osmo-msc/openbsc/src/chan_alloc.c

420 lines
9.8 KiB
C
Raw Normal View History

/* GSM Channel allocation routines
*
* (C) 2008 by Harald Welte <laforge@gnumonks.org>
* (C) 2008, 2009 by Holger Hans Peter Freyther <zecke@selfish.org>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <openbsc/gsm_data.h>
#include <openbsc/chan_alloc.h>
2008-12-27 01:55:51 +00:00
#include <openbsc/abis_nm.h>
#include <openbsc/abis_rsl.h>
#include <openbsc/debug.h>
#include <openbsc/signal.h>
static void auto_release_channel(void *_lchan);
static int ts_is_usable(struct gsm_bts_trx_ts *ts)
{
/* FIXME: How does this behave for BS-11 ? */
if (is_ipaccess_bts(ts->trx->bts)) {
if (ts->nm_state.operational != NM_OPSTATE_ENABLED ||
ts->nm_state.availability != NM_AVSTATE_OK)
return 0;
}
return 1;
}
static int trx_is_usable(struct gsm_bts_trx *trx)
{
/* FIXME: How does this behave for BS-11 ? */
if (is_ipaccess_bts(trx->bts)) {
if (trx->nm_state.operational != NM_OPSTATE_ENABLED ||
trx->nm_state.availability != NM_AVSTATE_OK ||
trx->bb_transc.nm_state.operational != NM_OPSTATE_ENABLED ||
trx->bb_transc.nm_state.availability != NM_AVSTATE_OK)
return 0;
}
return 1;
}
struct gsm_bts_trx_ts *ts_c0_alloc(struct gsm_bts *bts,
enum gsm_phys_chan_config pchan)
{
struct gsm_bts_trx *trx = bts->c0;
struct gsm_bts_trx_ts *ts = &trx->ts[0];
if (pchan != GSM_PCHAN_CCCH &&
pchan != GSM_PCHAN_CCCH_SDCCH4)
return NULL;
if (ts->pchan != GSM_PCHAN_NONE)
return NULL;
ts->pchan = pchan;
return ts;
}
/* Allocate a physical channel (TS) */
struct gsm_bts_trx_ts *ts_alloc(struct gsm_bts *bts,
enum gsm_phys_chan_config pchan)
{
int j;
struct gsm_bts_trx *trx;
llist_for_each_entry(trx, &bts->trx_list, list) {
int from, to;
if (!trx_is_usable(trx))
continue;
/* the following constraints are pure policy,
* no requirement to put this restriction in place */
if (trx == bts->c0) {
/* On the first TRX we run one CCCH and one SDCCH8 */
switch (pchan) {
case GSM_PCHAN_CCCH:
case GSM_PCHAN_CCCH_SDCCH4:
from = 0; to = 0;
break;
case GSM_PCHAN_TCH_F:
case GSM_PCHAN_TCH_H:
from = 1; to = 7;
break;
case GSM_PCHAN_SDCCH8_SACCH8C:
default:
return NULL;
}
} else {
/* Every secondary TRX is configured for TCH/F
* and TCH/H only */
switch (pchan) {
case GSM_PCHAN_SDCCH8_SACCH8C:
from = 1; to = 1;
case GSM_PCHAN_TCH_F:
case GSM_PCHAN_TCH_H:
from = 1; to = 7;
break;
default:
return NULL;
}
}
for (j = from; j <= to; j++) {
struct gsm_bts_trx_ts *ts = &trx->ts[j];
if (!ts_is_usable(ts))
continue;
if (ts->pchan == GSM_PCHAN_NONE) {
ts->pchan = pchan;
2008-12-27 01:55:51 +00:00
/* set channel attribute on OML */
abis_nm_set_channel_attr(ts, abis_nm_chcomb4pchan(pchan));
return ts;
}
}
}
return NULL;
}
/* Free a physical channel (TS) */
void ts_free(struct gsm_bts_trx_ts *ts)
{
ts->pchan = GSM_PCHAN_NONE;
}
static const u_int8_t subslots_per_pchan[] = {
[GSM_PCHAN_NONE] = 0,
[GSM_PCHAN_CCCH] = 0,
[GSM_PCHAN_CCCH_SDCCH4] = 4,
