osmo-bts/tests/power/bs_power_loop_test.c

551 lines
21 KiB
C

/*
* (C) 2020-2021 by sysmocom - s.m.f.c. GmbH <info@sysmocom.de>
* Author: Vadim Yanitskiy <vyanitskiy@sysmocom.de>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/application.h>
#include <osmo-bts/bts.h>
#include <osmo-bts/l1sap.h>
#include <osmo-bts/logging.h>
#include <osmo-bts/power_control.h>
#define PWR_TEST_RXLEV_TARGET 30
#define PWR_TEST_CFG_RXLEV_THRESH(hyst) \
.lower_thresh = PWR_TEST_RXLEV_TARGET - hyst, \
.upper_thresh = PWR_TEST_RXLEV_TARGET + hyst
#define DL_MEAS_FULL(rxqual, rxlev) \
.rxqual_full = rxqual, \
.rxlev_full = rxlev
#define DL_MEAS_SUB(rxqual, rxlev) \
.rxqual_sub = rxqual, \
.rxlev_sub = rxlev
#define DL_MEAS_FULL_SUB(rxqual, rxlev) \
{ DL_MEAS_FULL(rxqual, rxlev), \
DL_MEAS_SUB(rxqual, rxlev) }
#define DL_MEAS_FULL_SUB_INV(rxqual, rxlev) \
{ DL_MEAS_FULL(rxqual, rxlev), \
DL_MEAS_SUB(rxqual, rxlev), \
.invalid = true }
enum power_test_step_type {
PWR_TEST_ST_IND_MEAS = 0,
PWR_TEST_ST_IND_DUMMY,
PWR_TEST_ST_SET_STATE,
PWR_TEST_ST_SET_CTRL_INTERVAL,
PWR_TEST_ST_SET_STEP_SIZE,
PWR_TEST_ST_SET_RXLEV_PARAMS,
PWR_TEST_ST_ENABLE_DTXD,
PWR_TEST_ST_DISABLE_DPC,
};
struct power_test_step {
/* Instruction to be performed */
enum power_test_step_type type;
/* Instruction parameters */
union {
/* Power Control state */
struct lchan_power_ctrl_state state;
/* Measurement pre-processing parameters */
struct gsm_power_ctrl_meas_params mp;
/* Indicated DL measurements */
struct {
uint8_t rxqual_full;
uint8_t rxqual_sub;
uint8_t rxlev_full;
uint8_t rxlev_sub;
bool invalid;
} meas;
/* Increase / reduce step size */
struct {
uint8_t inc;
uint8_t red;
} step_size;
/* Power control interval */
uint8_t ctrl_interval;
};
/* Expected Tx power reduction */
uint8_t exp_txred;
};
static struct gsm_bts *g_bts = NULL;
static struct gsm_bts_trx *g_trx = NULL;
static void init_test(const char *name)
{
if (g_trx != NULL)
talloc_free(g_trx);
if (g_bts != NULL)
talloc_free(g_bts);
g_bts = talloc_zero(tall_bts_ctx, struct gsm_bts);
OSMO_ASSERT(g_bts != NULL);
INIT_LLIST_HEAD(&g_bts->trx_list);
g_trx = gsm_bts_trx_alloc(g_bts);
OSMO_ASSERT(g_trx != NULL);
g_bts->band = GSM_BAND_900;
g_bts->c0 = g_trx;
printf("\nStarting test case '%s'\n", name);
}
static void enc_meas_rep(struct gsm48_hdr *gh,
const unsigned int n,
const struct power_test_step *step)
{
struct gsm48_meas_res *mr = (struct gsm48_meas_res *) gh->data;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_MEAS_REP;
*mr = (struct gsm48_meas_res) {
.rxlev_full = step->meas.rxlev_full,
.rxlev_sub = step->meas.rxlev_sub,
.rxqual_full = step->meas.rxqual_full,
.rxqual_sub = step->meas.rxqual_sub,
/* NOTE: inversed logic (1 means invalid) */
.meas_valid = step->meas.invalid,
};
printf("#%02u %s() -> Measurement Results (%svalid): "
"RXLEV-FULL(%02u), RXQUAL-FULL(%u), "
"RXLEV-SUB(%02u), RXQUAL-SUB(%u)\n",
n, __func__, step->meas.invalid ? "in" : "",
mr->rxlev_full, mr->rxqual_full,
mr->rxlev_sub, mr->rxqual_sub);
}
static int exec_power_step(struct gsm_lchan *lchan,
const unsigned int n,
const struct power_test_step *step)
{
struct gsm48_hdr *gh;
uint8_t old, new;
uint8_t buf[18];
gh = (struct gsm48_hdr *) buf;
switch (step->type) {
case PWR_TEST_ST_SET_STATE:
printf("#%02u %s() <- State (re)set (current %u dB, max %u dB)\n",
n, __func__, step->state.current, step->state.max);
lchan->bs_power_ctrl = step->state;
lchan->bs_power_ctrl.dpc_params = &lchan->bs_dpc_params;
return 0; /* we're done */
case PWR_TEST_ST_DISABLE_DPC:
printf("#%02u %s() <- Dynamic power control is disabled\n", n, __func__);
lchan->bs_power_ctrl.dpc_params = NULL;
return 0; /* we're done */
case PWR_TEST_ST_SET_CTRL_INTERVAL:
printf("#%02u %s() <- (Re)set power control interval: %u -> %u\n",
