osmo-msc/include/osmocom/msc/osmo_msc.h

109 lines
3.9 KiB
C
Raw Normal View History

/* Routines for the MSC handling */
#ifndef OSMO_MSC_H
#define OSMO_MSC_H
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
#include <osmocom/core/fsm.h>
#include <osmocom/gsm/gsup.h>
#include <osmocom/msc/gsm_data.h>
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
#define MSC_HLR_REMOTE_IP_DEFAULT "127.0.0.1"
#define MSC_HLR_REMOTE_PORT_DEFAULT OSMO_GSUP_PORT
enum ran_conn_fsm_event {
refactor subscr_conn and subscr_conn_fsm de-/alloc Refactor: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. 2. Add separate AUTH_CIPH state to the FSM. 3. Use conn->use_count to trigger conn release. 4. Add separate RELEASING state to the FSM. 5. Add rate counters for each of the three Complete Layer 3 types. Details: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. Historically, a gsm_subscriber_connection was allocated in libbsc land, and only upon Complete Layer 3 did libmsc add the fsm instance. After splitting openbsc.git into a separate osmo-msc, this is no longer necessary, hence: Closely tie gsm_subscriber_connection allocation to the subscr_conn_fsm instance: talloc the conn as a child of the FSM instance, and discard the conn as soon as the FSM terminates. 2. Add separate AUTH_CIPH state to the FSM. Decoding the Complete Layer 3 message is distinctly separate from waiting for the VLR FSMs to conclude. Use the NEW state as "we don't know if this is a valid message yet", and the AUTH_CIPH state as "evaluating, don't release". A profound effect of this: should we for any odd reason fail to leave the FSM's NEW state, the conn will be released right at the end of msc_compl_l3(), without needing to trigger release in each code path. 3. Use conn->use_count to trigger conn release. Before, the FSM itself would hold a use count on the conn, and hence we would need to ask it whether it is ready to release the conn yet by dispatching events, to achieve a use_count decrement. Instead, unite the FSM instance and conn, and do not hold a use count by the FSM. Hence, trigger an FSM "UNUSED" event only when the use_count reaches zero. As long as use counts are done correctly, the FSM will terminate correctly. These exceptions: - The new AUTH_CIPH state explicitly ignores UNUSED events, since we expect the use count to reach zero while evaluating Authentication and Ciphering. (I experimented with holding a use count by AUTH_CIPH onenter() and releasing by onleave(), but the use count and thus the conn are released before the next state can initiate transactions that would increment the use count again. Same thing for the VLR FSMs holding a use count, they should be done before we advance to the next state. The easiest is to simply expect zero use count during the AUTH_CIPH state.) - A CM Service Request means that even though the MSC would be through with all it wants to do, we shall still wait for a request to follow from the MS. Hence the FSM holds a use count on itself while a CM Service is pending. - While waiting for a Release/Clear Complete, the FSM holds a use count on itself. 4. Add separate RELEASING state to the FSM. If we decide to release for other reasons than a use count reaching zero, we still need to be able to wait for the msc_dtap() use count on the conn to release. (An upcoming patch will further use the RELEASING state to properly wait for Clear Complete / Release Complete messages.) 5. Add rate counters for each of the three Complete Layer 3 types. Besides LU, also count CM Service Request and Paging Response acceptance/rejections. Without these counters, only very few of the auth+ciph outcomes actually show in the counters. Related: OS#3122 Change-Id: I55feb379e176a96a831e105b86202b17a0ffe889
2018-03-30 22:02:14 +00:00
/* Accepted the initial Complete Layer 3 (starting to evaluate Authentication and Ciphering) */
RAN_CONN_E_COMPLETE_LAYER_3,
