINVAL;
return 0;
}
static int mncc_check_useruser(const struct gsm_mncc_useruser *uu)
{
return check_string_terminated(uu->info, ARRAY_SIZE(uu->info));
}
static int mncc_check_facility(const struct gsm_mncc_facility *fac)
{
return check_string_terminated(fac->info, ARRAY_SIZE(fac->info));
}
static int mncc_check_ssversion(const struct gsm_mncc_ssversion *ssv)
{
return check_string_terminated(ssv->info, ARRAY_SIZE(ssv->info));
}
static int mncc_prim_check_sign(const struct gsm_mncc *mncc_prim)
{
int rc;
if (mncc_prim->fields & ~ MNCC_F_ALL) {
LOGP(DMNCC, LOGL_ERROR, "Unknown MNCC field mask 0x%x\n", mncc_prim->fields);
return -EINVAL;
}
rc = check_string_terminated(mncc_prim->imsi, sizeof(mncc_prim->imsi));
if (rc < 0) {
LOGP(DMNCC, LOGL_ERROR, "MNCC IMSI not terminated\n");
return rc;
}
if (mncc_prim->fields & MNCC_F_CALLED) {
rc = mncc_check_number(&mncc_prim->called, "called");
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_CALLING) {
rc = mncc_check_number(&mncc_prim->calling, "calling");
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_REDIRECTING) {
rc = mncc_check_number(&mncc_prim->redirecting, "redirecting");
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_CONNECTED) {
rc = mncc_check_number(&mncc_prim->connected, "connected");
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_CAUSE) {
rc = mncc_check_cause(&mncc_prim->cause);
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_USERUSER) {
rc = mncc_check_useruser(&mncc_prim->useruser);
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_FACILITY) {
rc = mncc_check_facility(&mncc_prim->facility);
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_SSVERSION) {
rc = mncc_check_ssversion(&mncc_prim->ssversion);
if (rc < 0)
return rc;
}
if (mncc_prim->fields & MNCC_F_BEARER_CAP) {
bool m1_found = false;
int i;
for (i = 0; i < ARRAY_SIZE(mncc_prim->bearer_cap.speech_ver); i++) {
if (mncc_prim->bearer_cap.speech_ver[i] == -1) {
m1_found = true;
break;
}
}
if (!m1_found) {
LOGP(DMNCC, LOGL_ERROR, "Unterminated MNCC bearer capability\n");
return -EINVAL;
}
}
return 0;
}
/* Make sure that the SDP section has a terminating \0. The MNCC message may end after that \0, and if SDP is omitted it
* must contain at least one \0 byte. */
int mncc_check_sdp_termination(const char *label, const struct gsm_mncc *mncc, unsigned int len, const char *sdp)
{
size_t sdp_offset;
size_t sdp_data_len;
size_t sdp_str_len;
OSMO_ASSERT(((char*)mncc) < sdp);
sdp_offset = sdp - (char*)mncc;
if (len < sdp_offset)
goto too_short;
sdp_data_len = len - sdp_offset;
if (sdp_data_len < 1)
goto too_short;
sdp_str_len = strnlen(sdp, sdp_data_len);
/* There must be a \0, so sdp_str_len must be at most sdp_data_len - 1 */
if (sdp_str_len >= sdp_data_len)
goto too_short;
return 0;
too_short:
LOGP(DMNCC, LOGL_ERROR, "Short %s\n", label);
return -EINVAL;
}
int mncc_prim_check(const struct gsm_mncc *mncc_prim, unsigned int len)
{
if (len < sizeof(mncc_prim->msg_type)) {
LOGP(DMNCC, LOGL_ERROR, "Short MNCC Header\n");
return -EINVAL;
}
switch (mncc_prim->msg_type) {
case MNCC_SOCKET_HELLO:
if (len < sizeof(struct gsm_mncc_hello)) {
LOGP(DMNCC, LOGL_ERROR, "Short MNCC Hello\n");
return -EINVAL;
}
break;
case GSM_BAD_FRAME:
case GSM_TCH_FRAME_AMR:
case GSM_TCHH_FRAME:
case GSM_TCHF_FRAME_EFR:
case GSM_TCHF_FRAME:
if (len < sizeof(struct gsm_data_frame)) {
LOGP(DMNCC, LOGL_ERROR, "Short MNCC TCH\n");
return -EINVAL;
}
break;
case MNCC_RTP_FREE:
case MNCC_RTP_CONNECT:
case MNCC_RTP_CREATE:
return mncc_check_sdp_termination("MNCC RTP", mncc_prim, len, ((struct gsm_mncc_rtp*)mncc_prim)->sdp);
case MNCC_LCHAN_MODIFY:
case MNCC_FRAME_DROP:
case MNCC_FRAME_RECV:
/* FIXME */
break;
case MNCC_BRIDGE:
