osmo-bts/src/osmo-bts-sysmo/l1_if.c

1794 lines
48 KiB
C

/* Interface handler for Sysmocom L1 */
/* (C) 2011-2016 by Harald Welte <laforge@gnumonks.org>
* (C) 2014 by Holger Hans Peter Freyther
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <stdint.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/select.h>
#include <osmocom/core/timer.h>
#include <osmocom/core/write_queue.h>
#include <osmocom/gsm/gsm_utils.h>
#include <osmocom/gsm/lapdm.h>
#include <osmo-bts/logging.h>
#include <osmo-bts/bts.h>
#include <osmo-bts/oml.h>
#include <osmo-bts/rsl.h>
#include <osmo-bts/gsm_data.h>
#include <osmo-bts/phy_link.h>
#include <osmo-bts/paging.h>
#include <osmo-bts/measurement.h>
#include <osmo-bts/pcu_if.h>
#include <osmo-bts/handover.h>
#include <osmo-bts/cbch.h>
#include <osmo-bts/bts_model.h>
#include <osmo-bts/l1sap.h>
#include <sysmocom/femtobts/superfemto.h>
#include <sysmocom/femtobts/gsml1prim.h>
#include <sysmocom/femtobts/gsml1const.h>
#include <sysmocom/femtobts/gsml1types.h>
#include "femtobts.h"
#include "l1_if.h"
#include "l1_transp.h"
#include "hw_misc.h"
#include "misc/sysmobts_par.h"
#include "eeprom.h"
#include "utils.h"
struct wait_l1_conf {
struct llist_head list; /* internal linked list */
struct osmo_timer_list timer; /* timer for L1 timeout */
unsigned int conf_prim_id; /* primitive we expect in response */
HANDLE conf_hLayer3; /* layer 3 handle we expect in response */
unsigned int is_sys_prim; /* is this a system (1) or L1 (0) primitive */
l1if_compl_cb *cb;
void *cb_data;
};
static void release_wlc(struct wait_l1_conf *wlc)
{
osmo_timer_del(&wlc->timer);
talloc_free(wlc);
}
static void l1if_req_timeout(void *data)
{
struct wait_l1_conf *wlc = data;
if (wlc->is_sys_prim)
LOGP(DL1C, LOGL_FATAL, "Timeout waiting for SYS primitive %s\n",
get_value_string(femtobts_sysprim_names, wlc->conf_prim_id));
else
LOGP(DL1C, LOGL_FATAL, "Timeout waiting for L1 primitive %s\n",
get_value_string(femtobts_l1prim_names, wlc->conf_prim_id));
exit(23);
}
static HANDLE l1p_get_hLayer3(GsmL1_Prim_t *prim)
{
switch (prim->id) {
case GsmL1_PrimId_MphInitReq:
return prim->u.mphInitReq.hLayer3;
case GsmL1_PrimId_MphCloseReq:
return prim->u.mphCloseReq.hLayer3;
case GsmL1_PrimId_MphConnectReq:
return prim->u.mphConnectReq.hLayer3;
case GsmL1_PrimId_MphDisconnectReq:
return prim->u.mphDisconnectReq.hLayer3;
case GsmL1_PrimId_MphActivateReq:
return prim->u.mphActivateReq.hLayer3;
case GsmL1_PrimId_MphDeactivateReq:
return prim->u.mphDeactivateReq.hLayer3;
case GsmL1_PrimId_MphConfigReq:
return prim->u.mphConfigReq.hLayer3;
case GsmL1_PrimId_MphMeasureReq:
return prim->u.mphMeasureReq.hLayer3;
case GsmL1_PrimId_MphInitCnf:
return prim->u.mphInitCnf.hLayer3;
