osmo-hlr/src/lu_fsm.c

320 lines
9.8 KiB
C
Raw Normal View History

1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
/* Roughly following "Process Update_Location_HLR" of TS 09.02 */
/* Copyright 2019 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <osmocom/core/utils.h>
#include <osmocom/core/tdef.h>
#include <osmocom/core/linuxlist.h>
#include <osmocom/core/fsm.h>
#include <osmocom/gsm/apn.h>
#include <osmocom/gsm/gsm48_ie.h>
#include <osmocom/gsupclient/cni_peer_id.h>
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
#include <osmocom/gsupclient/gsup_req.h>
#include <osmocom/hlr/logging.h>
#include <osmocom/hlr/hlr.h>
#include <osmocom/hlr/gsup_server.h>
#include <osmocom/hlr/db.h>
#define LOG_LU(lu, level, fmt, args...) \
LOGPFSML((lu)? (lu)->fi : NULL, level, fmt, ##args)
#define LOG_LU_REQ(lu, req, level, fmt, args...) \
LOGPFSML((lu)? (lu)->fi : NULL, level, "%s:" fmt, \
osmo_gsup_message_type_name((req)->gsup.message_type), ##args)
struct lu {
struct llist_head entry;
struct osmo_fsm_inst *fi;
struct osmo_gsup_req *update_location_req;
/* Subscriber state at time of initial Update Location Request */
struct hlr_subscriber subscr;
bool is_ps;
/* VLR requesting the LU. */
struct osmo_cni_peer_id vlr_name;
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
/* If the LU request was received via a proxy and not immediately from a local VLR, this indicates the closest
* peer that forwarded the GSUP message. */
struct osmo_cni_peer_id via_proxy;
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
};
LLIST_HEAD(g_all_lu);
enum lu_fsm_event {
LU_EV_RX_GSUP,
};
enum lu_fsm_state {
LU_ST_UNVALIDATED,
LU_ST_WAIT_INSERT_DATA_RESULT,
LU_ST_WAIT_LOCATION_CANCEL_RESULT,
};
static const struct value_string lu_fsm_event_names[] = {
OSMO_VALUE_STRING(LU_EV_RX_GSUP),
{}
};
static struct osmo_tdef_state_timeout lu_fsm_timeouts[32] = {
[LU_ST_WAIT_INSERT_DATA_RESULT] = { .T = -4222 },
[LU_ST_WAIT_LOCATION_CANCEL_RESULT] = { .T = -4222 },
};
#define lu_state_chg(lu, state) \
osmo_tdef_fsm_inst_state_chg((lu)->fi, state, lu_fsm_timeouts, g_hlr_tdefs, 5)
static void lu_success(struct lu *lu)
{
if (!lu->update_location_req)
LOG_LU(lu, LOGL_ERROR, "No request for this LU\n");
else
osmo_gsup_req_respond_msgt(lu->update_location_req, OSMO_GSUP_MSGT_UPDATE_LOCATION_RESULT, true);
lu->update_location_req = NULL;
osmo_fsm_inst_term(lu->fi, OSMO_FSM_TERM_REGULAR, NULL);
}
#define lu_failure(LU, CAUSE, log_msg, args...) do { \
if (!(LU)->update_location_req) \
LOG_LU(LU, LOGL_ERROR, "No request for this LU\n"); \
else \
osmo_gsup_req_respond_err((LU)->update_location_req, CAUSE, log_msg, ##args); \
(LU)->update_location_req = NULL; \
osmo_fsm_inst_term((LU)->fi, OSMO_FSM_TERM_REGULAR, NULL); \
} while(0)
static struct osmo_fsm lu_fsm;
static void lu_start(struct osmo_gsup_req *update_location_req)
{
struct osmo_fsm_inst *fi;
struct lu *lu;
OSMO_ASSERT(update_location_req);
OSMO_ASSERT(update_location_req->gsup.message_type == OSMO_GSUP_MSGT_UPDATE_LOCATION_REQUEST);
fi = osmo_fsm_inst_alloc(&lu_fsm, g_hlr, NULL, LOGL_DEBUG, update_location_req->gsup.imsi);
OSMO_ASSERT(fi);
lu = talloc(fi, struct lu);
OSMO_ASSERT(lu);
fi->priv = lu;
*lu = (struct lu){
.fi = fi,
.update_location_req = update_location_req,
.vlr_name = update_location_req->source_name,
.via_proxy = update_location_req->via_proxy,
/* According to GSUP specs, OSMO_GSUP_CN_DOMAIN_PS is the default. */