if (len < sizeof(struct gsm_mncc_bridge)) {
LOGP(DMNCC, LOGL_ERROR, "Short MNCC BRIDGE\n");
return -EINVAL;
}
break;
default:
if (mncc_check_sdp_termination("MNCC Signalling", mncc_prim, len, mncc_prim->sdp))
return -EINVAL;
return mncc_prim_check_sign(mncc_prim);
}
return 0;
}
large refactoring: support inter-BSC and inter-MSC Handover 3GPP TS 49.008 '4.3 Roles of MSC-A, MSC-I and MSC-T' defines distinct roles: - MSC-A is responsible for managing subscribers, - MSC-I is the gateway to the RAN. - MSC-T is a second transitory gateway to another RAN during Handover. After inter-MSC Handover, the MSC-I is handled by a remote MSC instance, while the original MSC-A retains the responsibility of subscriber management. MSC-T exists in this patch but is not yet used, since Handover is only prepared for, not yet implemented. Facilitate Inter-MSC and inter-BSC Handover by the same internal split of MSC roles. Compared to inter-MSC Handover, mere inter-BSC has the obvious simplifications: - all of MSC-A, MSC-I and MSC-T roles will be served by the same osmo-msc instance, - messages between MSC-A and MSC-{I,T} don't need to be routed via E-interface (GSUP), - no call routing between MSC-A and -I via MNCC necessary. This is the largest code bomb I have submitted, ever. Out of principle, I apologize to everyone trying to read this as a whole. Unfortunately, I see no sense in trying to split this patch into smaller bits. It would be a huge amount of work to introduce these changes in separate chunks, especially if each should in turn be useful and pass all test suites. So, unfortunately, we are stuck with this code bomb. The following are some details and rationale for this rather huge refactoring: * separate MSC subscriber management from ran_conn struct ran_conn is reduced from the pivotal subscriber management entity it has been so far to a mere storage for an SCCP connection ID and an MSC subscriber reference. The new pivotal subscriber management entity is struct msc_a -- struct msub lists the msc_a, msc_i, msc_t roles, the vast majority of code paths however use msc_a, since MSC-A is where all the interesting stuff happens. Before handover, msc_i is an FSM implementation that encodes to the local ran_conn. After inter-MSC Handover, msc_i is a compatible but different FSM implementation that instead forwards via/from GSUP. Same goes for the msc_a struct: if osmo-msc is the MSC-I "RAN proxy" for a remote MSC-A role, the msc_a->fi is an FSM implementation that merely forwards via/from GSUP. * New SCCP implementation for RAN access To be able to forward BSSAP and RANAP messages via the GSUP interface, the individual message layers need to be cleanly separated. The IuCS implementation used until now (iu_client from libosmo-ranap) did not provide this level of separation, and needed a complete rewrite. It was trivial to implement this in such a way that both BSSAP and RANAP can be handled by the same SCCP code, hence the new SCCP-RAN layer also replaces BSSAP handling. sccp_ran.h: struct sccp_ran_inst provides an abstract handler for incoming RAN connections. A set of callback functions provides implementation specific details. * RAN Abstraction (BSSAP vs. RANAP) The common SCCP implementation did set the theme for the remaining refactoring: make all other MSC code paths entirely RAN-implementation-agnostic. ran_infra.c provides data structures that list RAN implementation specifics, from logging to RAN de-/encoding to SCCP callbacks and timers. A ran_infra pointer hence allows complete abstraction of RAN implementations: - managing connected RAN peers (BSC, RNC) in ran_peer.c, - classifying and de-/encoding RAN PDUs, - recording connected