case GsmL1_PrimId_MphCloseCnf:
return prim->u.mphCloseCnf.hLayer3;
case GsmL1_PrimId_MphConnectCnf:
return prim->u.mphConnectCnf.hLayer3;
case GsmL1_PrimId_MphDisconnectCnf:
return prim->u.mphDisconnectCnf.hLayer3;
case GsmL1_PrimId_MphActivateCnf:
return prim->u.mphActivateCnf.hLayer3;
case GsmL1_PrimId_MphDeactivateCnf:
return prim->u.mphDeactivateCnf.hLayer3;
case GsmL1_PrimId_MphConfigCnf:
return prim->u.mphConfigCnf.hLayer3;
case GsmL1_PrimId_MphMeasureCnf:
return prim->u.mphMeasureCnf.hLayer3;
case GsmL1_PrimId_MphTimeInd:
case GsmL1_PrimId_MphSyncInd:
case GsmL1_PrimId_PhEmptyFrameReq:
case GsmL1_PrimId_PhDataReq:
case GsmL1_PrimId_PhConnectInd:
case GsmL1_PrimId_PhReadyToSendInd:
case GsmL1_PrimId_PhDataInd:
case GsmL1_PrimId_PhRaInd:
break;
default:
LOGP(DL1C, LOGL_ERROR, "unknown L1 primitive %u\n", prim->id);
break;
}
return 0;
}
static int _l1if_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg,
int is_system_prim, l1if_compl_cb *cb, void *data)
{
struct wait_l1_conf *wlc;
struct osmo_wqueue *wqueue;
unsigned int timeout_secs;
/* allocate new wsc and store reference to mutex and conf_id */
wlc = talloc_zero(fl1h, struct wait_l1_conf);
wlc->cb = cb;
wlc->cb_data = data;
/* Make sure we actually have received a REQUEST type primitive */
if (is_system_prim == 0) {
GsmL1_Prim_t *l1p = msgb_l1prim(msg);
LOGP(DL1P, LOGL_INFO, "Tx L1 prim %s\n",
get_value_string(femtobts_l1prim_names, l1p->id));
if (femtobts_l1prim_type[l1p->id] != L1P_T_REQ) {
LOGP(DL1C, LOGL_ERROR, "L1 Prim %s is not a Request!\n",
get_value_string(femtobts_l1prim_names, l1p->id));
talloc_free(wlc);
return -EINVAL;
}
wlc->is_sys_prim = 0;
wlc->conf_prim_id = femtobts_l1prim_req2conf[l1p->id];
wlc->conf_hLayer3 = l1p_get_hLayer3(l1p);
wqueue = &fl1h->write_q[MQ_L1_WRITE];
timeout_secs = 30;
} else {
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
LOGP(DL1C, LOGL_INFO, "Tx SYS prim %s\n",
get_value_string(femtobts_sysprim_names, sysp->id));
if (femtobts_sysprim_type[sysp->id] != L1P_T_REQ) {
LOGP(DL1C, LOGL_ERROR, "SYS Prim %s is not a Request!\n",
get_value_string(femtobts_sysprim_names, sysp->id));
talloc_free(wlc);
return -EINVAL;
}
wlc->is_sys_prim = 1;
wlc->conf_prim_id = femtobts_sysprim_req2conf[sysp->id];
wqueue = &fl1h->write_q[MQ_SYS_WRITE];
timeout_secs = 30;
}
/* enqueue the message in the queue and add wsc to list */
if (osmo_wqueue_enqueue(wqueue, msg) != 0) {
/* So we will get a timeout but the log message might help */
LOGP(DL1C, LOGL_ERROR, "Write queue for %s full. dropping msg.\n",
is_system_prim ? "system primitive" : "gsm");
msgb_free(msg);
}
llist_add(&wlc->list, &fl1h->wlc_list);
/* schedule a timer for timeout_secs seconds. If DSP fails to respond, we terminate */