.is_ps = (update_location_req->gsup.cn_domain != OSMO_GSUP_CN_DOMAIN_CS),
};
llist_add(&lu->entry, &g_all_lu);
osmo_fsm_inst_update_id_f_sanitize(fi, '_', "%s:IMSI-%s", lu->is_ps ? "PS" : "CS", update_location_req->gsup.imsi);
if (osmo_cni_peer_id_is_empty(&lu->vlr_name)) {
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
lu_failure(lu, GMM_CAUSE_NET_FAIL, "LU without a VLR");
return;
}
if (db_subscr_get_by_imsi(g_hlr->dbc, update_location_req->gsup.imsi, &lu->subscr) < 0) {
lu_failure(lu, g_hlr->reject_cause, "Subscriber does not exist");
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
return;
}
/* Check if subscriber is generally permitted on CS or PS
* service (as requested) */
if (!lu->is_ps && !lu->subscr.nam_cs) {
lu_failure(lu, GMM_CAUSE_PLMN_NOTALLOWED, "nam_cs == false");
return;
}
if (lu->is_ps && !lu->subscr.nam_ps) {
lu_failure(lu, GMM_CAUSE_GPRS_NOTALLOWED, "nam_ps == false");
return;
}
/* TODO: Set subscriber tracing = deactive in VLR/SGSN */
#if 0
/* Cancel in old VLR/SGSN, if new VLR/SGSN differs from old (FIXME: OS#4491) */
if (!lu->is_ps && strcmp(subscr->vlr_number, vlr_number)) {
lu_op_tx_cancel_old(lu);
} else if (lu->is_ps && strcmp(subscr->sgsn_number, sgsn_number)) {
lu_op_tx_cancel_old(lu);
}
#endif
/* Store the VLR / SGSN number with the subscriber, so we know where it was last seen. */
if (!osmo_cni_peer_id_is_empty(&lu->via_proxy)) {
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
LOG_GSUP_REQ(update_location_req, LOGL_DEBUG, "storing %s = %s, via proxy %s\n",
lu->is_ps ? "SGSN number" : "VLR number",
osmo_cni_peer_id_to_str(&lu->vlr_name),
osmo_cni_peer_id_to_str(&lu->via_proxy));
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
} else {
LOG_GSUP_REQ(update_location_req, LOGL_DEBUG, "storing %s = %s\n",
lu->is_ps ? "SGSN number" : "VLR number",
osmo_cni_peer_id_to_str(&lu->vlr_name));
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
}
if (osmo_cni_peer_id_is_empty(&lu->vlr_name)
|| (lu->vlr_name.type != OSMO_CNI_PEER_ID_IPA_NAME)) {
lu_failure(lu, GMM_CAUSE_PROTO_ERR_UNSPEC, "Unsupported GSUP peer id type for vlr_name: %s",
osmo_cni_peer_id_type_name(lu->vlr_name.type));
return;
}
if (!osmo_cni_peer_id_is_empty(&lu->via_proxy) && (lu->via_proxy.type != OSMO_CNI_PEER_ID_IPA_NAME)) {
lu_failure(lu, GMM_CAUSE_PROTO_ERR_UNSPEC, "Unsupported GSUP peer id type for via_proxy: %s",
osmo_cni_peer_id_type_name(lu->via_proxy.type));
return;
}
if (db_subscr_lu(g_hlr->dbc, lu->subscr.id, &lu->vlr_name.ipa_name, lu->is_ps,
osmo_cni_peer_id_is_empty(&lu->via_proxy)? NULL : &lu->via_proxy.ipa_name)) {
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
lu_failure(lu, GMM_CAUSE_NET_FAIL, "Cannot update %s in the database",
lu->is_ps ? "SGSN number" : "VLR number");
return;
}
/* TODO: Subscriber allowed to roam in PLMN? */
/* TODO: Update RoutingInfo */
/* TODO: Reset Flag MS Purged (cs/ps) */
/* TODO: Control_Tracing_HLR / Control_Tracing_HLR_with_SGSN */
lu_state_chg(lu, LU_ST_WAIT_INSERT_DATA_RESULT);
}
void lu_rx_gsup(struct osmo_gsup_req *req)
{
struct lu *lu;
if (req->gsup.message_type == OSMO_GSUP_MSGT_UPDATE_LOCATION_REQUEST)
return lu_start(req);
llist_for_each_entry(lu, &g_all_lu, entry) {
if (strcmp(lu->subscr.imsi, req->gsup.imsi))
continue;
if (osmo_fsm_inst_dispatch(lu->fi, LU_EV_RX_GSUP, req)) {
LOG_LU_REQ(lu, req, LOGL_ERROR, "Cannot receive GSUP messages in this state\n");
osmo_gsup_req_respond_err(req, GMM_CAUSE_MSGT_INCOMP_P_STATE,