n, __func__, lchan->bs_dpc_params.ctrl_interval, step->ctrl_interval);
lchan->bs_dpc_params.ctrl_interval = step->ctrl_interval;
return 0; /* we're done */
case PWR_TEST_ST_SET_STEP_SIZE:
printf("#%02u %s() <- Set step size: inc %u dB, red %u dB\n",
n, __func__, step->step_size.inc, step->step_size.red);
lchan->bs_dpc_params.inc_step_size_db = step->step_size.inc;
lchan->bs_dpc_params.red_step_size_db = step->step_size.red;
return 0; /* we're done */
case PWR_TEST_ST_SET_RXLEV_PARAMS:
printf("#%02u %s() <- (Re)set RxLev params (thresh %u .. %u, "
"averaging is %sabled)\n",
n, __func__, step->mp.lower_thresh, step->mp.upper_thresh,
step->mp.algo != GSM_PWR_CTRL_MEAS_AVG_ALGO_NONE ? "en" : "dis");
lchan->bs_dpc_params.rxlev_meas = step->mp;
return 0; /* we're done */
case PWR_TEST_ST_ENABLE_DTXD:
printf("#%02u %s() <- Enable DTXd\n", n, __func__);
lchan->tch.dtx.dl_active = true;
return 0; /* we're done */
case PWR_TEST_ST_IND_DUMMY:
printf("#%02u %s() <- Dummy block\n", n, __func__);
memset(buf, 0x2b, sizeof(buf));
break;
case PWR_TEST_ST_IND_MEAS:
enc_meas_rep(gh, n, step);
break;
}
printf("#%02u lchan_bs_pwr_ctrl() <- UL SACCH: %s\n",
n, osmo_hexdump(buf, sizeof(buf)));
old = lchan->bs_power_ctrl.current;
lchan_bs_pwr_ctrl(lchan, gh);
new = lchan->bs_power_ctrl.current;
printf("#%02u lchan_bs_pwr_ctrl() -> BS power reduction: "
"%u -> %u (expected %u)\n",
n, old, new, step->exp_txred);
return new != step->exp_txred;
}
static void exec_power_test(const struct power_test_step *steps,
unsigned int num_steps,
const char *name)
{
unsigned int n;
int rc = 0;
init_test(name);
struct gsm_lchan *lchan = &g_trx->ts[0].lchan[0];
struct gsm_power_ctrl_params *params = &lchan->bs_dpc_params;
/* Default BS power control parameters */
memcpy(params, &power_ctrl_params_def, sizeof(*params));
/* No RxLev hysteresis: lower == upper */
params->rxlev_meas.lower_thresh = PWR_TEST_RXLEV_TARGET;
params->rxlev_meas.upper_thresh = PWR_TEST_RXLEV_TARGET;
/* No RxLev pre-processing by default */
params->rxlev_meas.algo = GSM_PWR_CTRL_MEAS_AVG_ALGO_NONE;
for (n = 0; n < num_steps; n++)
rc |= exec_power_step(lchan, n, &steps[n]);
printf("Test case verdict: %s\n", rc ? "FAIL" : "SUCCESS");
}
/* Verify that the power remains constant in fixed mode. */
static const struct power_test_step TC_fixed_mode[] = {
/* Initial state: 10 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 10, .max = 2 * 10 } },
{ .type = PWR_TEST_ST_DISABLE_DPC },
/* MS indicates random RxQual/RxLev values, which must be ignored */
{ .meas = DL_MEAS_FULL_SUB(0, 63), .exp_txred = 10 },
{ .meas = DL_MEAS_FULL_SUB(7, 0), .exp_txred = 10 },
{ .meas = DL_MEAS_FULL_SUB(0, 30), .exp_txred = 10 },
{ .meas = DL_MEAS_FULL_SUB(1, 30), .exp_txred = 10 },
{ .meas = DL_MEAS_FULL_SUB(1, 50), .exp_txred = 10 },
};
/* Verify that the power remains constant if RxLev equals the target level. */
static const struct power_test_step TC_rxlev_target[] = {
/* Initial state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
/* MS indicates RxLev values that match the target level */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
};
/* Verify that the power is gradually reduced/increased to the
* minimum/maximum if the MS reports high/low RxLev values. */
static const struct power_test_step TC_rxlev_max_min[] = {
/* Initial state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
/* MS indicates high RxLev values (-50 dBm), inc step is 2 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 2 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 6 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 8 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 10 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 12 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 14 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 18 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 20 }, /* max */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 20 }, /* max */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 20 }, /* max */