wlc->timer.data = wlc;
wlc->timer.cb = l1if_req_timeout;
osmo_timer_schedule(&wlc->timer, timeout_secs, 0);
return 0;
}
/* send a request primitive to the L1 and schedule completion call-back */
int l1if_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg,
l1if_compl_cb *cb, void *data)
{
return _l1if_req_compl(fl1h, msg, 1, cb, data);
}
int l1if_gsm_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg,
l1if_compl_cb *cb, void *data)
{
return _l1if_req_compl(fl1h, msg, 0, cb, data);
}
/* allocate a msgb containing a GsmL1_Prim_t */
struct msgb *l1p_msgb_alloc(void)
{
struct msgb *msg = msgb_alloc(sizeof(GsmL1_Prim_t), "l1_prim");
if (msg)
msg->l1h = msgb_put(msg, sizeof(GsmL1_Prim_t));
return msg;
}
/* allocate a msgb containing a SuperFemto_Prim_t */
struct msgb *sysp_msgb_alloc(void)
{
struct msgb *msg = msgb_alloc(sizeof(SuperFemto_Prim_t), "sys_prim");
if (msg)
msg->l1h = msgb_put(msg, sizeof(SuperFemto_Prim_t));
return msg;
}
static GsmL1_PhDataReq_t *
data_req_from_rts_ind(GsmL1_Prim_t *l1p,
const GsmL1_PhReadyToSendInd_t *rts_ind)
{
GsmL1_PhDataReq_t *data_req = &l1p->u.phDataReq;
l1p->id = GsmL1_PrimId_PhDataReq;
/* copy fields from PH-RSS.ind */
data_req->hLayer1 = rts_ind->hLayer1;
data_req->u8Tn = rts_ind->u8Tn;
data_req->u32Fn = rts_ind->u32Fn;
data_req->sapi = rts_ind->sapi;
data_req->subCh = rts_ind->subCh;
data_req->u8BlockNbr = rts_ind->u8BlockNbr;
return data_req;
}
static GsmL1_PhEmptyFrameReq_t *
empty_req_from_rts_ind(GsmL1_Prim_t *l1p,
const GsmL1_PhReadyToSendInd_t *rts_ind)
{
GsmL1_PhEmptyFrameReq_t *empty_req = &l1p->u.phEmptyFrameReq;
l1p->id = GsmL1_PrimId_PhEmptyFrameReq;
empty_req->hLayer1 = rts_ind->hLayer1;
empty_req->u8Tn = rts_ind->u8Tn;
empty_req->u32Fn = rts_ind->u32Fn;
empty_req->sapi = rts_ind->sapi;
empty_req->subCh = rts_ind->subCh;
empty_req->u8BlockNbr = rts_ind->u8BlockNbr;
return empty_req;
}
static const uint8_t fill_frame[GSM_MACBLOCK_LEN] = {
0x03, 0x03, 0x01, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B,
0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B, 0x2B,
0x2B, 0x2B, 0x2B
};
/* fill PH-DATA.req from l1sap primitive */
static GsmL1_PhDataReq_t *
data_req_from_l1sap(GsmL1_Prim_t *l1p, struct femtol1_hdl *fl1,
uint8_t tn, uint32_t fn, uint8_t sapi, uint8_t sub_ch,
uint8_t block_nr, uint8_t len)
{
GsmL1_PhDataReq_t *data_req = &l1p->u.phDataReq;
l1p->id = GsmL1_PrimId_PhDataReq;
/* copy fields from PH-RSS.ind */
data_req->hLayer1 = fl1->hLayer1;
data_req->u8Tn = tn;
data_req->u32Fn = fn;
data_req->sapi = sapi;
data_req->subCh = sub_ch;
data_req->u8BlockNbr = block_nr;
data_req->msgUnitParam.u8Size = len;
return data_req;
}