A5/n Ciph: request Classmark Update if missing When the VLR requests a Ciphering Mode with vlr_ops.set_ciph_mode(), and if we need a ciph algo flag from a Classmark information that is not yet known (usually CM 2 during LU), send a BSSMAP Classmark Request to get it. To manage the intermission of the Classmark Request, add - msc_classmark_request_then_cipher_mode_cmd(), - state SUBSCR_CONN_S_WAIT_CLASSMARK_UPDATE, - event SUBSCR_CONN_E_CLASSMARK_UPDATE. From state AUTH_CIPH, switch to state WAIT_CLASSMARK_UPDATE. Once the BSSMAP Classmark Response, is received, switch back to SUBSCR_CONN_S_AUTH_CIPH and re-initiate Ciphering Mode. To be able to re-enter the Ciphering Mode algo decision, factor it out into msc_geran_set_cipher_mode(). Rationale: In the following commit, essentially we stopped supporting A5/3 ciphering: commit 71330720b6efdda2fcfd3e9c0cb45f89e32e5670 "MSC: Intersect configured A5 algorithms with MS-supported ones" Change-Id: Id124923ee52a357cb7d3e04d33f585214774f3a3 A5/3 was no longer supported because from that commit on, we strictly checked the MS-supported ciphers, but we did not have Classmark 2 available during Location Updating. This patch changes that: when Classmark 2 is missing, actively request it by a BSSMAP Classmark Request; continue Ciphering only after the Response. Always request missing Classmark, even if a lesser cipher were configured available. If the Classmark Update response fails to come in, cause an attach failure. Instead, we could attempt to use a lesser cipher that is also enabled. That is left as a future feature, should that become relevant. I think it's unlikely. Technically, we could now end up requesting a Classmark Updating both during LU (vlr_lu_fsm) and CM Service/Paging Response (proc_arq_fsm), but in practice the only time we lack a Classmark is: during Location Updating with A5/3 enabled. A5/1 support is indicated in CM1 which is always available, and A5/3 support is indicated in CM2, which is always available during CM Service Request as well as Paging Response. So this patch has practical relevance only for Location Updating. For networks that permit only A5/3, this patch fixes Location Updating. For networks that support A5/3 and A5/1, so far we always used A5/1 during LU, and after this patch we request CM2 and likely use A5/3 instead. In msc_vlr_test_gsm_ciph, verify that requesting Classmark 2 for A5/3 works during LU. Also verify that the lack of a Classmark Response results in attach failure. In msc_vlr_test_gsm_ciph, a hacky unit test fakes a situation where a CM2 is missing during proc_arq_fsm and proves that that code path works, even though the practical relevance is currently zero. It would only become interesting if ciphering algorithms A5/4 and higher became relevant, because support of those would be indicated in Classmark 3, which would always require a Classmark Request. Related: OS#3043 Depends: I4a2e1d3923e33912579c4180aa1ff8e8f5abb7e7 (libosmocore) Change-Id: I73c7cb6a86624695bd9c0f59abb72e2fdc655131
2018-09-13 01:23:07 +00:00
/* Received Classmark Update, typically neede for Ciphering Mode Command */
RAN_CONN_E_CLASSMARK_UPDATE,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
/* LU or Process Access FSM has determined that this conn is good */
RAN_CONN_E_ACCEPTED,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
/* received first reply from MS in "real" CC, SMS, USSD communication */
RAN_CONN_E_COMMUNICATING,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
/* Some async action has completed, check again whether all is done */
RAN_CONN_E_RELEASE_WHEN_UNUSED,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
/* MS/BTS/BSC originated close request */
RAN_CONN_E_MO_CLOSE,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
/* MSC originated close request, e.g. failed authentication */
RAN_CONN_E_CN_CLOSE,