"LU does not accept GSUP rx");
}
return;
}
osmo_gsup_req_respond_err(req, GMM_CAUSE_MSGT_INCOMP_P_STATE, "No Location Updating in progress for this IMSI");
}
static int lu_fsm_timer_cb(struct osmo_fsm_inst *fi)
{
struct lu *lu = fi->priv;
lu_failure(lu, GSM_CAUSE_NET_FAIL, "Timeout");
return 0;
}
static void lu_fsm_cleanup(struct osmo_fsm_inst *fi, enum osmo_fsm_term_cause cause)
{
struct lu *lu = fi->priv;
if (lu->update_location_req)
osmo_gsup_req_respond_err(lu->update_location_req, GSM_CAUSE_NET_FAIL, "LU aborted");
lu->update_location_req = NULL;
llist_del(&lu->entry);
}
static void lu_fsm_wait_insert_data_result_onenter(struct osmo_fsm_inst *fi, uint32_t prev_state)
{
/* Transmit Insert Data Request to the VLR */
struct lu *lu = fi->priv;
struct hlr_subscriber *subscr = &lu->subscr;
struct osmo_gsup_message gsup;
if (osmo_gsup_create_insert_subscriber_data_msg(&gsup, subscr->imsi,
subscr->msisdn,
lu->is_ps ? OSMO_GSUP_CN_DOMAIN_PS : OSMO_GSUP_CN_DOMAIN_CS,
OTC_SELECT)) {
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
lu_failure(lu, GMM_CAUSE_NET_FAIL, "cannot encode Insert Subscriber Data message");
return;
}
if (osmo_gsup_req_respond(lu->update_location_req, &gsup, false, false))
lu_failure(lu, GMM_CAUSE_NET_FAIL, "cannot send %s", osmo_gsup_message_type_name(gsup.message_type));
}
void lu_fsm_wait_insert_data_result(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct lu *lu = fi->priv;
struct osmo_gsup_req *req;
switch (event) {
case LU_EV_RX_GSUP:
req = data;
break;
default:
OSMO_ASSERT(false);
}
switch (req->gsup.message_type) {
case OSMO_GSUP_MSGT_INSERT_DATA_RESULT:
osmo_gsup_req_free(req);
lu_success(lu);
break;
case OSMO_GSUP_MSGT_INSERT_DATA_ERROR:
lu_failure(lu, GMM_CAUSE_NET_FAIL, "Rx %s", osmo_gsup_message_type_name(req->gsup.message_type));
osmo_gsup_req_free(req);
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
break;
default:
osmo_gsup_req_respond_err(req, GMM_CAUSE_MSGT_INCOMP_P_STATE, "unexpected message type in this state");
break;
}
}
#define S(x) (1 << (x))
static const struct osmo_fsm_state lu_fsm_states[] = {
[LU_ST_UNVALIDATED] = {
.name = "UNVALIDATED",
.out_state_mask = 0
| S(LU_ST_WAIT_INSERT_DATA_RESULT)
,
},
[LU_ST_WAIT_INSERT_DATA_RESULT] = {
.name = "WAIT_INSERT_DATA_RESULT",
.in_event_mask = 0
| S(LU_EV_RX_GSUP)
,
.onenter = lu_fsm_wait_insert_data_result_onenter,
.action = lu_fsm_wait_insert_data_result,
},
};
static struct osmo_fsm lu_fsm = {
.name = "lu",
.states = lu_fsm_states,
.num_states = ARRAY_SIZE(lu_fsm_states),
.log_subsys = DLU,
.event_names = lu_fsm_event_names,
.timer_cb = lu_fsm_timer_cb,
.cleanup = lu_fsm_cleanup,
};
static __attribute__((constructor)) void lu_fsm_init(void)
1/2: refactor: add and use lu_fsm, osmo_gsup_req, osmo_ipa_name These are seemingly orthogonal changes in one patch, because they are in fact sufficiently intertwined that we are not willing to spend the time to separate them. They are also refactoring changes, unlikely to make sense on their own. ** lu_fsm: Attempting to make luop.c keep state about incoming GSUP requests made me find shortcomings in several places: - since it predates osmo_fsm, it is a state machine that does not strictly enforce the order of state transitions or the right sequence of incoming events. - several places OSMO_ASSERT() on data received from the network. - modifies the subscriber state before a LU is accepted. - dead code about