/* fill PH-EMPTY_FRAME.req from l1sap primitive */
static GsmL1_PhEmptyFrameReq_t *
empty_req_from_l1sap(GsmL1_Prim_t *l1p, struct femtol1_hdl *fl1,
uint8_t tn, uint32_t fn, uint8_t sapi,
uint8_t subch, uint8_t block_nr)
{
GsmL1_PhEmptyFrameReq_t *empty_req = &l1p->u.phEmptyFrameReq;
l1p->id = GsmL1_PrimId_PhEmptyFrameReq;
empty_req->hLayer1 = fl1->hLayer1;
empty_req->u8Tn = tn;
empty_req->u32Fn = fn;
empty_req->sapi = sapi;
empty_req->subCh = subch;
empty_req->u8BlockNbr = block_nr;
return empty_req;
}
static int ph_data_req(struct gsm_bts_trx *trx, struct msgb *msg,
struct osmo_phsap_prim *l1sap)
{
struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx);
struct msgb *l1msg = l1p_msgb_alloc();
uint32_t u32Fn;
uint8_t u8Tn, subCh, u8BlockNbr = 0, sapi = 0;
uint8_t chan_nr, link_id;
int len;
if (!msg) {
LOGP(DL1C, LOGL_FATAL, "PH-DATA.req without msg. "
"Please fix!\n");
abort();
}
len = msgb_l2len(msg);
chan_nr = l1sap->u.data.chan_nr;
link_id = l1sap->u.data.link_id;
u32Fn = l1sap->u.data.fn;
u8Tn = L1SAP_CHAN2TS(chan_nr);
subCh = 0x1f;
if (L1SAP_IS_LINK_SACCH(link_id)) {
sapi = GsmL1_Sapi_Sacch;
if (!L1SAP_IS_CHAN_TCHF(chan_nr))
subCh = l1sap_chan2ss(chan_nr);
} else if (L1SAP_IS_CHAN_TCHF(chan_nr)) {
if (ts_is_pdch(&trx->ts[u8Tn])) {
if (L1SAP_IS_PTCCH(u32Fn)) {
sapi = GsmL1_Sapi_Ptcch;
u8BlockNbr = L1SAP_FN2PTCCHBLOCK(u32Fn);
} else {
sapi = GsmL1_Sapi_Pdtch;
u8BlockNbr = L1SAP_FN2MACBLOCK(u32Fn);
}
} else {
sapi = GsmL1_Sapi_FacchF;
u8BlockNbr = (u32Fn % 13) >> 2;
}
} else if (L1SAP_IS_CHAN_TCHH(chan_nr)) {
subCh = L1SAP_CHAN2SS_TCHH(chan_nr);
sapi = GsmL1_Sapi_FacchH;
u8BlockNbr = (u32Fn % 26) >> 3;
} else if (L1SAP_IS_CHAN_SDCCH4(chan_nr)) {
subCh = L1SAP_CHAN2SS_SDCCH4(chan_nr);
sapi = GsmL1_Sapi_Sdcch;
} else if (L1SAP_IS_CHAN_SDCCH8(chan_nr)) {
subCh = L1SAP_CHAN2SS_SDCCH8(chan_nr);
sapi = GsmL1_Sapi_Sdcch;
} else if (L1SAP_IS_CHAN_BCCH(chan_nr)) {
sapi = GsmL1_Sapi_Bcch;
} else if (L1SAP_IS_CHAN_AGCH_PCH(chan_nr)) {
/* The sapi depends on DSP configuration, not
* on the actual SYSTEM INFORMATION 3. */
u8BlockNbr = L1SAP_FN2CCCHBLOCK(u32Fn);
if (u8BlockNbr >= 1)
sapi = GsmL1_Sapi_Pch;
else
sapi = GsmL1_Sapi_Agch;
} else {
LOGP(DL1C, LOGL_NOTICE, "unknown prim %d op %d "
"chan_nr %d link_id %d\n", l1sap->oph.primitive,
l1sap->oph.operation, chan_nr, link_id);
msgb_free(l1msg);
return -EINVAL;
}
/* convert l1sap message to GsmL1 primitive, keep payload */
if (len) {
/* data request */
GsmL1_Prim_t *l1p = msgb_l1prim(l1msg);
data_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr, len);
OSMO_ASSERT(msgb_l2len(msg) <= sizeof(l1p->u.phDataReq.msgUnitParam.u8Buffer));
memcpy(l1p->u.phDataReq.msgUnitParam.u8Buffer, msg->l2h, msgb_l2len(msg));