LACs and cell IDs and sending out Paging requests to matching RAN peers. * RAN RESET now also for RANAP ran_peer.c absorbs the reset_fsm from a_reset.c; in consequence, RANAP also supports proper RESET semantics now. Hence osmo-hnbgw now also needs to provide proper RESET handling, which it so far duly ignores. (TODO) * RAN de-/encoding abstraction The RAN abstraction mentioned above serves not only to separate RANAP and BSSAP implementations transparently, but also to be able to optionally handle RAN on distinct levels. Before Handover, all RAN messages are handled by the MSC-A role. However, after an inter-MSC Handover, a standalone MSC-I will need to decode RAN PDUs, at least in order to manage Assignment of RTP streams between BSS/RNC and MNCC call forwarding. ran_msg.h provides a common API with abstraction for: - receiving events from RAN, i.e. passing RAN decode from the BSC/RNC and MS/UE: struct ran_dec_msg represents RAN messages decoded from either BSSMAP or RANAP; - sending RAN events: ran_enc_msg is the counterpart to compose RAN messages that should be encoded to either BSSMAP or RANAP and passed down to the BSC/RNC and MS/UE. The RAN-specific implementations are completely contained by ran_msg_a.c and ran_msg_iu.c. In particular, Assignment and Ciphering have so far been distinct code paths for BSSAP and RANAP, with switch(via_ran){...} statements all over the place. Using RAN_DEC_* and RAN_ENC_* abstractions, these are now completely unified. Note that SGs does not qualify for RAN abstraction: the SGs interface always remains with the MSC-A role, and SGs messages follow quite distinct semantics from the fairly similar GERAN and UTRAN. * MGW and RTP stream management So far, managing MGW endpoints via MGCP was tightly glued in-between GSM-04.08-CC on the one and MNCC on the other side. Prepare for switching RTP streams between different RAN peers by moving to object-oriented implementations: implement struct call_leg and struct rtp_stream with distinct FSMs each. For MGW communication, use the osmo_mgcpc_ep API that has originated from osmo-bsc and recently moved to libosmo-mgcp-client for this purpose. Instead of implementing a sequence of events with code duplication for the RAN and CN sides, the idea is to manage each RTP stream separately by firing and receiving events as soon as codecs and RTP ports are negotiated, and letting the individual FSMs take care of the MGW management "asynchronously". The caller provides event IDs and an FSM instance that should be notified of RTP stream setup progress. Hence it becomes possible to reconnect RTP streams from one GSM-04.08-CC to another (inter-BSC Handover) or between CC and MNCC RTP peers (inter-MSC Handover) without duplicating the MGCP code for each transition. The number of FSM implementations used for MGCP handling may seem a bit of an overkill. But in fact, the number of perspectives on RTP forwarding are far from trivial: - an MGW endpoint is an entity with N connections, and MGCP "sessions" for configuring them by talking to the MGW; - an RTP stream is a remote peer connected to one of the endpoint's connections, which is asynchronously notified of codec and RTP port choices; - a call leg is the higher level view on either an MT or MO side of a voice call, a combination of two RTP streams to forward between two remote peers. BSC MGW PBX CI CI [MGW-endpoint] [--rtp_stream--] [--rtp_stream--] [----------------call_leg----------------] * Use counts Introduce using the new osmo_use_count API added to libosmocore for this purpose. Each use token has a distinct name in the logging, which can be a globally constant name or ad-hoc, like the local __func__ string constant. Use in the new struct msc_a, as well as change vlr_subscr to the new osmo_use_count API. * FSM Timeouts Introduce using the new osmo_tdef API, which provides a common VTY implementation for all timer numbers, and FSM state transitions with the correct timeout. Originated in osmo-bsc, recently moved to libosmocore. Depends: Ife31e6798b4e728a23913179e346552a7dd338c0 (libosmocore) Ib9af67b100c4583342a2103669732dab2e577b04 (libosmocore) Id617265337f09dfb6ddfe111ef5e578cd3dc9f63 (libosmocore) Ie9e2add7bbfae651c04e230d62e37cebeb91b0f5 (libosmo-sccp) I26be5c4b06a680f25f19797407ab56a5a4880ddc (osmo-mgw) Ida0e59f9a1f2dd18efea0a51680a67b69f141efa (osmo-mgw) I9a3effd38e72841529df6c135c077116981dea36 (osmo-mgw) Change-Id: I27e4988e0371808b512c757d2b52ada1615067bd
2018-12-07 13:47:34 +00:00
static uint8_t mncc_speech_ver_to_perm_speech(int speech_ver)
{
/* The speech versions that are transmitted in the Bearer capability
* information element, that is transmitted on the Layer 3 (CC)
* use a different encoding than the permitted speech version
* identifier, that is signalled in the channel type element on the A
* interface. (See also 3GPP TS 48.008, 3.2.2.1 and 3GPP TS 24.008,
* 10.5.103 */
switch (speech_ver) {
case GSM48_BCAP_SV_FR:
return GSM0808_PERM_FR1;
case GSM48_BCAP_SV_HR:
return GSM0808_PERM_HR1;
case GSM48_BCAP_SV_EFR:
return GSM0808_PERM_FR2;
case GSM48_BCAP_SV_AMR_F:
return GSM0808_PERM_FR3;
case GSM48_BCAP_SV_AMR_H:
return GSM0808_PERM_HR3;
case GSM48_BCAP_SV_AMR_OFW:
return GSM0808_PERM_FR4;
case GSM48_BCAP_SV_AMR_OHW:
return GSM0808_PERM_HR4;
case GSM48_BCAP_SV_AMR_FW:
return GSM0808_PERM_FR5;
case GSM48_BCAP_SV_AMR_OH:
return GSM0808_PERM_HR6;
}
/* If nothing matches, tag the result as invalid */
LOGP(DBSSAP, LOGL_ERROR, "Invalid permitted speech version: %d\n", speech_ver);
return 0xFF;
}
/* Convert speech preference field */
static uint8_t mncc_bc_radio_to_speech_pref(int radio)
{
/* The Radio channel requirement field that is transmitted in the
* Bearer capability information element, that is transmitted on the
* Layer 3 (CC) uses a different encoding than the Channel rate and
* type field that is signalled in the channel type element on the A
* interface. (See also 3GPP TS 48.008, 3.2.2.1 and 3GPP TS 24.008,
* 10.5.102 */
switch (radio) {
case GSM48_BCAP_RRQ_FR_ONLY:
return GSM0808_SPEECH_FULL_BM;
case GSM48_BCAP_RRQ_DUAL_FR:
return GSM0808_SPEECH_FULL_PREF;
case GSM48_BCAP_RRQ_DUAL_HR:
return GSM0808_SPEECH_HALF_PREF;
}
LOGP(DBSSAP, LOGL_ERROR, "Invalid radio channel preference: %d; defaulting to full rate.\n", radio);
return GSM0808_SPEECH_FULL_BM;
}
int mncc_bearer_cap_to_channel_type(struct gsm0808_channel_type *ct, const struct gsm_mncc_bearer_cap *bc)
{
unsigned int i;
uint8_t sv;
unsigned int count = 0;
bool only_gsm_hr = true;
ct->ch_indctr = GSM0808_CHAN_SPEECH;
for (i = 0; i < ARRAY_SIZE(bc->speech_ver); i++) {
if (bc->speech_ver[i] == -1)
break;
sv = mncc_speech_ver_to_perm_speech(bc->speech_ver[i]);
if (sv != 0xFF) {
/* Detect if something else than
* GSM HR V1 is supported */
if (sv == GSM0808_PERM_HR2 ||
sv == GSM0808_PERM_HR3 || sv == GSM0808_PERM_HR4 || sv == GSM0808_PERM_HR6)
only_gsm_hr = false;
ct->perm_spch[count] = sv;
count++;
}
}
ct->perm_spch_len = count;
if (only_gsm_hr)
/* Note: We must avoid the usage of GSM HR1 as this
* codec only offers very poor audio quality. If the
* MS only supports GSM HR1 (and full rate), and has
* a preference for half rate. Then we will ignore the
* preference and assume a preference for full rate. */
ct->ch_rate_type = GSM0808_SPEECH_FULL_BM;
else
ct->ch_rate_type = mncc_bc_radio_to_speech_pref(bc->radio);
if (count)
return 0;
else
return -EINVAL;
}