/* MS indicates low RxLev values (-100 dBm), red step is 4 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 12 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 8 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 }, /* min */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 }, /* min */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 }, /* min */
};
/* Verify that delta values never exceed the corresponding step size,
* but still can be smaller than the step size if the target is close. */
static const struct power_test_step TC_inc_red_step_size[] = {
/* Initial state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
{ .type = PWR_TEST_ST_SET_STEP_SIZE,
.step_size = { .inc = 6, .red = 4 } },
/* MS indicates high RxLev values (-50 dBm), red step is 4 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 8 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 12 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 20 }, /* max */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 20 }, /* max */
/* MS indicates low RxLev values (-100 dBm), inc step is 6 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 14 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 8 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 2 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 }, /* min */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 }, /* min */
/* Reset state: current 10 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 10, .max = 2 * 10 } },
/* Let's say the current value is now 1 dB greater than the target (current red 10 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 1), .exp_txred = 10 + 1 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 0), .exp_txred = 10 + 1 },
/* Let's say the current value is now 2 dB greater than the target (current red 11 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 2), .exp_txred = 11 + 2 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 0), .exp_txred = 11 + 2 },
/* Let's say the current value is now 3 dB greater than the target (current red 13 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 3), .exp_txred = 13 + 3 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 0), .exp_txred = 13 + 3 },
/* Reset state: current 10 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 10, .max = 2 * 10 } },
/* Let's say the current value is now 1 dB lower than the target (current red 10 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 1), .exp_txred = 10 - 1 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 0), .exp_txred = 10 - 1 },
/* Let's say the current value is now 3 dB lower than the target (current red 9 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 3), .exp_txred = 9 - 3 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 0), .exp_txred = 9 - 3 },
/* Let's say the current value is now 5 dB lower than the target (current red 6 dB) */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 5), .exp_txred = 6 - 5 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 0), .exp_txred = 6 - 5 },
};
/* Verify that the logic picks the 'SUB' values in DTXd mode. */
static const struct power_test_step TC_dtxd_mode[] = {
/* Initial state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET) },
{ .type = PWR_TEST_ST_ENABLE_DTXD }, /* DTXd mode */
/* MS indicates target RxLev values as 'SUB', and random as 'FULL' */