LOGP(DL1P, LOGL_DEBUG, "PH-DATA.req(%s)\n",
osmo_hexdump(l1p->u.phDataReq.msgUnitParam.u8Buffer,
l1p->u.phDataReq.msgUnitParam.u8Size));
} else {
/* empty frame */
GsmL1_Prim_t *l1p = msgb_l1prim(l1msg);
empty_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr);
}
/* send message to DSP's queue */
if (osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], l1msg) != 0) {
LOGP(DL1P, LOGL_ERROR, "MQ_L1_WRITE queue full. Dropping msg.\n");
msgb_free(l1msg);
}
return 0;
}
static int ph_tch_req(struct gsm_bts_trx *trx, struct msgb *msg,
struct osmo_phsap_prim *l1sap)
{
struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx);
struct gsm_lchan *lchan;
uint32_t u32Fn;
uint8_t u8Tn, subCh, u8BlockNbr = 0, sapi;
uint8_t chan_nr;
GsmL1_Prim_t *l1p;
struct msgb *nmsg = NULL;
int rc = -1;
chan_nr = l1sap->u.tch.chan_nr;
u32Fn = l1sap->u.tch.fn;
u8Tn = L1SAP_CHAN2TS(chan_nr);
u8BlockNbr = (u32Fn % 13) >> 2;
if (L1SAP_IS_CHAN_TCHH(chan_nr)) {
subCh = L1SAP_CHAN2SS_TCHH(chan_nr);
sapi = GsmL1_Sapi_TchH;
} else {
subCh = 0x1f;
sapi = GsmL1_Sapi_TchF;
}
lchan = get_lchan_by_chan_nr(trx, chan_nr);
/* create new message and fill data */
if (msg) {
msgb_pull(msg, sizeof(*l1sap));
/* create new message */
nmsg = l1p_msgb_alloc();
if (!nmsg)
return -ENOMEM;
l1p = msgb_l1prim(nmsg);
rc = l1if_tch_encode(lchan,
l1p->u.phDataReq.msgUnitParam.u8Buffer,
&l1p->u.phDataReq.msgUnitParam.u8Size,
msg->data, msg->len, u32Fn,
l1sap->u.tch.marker);
if (rc < 0) {
/* no data encoded for L1: smth will be generated below */
msgb_free(nmsg);
nmsg = NULL;
}
}
/* no message/data, we might generate an empty traffic msg or re-send
cached SID in case of DTX */
if (!nmsg)
nmsg = gen_empty_tch_msg(lchan, u32Fn);
/* no traffic message, we generate an empty msg */
if (!nmsg) {
nmsg = l1p_msgb_alloc();
if (!nmsg)
return -ENOMEM;
}
l1p = msgb_l1prim(nmsg);
/* if we provide data, or if data is already in nmsg */
if (l1p->u.phDataReq.msgUnitParam.u8Size) {
/* data request */
data_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh,
u8BlockNbr,
l1p->u.phDataReq.msgUnitParam.u8Size);
} else {
/* empty frame */
if (trx->bts->dtxd && trx != trx->bts->c0)
lchan->tch.dtxd_active = true;
empty_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr);
}
/* send message to DSP's queue */
osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], nmsg);
if (l1sap->u.tch.marker) { /* DTX: send voice after ONSET was sent */
l1sap->u.tch.marker = 0;
return ph_tch_req(trx, l1sap->oph.msg, l1sap);
}
return 0;
}
static int mph_info_req(struct gsm_bts_trx *trx, struct msgb *msg,
struct osmo_phsap_prim *l1sap)
{
struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx);
uint8_t chan_nr;