[GSM_PCHAN_TCH_F] = 1,
[GSM_PCHAN_TCH_H] = 2,
[GSM_PCHAN_SDCCH8_SACCH8C] = 8,
/* FIXME: what about dynamic TCH_F_TCH_H ? */
};
static struct gsm_lchan *
_lc_find_trx(struct gsm_bts_trx *trx, enum gsm_phys_chan_config pchan)
{
struct gsm_bts_trx_ts *ts;
int j, ss;
if (!trx_is_usable(trx))
return NULL;
for (j = 0; j < 8; j++) {
ts = &trx->ts[j];
if (!ts_is_usable(ts))
continue;
if (ts->pchan != pchan)
continue;
/* check if all sub-slots are allocated yet */
for (ss = 0; ss < subslots_per_pchan[pchan]; ss++) {
struct gsm_lchan *lc = &ts->lchan[ss];
if (lc->type == GSM_LCHAN_NONE &&
lc->state == LCHAN_S_NONE)
return lc;
}
}
return NULL;
}
static struct gsm_lchan *
_lc_find_bts(struct gsm_bts *bts, enum gsm_phys_chan_config pchan)
{
struct gsm_bts_trx *trx;
struct gsm_bts_trx_ts *ts;
struct gsm_lchan *lc;
if (bts->chan_alloc_reverse) {
llist_for_each_entry_reverse(trx, &bts->trx_list, list) {
lc = _lc_find_trx(trx, pchan);
if (lc)
return lc;
}
} else {
llist_for_each_entry(trx, &bts->trx_list, list) {
lc = _lc_find_trx(trx, pchan);
if (lc)
return lc;
}
}
/* we cannot allocate more of these */
if (pchan == GSM_PCHAN_CCCH_SDCCH4)
return NULL;
/* if we've reached here, we need to allocate a new physical
* channel for the logical channel type requested */
ts = ts_alloc(bts, pchan);
if (!ts) {
/* no more radio resources */
return NULL;
}
return &ts->lchan[0];
}
/* Allocate a logical channel */
struct gsm_lchan *lchan_alloc(struct gsm_bts *bts, enum gsm_chan_t type)
{
struct gsm_lchan *lchan = NULL;
enum gsm_phys_chan_config first, second;
switch (type) {
case GSM_LCHAN_SDCCH:
if (bts->chan_alloc_reverse) {
first = GSM_PCHAN_SDCCH8_SACCH8C;
second = GSM_PCHAN_CCCH_SDCCH4;
} else {
first = GSM_PCHAN_CCCH_SDCCH4;
second = GSM_PCHAN_SDCCH8_SACCH8C;
}
lchan = _lc_find_bts(bts, first);
if (lchan == NULL)
lchan = _lc_find_bts(bts, second);
break;
case GSM_LCHAN_TCH_F:
lchan = _lc_find_bts(bts, GSM_PCHAN_TCH_F);
break;
case GSM_LCHAN_TCH_H:
lchan =_lc_find_bts(bts, GSM_PCHAN_TCH_H);
/* If we don't have TCH/H available, fall-back to TCH/F */
if (!lchan) {
lchan = _lc_find_bts(bts, GSM_PCHAN_TCH_F);
type = GSM_LCHAN_TCH_F;
}
break;
default:
LOGP(DRLL, LOGL_ERROR, "Unknown gsm_chan_t %u\n", type);
}
if (lchan) {
lchan->type = type;
lchan->use_count = 0;
/* clear sapis */
memset(lchan->sapis, 0, ARRAY_SIZE(lchan->sapis));
/* clear multi rate config */
memset(&lchan->mr_conf, 0, sizeof(lchan->mr_conf));
/* Configure the time and start it so it will be closed */
lchan->release_timer.cb = auto_release_channel;
lchan->release_timer.data = lchan;
bsc_schedule_timer(&lchan->release_timer, LCHAN_RELEASE_TIMEOUT);
}
return lchan;
}
/* Free a logical channel */
void lchan_free(struct gsm_lchan *lchan)
{
int i;
lchan->type = GSM_LCHAN_NONE;
if (lchan->subscr) {
subscr_put(lchan->subscr);
lchan->subscr = NULL;
}
/* We might kill an active channel... */
if (lchan->use_count != 0) {