{ .meas = { DL_MEAS_FULL(7, 0), DL_MEAS_SUB(0, PWR_TEST_RXLEV_TARGET) } },
{ .meas = { DL_MEAS_FULL(3, 30), DL_MEAS_SUB(0, PWR_TEST_RXLEV_TARGET) } },
{ .meas = { DL_MEAS_FULL(0, 63), DL_MEAS_SUB(0, PWR_TEST_RXLEV_TARGET) } },
};
/* Verify that high RxQual reduces the current attenuation value. */
static const struct power_test_step TC_rxqual_ber[] = {
/* Initial state: 16 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 16, .max = 2 * 10 } },
/* MS indicates target RxLev, and no bit errors */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
/* MS indicates target RxLev, but RxQual values better than L_RXQUAL_XX_P=3 */
{ .meas = DL_MEAS_FULL_SUB(1, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(2, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(3, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
/* MS indicates target RxLev, but RxQual values worse than L_RXQUAL_XX_P=3 */
{ .meas = DL_MEAS_FULL_SUB(4, PWR_TEST_RXLEV_TARGET + 0), .exp_txred = 16 - 4 },
{ .meas = DL_MEAS_FULL_SUB(5, PWR_TEST_RXLEV_TARGET + 4), .exp_txred = 16 - 8 },
{ .meas = DL_MEAS_FULL_SUB(6, PWR_TEST_RXLEV_TARGET + 8), .exp_txred = 16 - 12 },
{ .meas = DL_MEAS_FULL_SUB(7, PWR_TEST_RXLEV_TARGET + 12), .exp_txred = 16 - 16 }, /* max */
{ .meas = DL_MEAS_FULL_SUB(7, PWR_TEST_RXLEV_TARGET + 16), .exp_txred = 16 - 16 }, /* max */
/* MS indicates target RxLev, but no bit errors anymore => reducing Tx power */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 16), .exp_txred = 2 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 14), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 12), .exp_txred = 6 },
/* Reset state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
/* MS indicates target RxLev, but RxQual values worse than L_RXQUAL_XX_P=3 */
{ .meas = DL_MEAS_FULL_SUB(7, PWR_TEST_RXLEV_TARGET) }, /* max */
{ .meas = DL_MEAS_FULL_SUB(7, PWR_TEST_RXLEV_TARGET) }, /* max */
};
/* Verify that invalid and dummy SACCH blocks are ignored. */
static const struct power_test_step TC_inval_dummy[] = {
/* Initial state: 16 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 16, .max = 2 * 10 } },
/* MS sends invalid measurement results which must be ignored */
{ .meas = DL_MEAS_FULL_SUB_INV(7, 63), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB_INV(0, 0), .exp_txred = 16 },
/* Let's say SMS (SAPI=3) blocks substitute some of the reports */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .type = PWR_TEST_ST_IND_DUMMY, /* not a report */ .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .type = PWR_TEST_ST_IND_DUMMY, /* not a report */ .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
};
/* Verify handling of optional power control interval (P_Con_INTERVAL). */
static const struct power_test_step TC_ctrl_interval[] = {
/* Initial state: 0 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 0, .max = 2 * 10 } },
/* P_Con_INTERVAL=0 (480 ms): every SACCH block is handled */
{ .type = PWR_TEST_ST_SET_CTRL_INTERVAL, .ctrl_interval = 0 },
/* MS indicates high RxLev values (-50 dBm), red step is 2 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 2 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 6 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 8 },
/* MS indicates low RxLev values (-100 dBm), inc step is 4 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 },
/* P_Con_INTERVAL=1 (960 ms): 1 out of 2 SACCH blocks is handled */
{ .type = PWR_TEST_ST_SET_CTRL_INTERVAL, .ctrl_interval = 1 },
/* MS indicates high RxLev values (-50 dBm), red step is 2 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 2 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 2 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 4 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 6 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 6 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 8 },