struct gsm_lchan *lchan;
int rc = 0;
switch (l1sap->u.info.type) {
case PRIM_INFO_ACT_CIPH:
chan_nr = l1sap->u.info.u.ciph_req.chan_nr;
lchan = get_lchan_by_chan_nr(trx, chan_nr);
if (l1sap->u.info.u.ciph_req.uplink) {
l1if_set_ciphering(fl1, lchan, 0);
lchan->ciph_state = LCHAN_CIPH_RX_REQ;
}
if (l1sap->u.info.u.ciph_req.downlink) {
l1if_set_ciphering(fl1, lchan, 1);
lchan->ciph_state = LCHAN_CIPH_RX_CONF_TX_REQ;
}
if (l1sap->u.info.u.ciph_req.downlink
&& l1sap->u.info.u.ciph_req.uplink)
lchan->ciph_state = LCHAN_CIPH_RXTX_REQ;
break;
case PRIM_INFO_ACTIVATE:
case PRIM_INFO_DEACTIVATE:
case PRIM_INFO_MODIFY:
chan_nr = l1sap->u.info.u.act_req.chan_nr;
lchan = get_lchan_by_chan_nr(trx, chan_nr);
if (l1sap->u.info.type == PRIM_INFO_ACTIVATE)
l1if_rsl_chan_act(lchan);
else if (l1sap->u.info.type == PRIM_INFO_MODIFY) {
if (lchan->ho.active == HANDOVER_WAIT_FRAME)
l1if_rsl_chan_mod(lchan);
else
l1if_rsl_mode_modify(lchan);
} else if (l1sap->u.info.u.act_req.sacch_only)
l1if_rsl_deact_sacch(lchan);
else
l1if_rsl_chan_rel(lchan);
break;
default:
LOGP(DL1C, LOGL_NOTICE, "unknown MPH-INFO.req %d\n",
l1sap->u.info.type);
rc = -EINVAL;
}
return rc;
}
/* primitive from common part */
int bts_model_l1sap_down(struct gsm_bts_trx *trx, struct osmo_phsap_prim *l1sap)
{
struct msgb *msg = l1sap->oph.msg;
int rc = 0;
/* called functions MUST NOT take ownership of msgb, as it is
* free()d below */
switch (OSMO_PRIM_HDR(&l1sap->oph)) {
case OSMO_PRIM(PRIM_PH_DATA, PRIM_OP_REQUEST):
rc = ph_data_req(trx, msg, l1sap);
break;
case OSMO_PRIM(PRIM_TCH, PRIM_OP_REQUEST):
rc = ph_tch_req(trx, msg, l1sap);
break;
case OSMO_PRIM(PRIM_MPH_INFO, PRIM_OP_REQUEST):
rc = mph_info_req(trx, msg, l1sap);
break;
default:
LOGP(DL1C, LOGL_NOTICE, "unknown prim %d op %d\n",
l1sap->oph.primitive, l1sap->oph.operation);
rc = -EINVAL;
}
msgb_free(msg);
return rc;
}
static int handle_mph_time_ind(struct femtol1_hdl *fl1,
GsmL1_MphTimeInd_t *time_ind,
struct msgb *msg)
{
struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1);
struct gsm_bts *bts = trx->bts;
struct osmo_phsap_prim l1sap;
uint32_t fn;
/* increment the primitive count for the alive timer */
fl1->alive_prim_cnt++;
/* ignore every time indication, except for c0 */
if (trx != bts->c0) {
return 0;
}
fn = time_ind->u32Fn;
memset(&l1sap, 0, sizeof(l1sap));
osmo_prim_init(&l1sap.oph, SAP_GSM_PH, PRIM_MPH_INFO,
PRIM_OP_INDICATION, NULL);
l1sap.u.info.type = PRIM_INFO_TIME;
l1sap.u.info.u.time_ind.fn = fn;
msgb_free(msg);
return l1sap_up(trx, &l1sap);
}
static enum gsm_phys_chan_config pick_pchan(struct gsm_bts_trx_ts *ts)
{
switch (ts->pchan) {
case GSM_PCHAN_TCH_F_PDCH:
if (ts->flags & TS_F_PDCH_ACTIVE)
return GSM_PCHAN_PDCH;