refactor subscr_conn and subscr_conn_fsm de-/alloc Refactor: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. 2. Add separate AUTH_CIPH state to the FSM. 3. Use conn->use_count to trigger conn release. 4. Add separate RELEASING state to the FSM. 5. Add rate counters for each of the three Complete Layer 3 types. Details: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. Historically, a gsm_subscriber_connection was allocated in libbsc land, and only upon Complete Layer 3 did libmsc add the fsm instance. After splitting openbsc.git into a separate osmo-msc, this is no longer necessary, hence: Closely tie gsm_subscriber_connection allocation to the subscr_conn_fsm instance: talloc the conn as a child of the FSM instance, and discard the conn as soon as the FSM terminates. 2. Add separate AUTH_CIPH state to the FSM. Decoding the Complete Layer 3 message is distinctly separate from waiting for the VLR FSMs to conclude. Use the NEW state as "we don't know if this is a valid message yet", and the AUTH_CIPH state as "evaluating, don't release". A profound effect of this: should we for any odd reason fail to leave the FSM's NEW state, the conn will be released right at the end of msc_compl_l3(), without needing to trigger release in each code path. 3. Use conn->use_count to trigger conn release. Before, the FSM itself would hold a use count on the conn, and hence we would need to ask it whether it is ready to release the conn yet by dispatching events, to achieve a use_count decrement. Instead, unite the FSM instance and conn, and do not hold a use count by the FSM. Hence, trigger an FSM "UNUSED" event only when the use_count reaches zero. As long as use counts are done correctly, the FSM will terminate correctly. These exceptions: - The new AUTH_CIPH state explicitly ignores UNUSED events, since we expect the use count to reach zero while evaluating Authentication and Ciphering. (I experimented with holding a use count by AUTH_CIPH onenter() and releasing by onleave(), but the use count and thus the conn are released before the next state can initiate transactions that would increment the use count again. Same thing for the VLR FSMs holding a use count, they should be done before we advance to the next state. The easiest is to simply expect zero use count during the AUTH_CIPH state.) - A CM Service Request means that even though the MSC would be through with all it wants to do, we shall still wait for a request to follow from the MS. Hence the FSM holds a use count on itself while a CM Service is pending. - While waiting for a Release/Clear Complete, the FSM holds a use count on itself. 4. Add separate RELEASING state to the FSM. If we decide to release for other reasons than a use count reaching zero, we still need to be able to wait for the msc_dtap() use count on the conn to release. (An upcoming patch will further use the RELEASING state to properly wait for Clear Complete / Release Complete messages.) 5. Add rate counters for each of the three Complete Layer 3 types. Besides LU, also count CM Service Request and Paging Response acceptance/rejections. Without these counters, only very few of the auth+ciph outcomes actually show in the counters. Related: OS#3122 Change-Id: I55feb379e176a96a831e105b86202b17a0ffe889
2018-03-30 22:02:14 +00:00
/* The usage count for the conn has reached zero */
RAN_CONN_E_UNUSED,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
};
enum ran_conn_fsm_state {
RAN_CONN_S_NEW,
RAN_CONN_S_AUTH_CIPH,
RAN_CONN_S_WAIT_CLASSMARK_UPDATE,
RAN_CONN_S_ACCEPTED,
RAN_CONN_S_COMMUNICATING,
RAN_CONN_S_RELEASING,
RAN_CONN_S_RELEASED,
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
};
struct ran_conn *ran_conn_alloc(struct gsm_network *network, enum ran_type via_ran, uint16_t lac);
void ran_conn_update_id(struct ran_conn *conn, enum complete_layer3_type from, const char *id);
char *ran_conn_get_conn_id(struct ran_conn *conn);