{ .meas = DL_MEAS_FULL_SUB(0, 60), .exp_txred = 8 }, /* skipped */
/* P_Con_INTERVAL=2 (1920 ms): 1 out of 4 SACCH blocks is handled */
{ .type = PWR_TEST_ST_SET_CTRL_INTERVAL, .ctrl_interval = 2 },
/* MS indicates low RxLev values (-100 dBm), inc step is 4 dB */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 },
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 4 }, /* skipped */
{ .meas = DL_MEAS_FULL_SUB(0, 10), .exp_txred = 0 },
};
/* Verify that small deviations from the target do not trigger any changes. */
static const struct power_test_step TC_rxlev_hyst[] = {
/* Initial state: 16 dB, up to 20 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 12, .max = 2 * 8 } },
/* Hysteresis is not enabled, so small deviations trigger oscillations */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 1), .exp_txred = 13 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 2), .exp_txred = 11 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 3), .exp_txred = 13 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 2), .exp_txred = 11 },
/* Enable hysteresis */
{ .type = PWR_TEST_ST_SET_RXLEV_PARAMS,
.mp = { PWR_TEST_CFG_RXLEV_THRESH(3) }
},
/* Hysteresis is enabled, so small deviations do not trigger any changes */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 1), .exp_txred = 11 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 2), .exp_txred = 11 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 3), .exp_txred = 11 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 2), .exp_txred = 11 },
};
/* Verify EWMA based power filtering. */
static const struct power_test_step TC_rxlev_pf_ewma[] = {
/* Initial state: 20 dB, up to 30 dB */
{ .type = PWR_TEST_ST_SET_STATE,
.state = { .current = 16, .max = 2 * 15 } },
/* Enable EWMA based pre-processing for RxLev */
{ .type = PWR_TEST_ST_SET_RXLEV_PARAMS,
.mp = {
PWR_TEST_CFG_RXLEV_THRESH(0),
.algo = GSM_PWR_CTRL_MEAS_AVG_ALGO_OSMO_EWMA,
.ewma.alpha = 50,
}
},
/* MS indicates target RxLev, power level remains constant */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET), .exp_txred = 16 },
/* Avg[t] = (0.5 * 26) + (0.5 * 30) = 28, so delta is 2 */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 4), .exp_txred = 14 },
/* Avg[t] = (0.5 * 26) + (0.5 * 28) = 27, so delta is 3 */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET - 4), .exp_txred = 11 },
/* Avg[t] = (0.5 * 35) + (0.5 * 27) = 31, so delta is 1 */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 5), .exp_txred = 12 },
/* Avg[t] = (0.5 * 35) + (0.5 * 31) = 33, so delta is 3, but red step size is 2 dB */
{ .meas = DL_MEAS_FULL_SUB(0, PWR_TEST_RXLEV_TARGET + 5), .exp_txred = 14 },
};
int main(int argc, char **argv)
{
printf("Testing BS Power loop...\n");
tall_bts_ctx = talloc_named_const(NULL, 1, "OsmoBTS context");
msgb_talloc_ctx_init(tall_bts_ctx, 0);
osmo_init_logging2(tall_bts_ctx, &bts_log_info);
osmo_stderr_target->categories[DLOOP].loglevel = LOGL_DEBUG;
osmo_stderr_target->categories[DL1C].loglevel = LOGL_DEBUG;
log_set_print_filename2(osmo_stderr_target, LOG_FILENAME_NONE);
log_set_use_color(osmo_stderr_target, 0);
log_set_print_category(osmo_stderr_target, 0);
log_set_print_category_hex(osmo_stderr_target, 0);
#define exec_test(test) \
exec_power_test(test, ARRAY_SIZE(test), #test)
exec_test(TC_fixed_mode);
exec_test(TC_rxlev_target);
exec_test(TC_rxlev_max_min); /* FIXME */
exec_test(TC_inc_red_step_size);
exec_test(TC_dtxd_mode);
exec_test(TC_rxqual_ber);
exec_test(TC_inval_dummy);
exec_test(TC_ctrl_interval);
exec_test(TC_rxlev_hyst);
exec_test(TC_rxlev_pf_ewma);
return 0;
}