return GSM_PCHAN_TCH_F;
case GSM_PCHAN_TCH_F_TCH_H_PDCH:
return ts->dyn.pchan_is;
default:
return ts->pchan;
}
}
static uint8_t chan_nr_by_sapi(struct gsm_bts_trx_ts *ts,
GsmL1_Sapi_t sapi, GsmL1_SubCh_t subCh,
uint8_t u8Tn, uint32_t u32Fn)
{
uint8_t cbits = 0;
enum gsm_phys_chan_config pchan = pick_pchan(ts);
OSMO_ASSERT(pchan != GSM_PCHAN_TCH_F_PDCH);
OSMO_ASSERT(pchan != GSM_PCHAN_TCH_F_TCH_H_PDCH);
switch (sapi) {
case GsmL1_Sapi_Bcch:
cbits = 0x10;
break;
case GsmL1_Sapi_Sacch:
switch(pchan) {
case GSM_PCHAN_TCH_F:
cbits = 0x01;
break;
case GSM_PCHAN_TCH_H:
cbits = 0x02 + subCh;
break;
case GSM_PCHAN_CCCH_SDCCH4:
cbits = 0x04 + subCh;
break;
case GSM_PCHAN_SDCCH8_SACCH8C:
cbits = 0x08 + subCh;
break;
default:
LOGP(DL1C, LOGL_ERROR, "SACCH for pchan %d?\n",
pchan);
return 0;
}
break;
case GsmL1_Sapi_Sdcch:
switch(pchan) {
case GSM_PCHAN_CCCH_SDCCH4:
cbits = 0x04 + subCh;
break;
case GSM_PCHAN_SDCCH8_SACCH8C:
cbits = 0x08 + subCh;
break;
default:
LOGP(DL1C, LOGL_ERROR, "SDCCH for pchan %d?\n",
pchan);
return 0;
}
break;
case GsmL1_Sapi_Agch:
case GsmL1_Sapi_Pch:
cbits = 0x12;
break;
case GsmL1_Sapi_Pdtch:
case GsmL1_Sapi_Pacch:
switch(pchan) {
case GSM_PCHAN_PDCH:
cbits = 0x01;
break;
default:
LOGP(DL1C, LOGL_ERROR, "PDTCH for pchan %d?\n",
pchan);
return 0;
}
break;
case GsmL1_Sapi_TchF:
cbits = 0x01;
break;
case GsmL1_Sapi_TchH:
cbits = 0x02 + subCh;
break;
case GsmL1_Sapi_FacchF:
cbits = 0x01;
break;
case GsmL1_Sapi_FacchH:
cbits = 0x02 + subCh;
break;
case GsmL1_Sapi_Ptcch:
if (!L1SAP_IS_PTCCH(u32Fn)) {
LOGP(DL1C, LOGL_FATAL, "Not expecting PTCCH at frame "
"number other than 12, got it at %u (%u). "
"Please fix!\n", u32Fn % 52, u32Fn);
abort();
}
switch(pchan) {
case GSM_PCHAN_PDCH:
cbits = 0x01;
break;
default:
LOGP(DL1C, LOGL_ERROR, "PTCCH for pchan %d?\n",
pchan);
return 0;
}
break;
default:
return 0;
}
/* not reached due to default case above */
return (cbits << 3) | u8Tn;
}
static int handle_ph_readytosend_ind(struct femtol1_hdl *fl1,
GsmL1_PhReadyToSendInd_t *rts_ind,
struct msgb *l1p_msg)
{
struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1);
struct gsm_bts *bts = trx->bts;
struct msgb *resp_msg;
GsmL1_PhDataReq_t *data_req;
GsmL1_MsgUnitParam_t *msu_param;
struct gsm_time g_time;
uint32_t t3p;
int rc;
struct osmo_phsap_prim *l1sap;
uint8_t chan_nr, link_id;
uint32_t fn;
/* check if primitive should be handled by common part */
chan_nr = chan_nr_by_sapi(&trx->ts[rts_ind->u8Tn], rts_ind->sapi,
rts_ind->subCh, rts_ind->u8Tn, rts_ind->u32Fn);
if (chan_nr) {
fn = rts_ind->u32Fn;
if (rts_ind->sapi == GsmL1_Sapi_Sacch)
link_id = 0x40;
else
link_id = 0;
/* recycle the msgb and use it for the L1 primitive,