canceling a subscriber in a previous VLR. That would be a good thing to actually do, which should also be trivial now that we record vlr_name and sgsn_name, but I decided to remove the dead code for now. To both step up the LU game *and* make it easier for me to integrate osmo_gsup_req handling, I decided to create a lu_fsm, drawing from my, by now, ample experience of writing osmo_fsms. ** osmo_gsup_req: Prepare for D-GSM, where osmo-hlr will do proxy routing for remote HLRs / communicate with remote MSCs via a proxy: a) It is important that a response that osmo-hlr generates and that is sent back to a requesting MSC contains all IEs that are needed to route it back to the requester. Particularly source_name must become destination_name in the response to be able to even reach the requesting MSC. Other fields are also necessary to match, which were so far taken care of in individual numerous code paths. b) For some operations, the response to a GSUP request is generated asynchronously (like Update Location Request -> Response, or taking the response from an EUSE, or the upcoming proxying to a remote HLR). To be able to feed a request message's information back into the response, we must thus keep the request data around. Since struct osmo_gsup_message references a lot of external data, usually with pointers directly into the received msgb, it is not so trivial to pass GSUP message data around asynchronously, on its own. osmo_gsup_req is the combined solution for both a and b: it keeps all data for a GSUP message by taking ownership of the incoming msgb, and it provides an explicit API "forcing" callers to respond with osmo_gsup_req_respond(), so that all code paths trivially are definitely responding with the correct IEs set to match the request's routing (by using osmo_gsup_make_response() recently added to libosmocore). Adjust all osmo-hlr code paths to use *only* osmo_gsup_req to respond to incoming requests received on the GSUP server (above LU code being one of them). In fact, the same should be done on the client side. Hence osmo_gsup_req is implemented in a server/client agnostic way, and is placed in libosmo-gsupclient. As soon as we see routing errors in complex GSUP setups, using osmo_gsup_req in the related GSUP client is likely to resolve those problems without much thinking required beyond making all code paths use it. libosmo-gsupclient is hence added to osmo-hlr binary's own library dependencies. It would have been added by the D-GSM proxy routing anyway, we are just doing it a little sooner. ** cni_peer_id.c / osmo_ipa_name: We so far handle an IPA unit name as pointer + size, or as just pointer with implicit talloc size. To ease working with GSUP peer identification data, I require: - a non-allocated storage of an IPA Name. It brings the drawback of being size limited, but our current implementation is anyway only able to handle MSC and SGSN names of 31 characters (see struct hlr_subscriber). - a single-argument handle for IPA Name, - easy to use utility functions like osmo_ipa_name_to_str(), osmo_ipa_name_cmp(), and copying by simple assignment, a = b. Hence this patch adds a osmo_ipa_name in cni_peer_id.h and cni_peer_id.c. Heavily used in LU and osmo_gsup_req. Depends: libosmocore Id9692880079ea0f219f52d81b1923a76fc640566 Change-Id: I3a8dff3d4a1cbe10d6ab08257a0138d6b2a082d9
2019-11-20 01:36:45 +00:00
{
OSMO_ASSERT(osmo_fsm_register(&lu_fsm) == 0);
}