refactor subscr_conn and subscr_conn_fsm de-/alloc Refactor: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. 2. Add separate AUTH_CIPH state to the FSM. 3. Use conn->use_count to trigger conn release. 4. Add separate RELEASING state to the FSM. 5. Add rate counters for each of the three Complete Layer 3 types. Details: 1. Glue the gsm_subscriber_connection alloc to the subscr_conn_fsm. Historically, a gsm_subscriber_connection was allocated in libbsc land, and only upon Complete Layer 3 did libmsc add the fsm instance. After splitting openbsc.git into a separate osmo-msc, this is no longer necessary, hence: Closely tie gsm_subscriber_connection allocation to the subscr_conn_fsm instance: talloc the conn as a child of the FSM instance, and discard the conn as soon as the FSM terminates. 2. Add separate AUTH_CIPH state to the FSM. Decoding the Complete Layer 3 message is distinctly separate from waiting for the VLR FSMs to conclude. Use the NEW state as "we don't know if this is a valid message yet", and the AUTH_CIPH state as "evaluating, don't release". A profound effect of this: should we for any odd reason fail to leave the FSM's NEW state, the conn will be released right at the end of msc_compl_l3(), without needing to trigger release in each code path. 3. Use conn->use_count to trigger conn release. Before, the FSM itself would hold a use count on the conn, and hence we would need to ask it whether it is ready to release the conn yet by dispatching events, to achieve a use_count decrement. Instead, unite the FSM instance and conn, and do not hold a use count by the FSM. Hence, trigger an FSM "UNUSED" event only when the use_count reaches zero. As long as use counts are done correctly, the FSM will terminate correctly. These exceptions: - The new AUTH_CIPH state explicitly ignores UNUSED events, since we expect the use count to reach zero while evaluating Authentication and Ciphering. (I experimented with holding a use count by AUTH_CIPH onenter() and releasing by onleave(), but the use count and thus the conn are released before the next state can initiate transactions that would increment the use count again. Same thing for the VLR FSMs holding a use count, they should be done before we advance to the next state. The easiest is to simply expect zero use count during the AUTH_CIPH state.) - A CM Service Request means that even though the MSC would be through with all it wants to do, we shall still wait for a request to follow from the MS. Hence the FSM holds a use count on itself while a CM Service is pending. - While waiting for a Release/Clear Complete, the FSM holds a use count on itself. 4. Add separate RELEASING state to the FSM. If we decide to release for other reasons than a use count reaching zero, we still need to be able to wait for the msc_dtap() use count on the conn to release. (An upcoming patch will further use the RELEASING state to properly wait for Clear Complete / Release Complete messages.) 5. Add rate counters for each of the three Complete Layer 3 types. Besides LU, also count CM Service Request and Paging Response acceptance/rejections. Without these counters, only very few of the auth+ciph outcomes actually show in the counters. Related: OS#3122 Change-Id: I55feb379e176a96a831e105b86202b17a0ffe889
2018-03-30 22:02:14 +00:00
void ran_conn_complete_layer_3(struct ran_conn *conn);
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
int msc_vlr_alloc(struct gsm_network *net);
int msc_vlr_start(struct gsm_network *net);
void ran_conn_sapi_n_reject(struct ran_conn *conn, int dlci);
int ran_conn_clear_request(struct ran_conn *conn, uint32_t cause);
void ran_conn_compl_l3(struct ran_conn *conn,
struct msgb *msg, uint16_t chosen_channel);
void ran_conn_dtap(struct ran_conn *conn, struct msgb *msg);
int ran_conn_classmark_request_then_cipher_mode_cmd(struct ran_conn *conn, bool umts_aka,
bool retrieve_imeisv);
int ran_conn_geran_set_cipher_mode(struct ran_conn *conn, bool umts_aka, bool retrieve_imeisv);