dispatch_signal(SS_LCHAN, S_LCHAN_UNEXPECTED_RELEASE, lchan);
lchan->use_count = 0;
}
/* stop the timer */
bsc_del_timer(&lchan->release_timer);
bsc_del_timer(&lchan->T3101);
/* clear cached measuement reports */
lchan->meas_rep_idx = 0;
for (i = 0; i < ARRAY_SIZE(lchan->meas_rep); i++) {
lchan->meas_rep[i].flags = 0;
lchan->meas_rep[i].nr = 0;
}
for (i = 0; i < ARRAY_SIZE(lchan->neigh_meas); i++)
lchan->neigh_meas[i].arfcn = 0;
/* FIXME: ts_free() the timeslot, if we're the last logical
* channel using it */
}
/* Consider releasing the channel now */
int lchan_auto_release(struct gsm_lchan *lchan)
{
if (lchan->use_count > 0) {
return 0;
}
/* Assume we have GSM04.08 running and send a release */
if (lchan->subscr) {
gsm48_send_rr_release(lchan);
}
/* spoofed? message */
if (lchan->use_count < 0)
LOGP(DRLL, LOGL_ERROR, "Channel count is negative: %d\n",
lchan->use_count);
2009-02-01 22:25:58 +00:00
DEBUGP(DRLL, "Recycling the channel with: %d (%x)\n", lchan->nr, lchan->nr);
rsl_release_request(lchan, 0);
return 1;
}
/* Auto release the channel when the use count is zero */
static void auto_release_channel(void *_lchan)
{
struct gsm_lchan *lchan = _lchan;
if (!lchan_auto_release(lchan))
bsc_schedule_timer(&lchan->release_timer, LCHAN_RELEASE_TIMEOUT);
}
struct gsm_lchan* lchan_find(struct gsm_bts *bts, struct gsm_subscriber *subscr) {
struct gsm_bts_trx *trx;
int ts_no, lchan_no;
llist_for_each_entry(trx, &bts->trx_list, list) {
for (ts_no = 0; ts_no < 8; ++ts_no) {
for (lchan_no = 0; lchan_no < TS_MAX_LCHAN; ++lchan_no) {
struct gsm_lchan *lchan =
&trx->ts[ts_no].lchan[lchan_no];
if (subscr == lchan->subscr)
return lchan;
}
}
}
return NULL;
}
struct gsm_lchan *lchan_for_subscr(struct gsm_subscriber *subscr)
{
struct gsm_bts *bts;
struct gsm_network *net = subscr->net;
struct gsm_lchan *lchan;
llist_for_each_entry(bts, &net->bts_list, list) {
lchan = lchan_find(bts, subscr);
if (lchan)
return lchan;
}
return NULL;
}
void bts_chan_load(struct pchan_load *cl, const struct gsm_bts *bts)
{
struct gsm_bts_trx *trx;
llist_for_each_entry(trx, &bts->trx_list, list) {
int i;
/* skip administratively deactivated tranxsceivers */
if (trx->nm_state.availability != NM_AVSTATE_OK ||
trx->bb_transc.nm_state.availability != NM_AVSTATE_OK)
continue;
for (i = 0; i < ARRAY_SIZE(trx->ts); i++) {
struct gsm_bts_trx_ts *ts = &trx->ts[i];
struct load_counter *pl = &cl->pchan[ts->pchan];
int j;
/* skip administratively deactivated timeslots */
if (ts->nm_state.availability != NM_AVSTATE_OK)
continue;
for (j = 0; j < subslots_per_pchan[ts->pchan]; j++) {
struct gsm_lchan *lchan = &ts->lchan[j];
pl->total++;
switch (lchan->state) {
case LCHAN_S_NONE:
break;
default:
pl->used++;
break;
}
}
}
}
}
void network_chan_load(struct pchan_load *pl, struct gsm_network *net)
{
struct gsm_bts *bts;
memset(pl, 0, sizeof(*pl));
llist_for_each_entry(bts, &net->bts_list, list)
bts_chan_load(pl, bts);
}