void ran_conn_cipher_mode_compl(struct ran_conn *conn, struct msgb *msg, uint8_t alg_id);
void ran_conn_rx_sec_mode_compl(struct ran_conn *conn);
void ran_conn_classmark_chg(struct ran_conn *conn,
const uint8_t *cm2, uint8_t cm2_len,
const uint8_t *cm3, uint8_t cm3_len);
void ran_conn_assign_fail(struct ran_conn *conn, uint8_t cause, uint8_t *rr_cause);
void ran_conn_init(void);
bool ran_conn_is_accepted(const struct ran_conn *conn);
bool ran_conn_is_establishing_auth_ciph(const struct ran_conn *conn);
void ran_conn_communicating(struct ran_conn *conn);
void ran_conn_close(struct ran_conn *conn, uint32_t cause);
void ran_conn_mo_close(struct ran_conn *conn, uint32_t cause);
bool ran_conn_in_release(struct ran_conn *conn);
Use libvlr in libmsc (large refactoring) Original libvlr code is by Harald Welte <laforge@gnumonks.org>, polished and tweaked by Neels Hofmeyr <nhofmeyr@sysmocom.de>. This is a long series of trial-and-error development collapsed in one patch. This may be split in smaller commits if reviewers prefer that. If we can keep it as one, we have saved ourselves the additional separation work. SMS: The SQL based lookup of SMS for attached subscribers no longer works since the SQL database no longer has the subscriber data. Replace with a round-robin on the SMS recipient MSISDNs paired with a VLR subscriber RAM lookup whether the subscriber is currently attached. If there are many SMS for not-attached subscribers in the SMS database, this will become inefficient: a DB hit returns a pending SMS, the RAM lookup will reveal that the subscriber is not attached, after which the DB is hit for the next SMS. It would become more efficient e.g. by having an MSISDN based hash list for the VLR subscribers and by marking non-attached SMS recipients in the SMS database so that they can be excluded with the SQL query already. There is a sanity limit to do at most 100 db hits per attempt to find a pending SMS. So if there are more than 100 stored SMS waiting for their recipients to actually attach to the MSC, it may take more than one SMS queue trigger to deliver SMS for subscribers that are actually attached. This is not very beautiful, but is merely intended to carry us over to a time when we have a proper separate SMSC entity. Introduce gsm_subscriber_connection ref-counting in libmsc. Remove/Disable VTY and CTRL commands to create subscribers, which is now a task of the OsmoHLR. Adjust the python tests accordingly. Remove VTY cmd subscriber-keep-in-ram. Use OSMO_GSUP_PORT = 4222 instead of 2222. See I4222e21686c823985be8ff1f16b1182be8ad6175. So far use the LAC from conn->bts, will be replaced by conn->lac in Id3705236350d5f69e447046b0a764bbabc3d493c. Related: OS#1592 OS#1974 Change-Id: I639544a6cdda77a3aafc4e3446a55393f60e4050
2016-06-19 16:06:02 +00:00
void ran_conn_rx_bssmap_clear_complete(struct ran_conn *conn);
void ran_conn_rx_iu_release_complete(struct ran_conn *conn);
enum ran_conn_use {
RAN_CONN_USE_UNTRACKED = -1,
RAN_CONN_USE_COMPL_L3,
RAN_CONN_USE_DTAP,
RAN_CONN_USE_AUTH_CIPH,
RAN_CONN_USE_CM_SERVICE,
RAN_CONN_USE_TRANS_CC,
RAN_CONN_USE_TRANS_SMS,
RAN_CONN_USE_TRANS_NC_SS,
RAN_CONN_USE_SILENT_CALL,
RAN_CONN_USE_RELEASE,
};
extern const struct value_string ran_conn_use_names[];
static inline const char *ran_conn_use_name(enum ran_conn_use val)
{ return get_value_string(ran_conn_use_names, val); }
#define ran_conn_get(conn, balance_token) \
_ran_conn_get(conn, balance_token, __FILE__, __LINE__)
#define ran_conn_put(conn, balance_token) \
_ran_conn_put(conn, balance_token, __FILE__, __LINE__)
struct ran_conn * _ran_conn_get(struct ran_conn *conn, enum ran_conn_use balance_token,
const char *file, int line);
void _ran_conn_put(struct ran_conn *conn, enum ran_conn_use balance_token,
const char *file, int line);
bool ran_conn_used_by(struct ran_conn *conn, enum ran_conn_use token);
void msc_stop_paging(struct vlr_subscr *vsub);
#endif