* which means that we (or our caller) must not free it */
rc = msgb_trim(l1p_msg, sizeof(*l1sap));
if (rc < 0)
MSGB_ABORT(l1p_msg, "No room for primitive\n");
l1sap = msgb_l1sap_prim(l1p_msg);
if (rts_ind->sapi == GsmL1_Sapi_TchF
|| rts_ind->sapi == GsmL1_Sapi_TchH) {
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_TCH_RTS,
PRIM_OP_INDICATION, l1p_msg);
l1sap->u.tch.chan_nr = chan_nr;
l1sap->u.tch.fn = fn;
} else {
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RTS,
PRIM_OP_INDICATION, l1p_msg);
l1sap->u.data.link_id = link_id;
l1sap->u.data.chan_nr = chan_nr;
l1sap->u.data.fn = fn;
}
return l1sap_up(trx, l1sap);
}
gsm_fn2gsmtime(&g_time, rts_ind->u32Fn);
DEBUGP(DL1P, "Rx PH-RTS.ind %02u/%02u/%02u SAPI=%s\n",
g_time.t1, g_time.t2, g_time.t3,
get_value_string(femtobts_l1sapi_names, rts_ind->sapi));
/* in all other cases, we need to allocate a new PH-DATA.ind
* primitive msgb and start to fill it */
resp_msg = l1p_msgb_alloc();
data_req = data_req_from_rts_ind(msgb_l1prim(resp_msg), rts_ind);
msu_param = &data_req->msgUnitParam;
/* set default size */
msu_param->u8Size = GSM_MACBLOCK_LEN;
switch (rts_ind->sapi) {
case GsmL1_Sapi_Sch:
/* compute T3prime */
t3p = (g_time.t3 - 1) / 10;
/* fill SCH burst with data */
msu_param->u8Size = 4;
msu_param->u8Buffer[0] = (bts->bsic << 2) | (g_time.t1 >> 9);
msu_param->u8Buffer[1] = (g_time.t1 >> 1);
msu_param->u8Buffer[2] = (g_time.t1 << 7) | (g_time.t2 << 2) | (t3p >> 1);
msu_param->u8Buffer[3] = (t3p & 1);
break;
case GsmL1_Sapi_Prach:
goto empty_frame;
break;
case GsmL1_Sapi_Cbch:
/* get them from bts->si_buf[] */
bts_cbch_get(bts, msu_param->u8Buffer, &g_time);
break;
default:
memcpy(msu_param->u8Buffer, fill_frame, GSM_MACBLOCK_LEN);
break;
}
tx:
/* transmit */
if (osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], resp_msg) != 0) {
LOGP(DL1C, LOGL_ERROR, "MQ_L1_WRITE queue full. Dropping msg.\n");
msgb_free(resp_msg);
}
/* free the msgb, as we have not handed it to l1sap and thus
* need to release its memory */
msgb_free(l1p_msg);
return 0;
empty_frame:
/* in case we decide to send an empty frame... */
empty_req_from_rts_ind(msgb_l1prim(resp_msg), rts_ind);
goto tx;
}
static void dump_meas_res(int ll, GsmL1_MeasParam_t *m)
{
LOGPC(DL1C, ll, ", Meas: RSSI %-3.2f dBm, Qual %-3.2f dB, "
"BER %-3.2f, Timing %d\n", m->fRssi, m->fLinkQuality,
m->fBer, m->i16BurstTiming);
}
static int process_meas_res(struct gsm_bts_trx *trx, uint8_t chan_nr,
GsmL1_MeasParam_t *m)
{
struct osmo_phsap_prim l1sap;
memset(&l1sap, 0, sizeof(l1sap));
osmo_prim_init(&l1sap.oph, SAP_GSM_PH, PRIM_MPH_INFO,
PRIM_OP_INDICATION, NULL);
l1sap.u.info.type = PRIM_INFO_MEAS;
l1sap.u.info.u.meas_ind.chan_nr = chan_nr;
l1sap.u.info.u.meas_ind.ta_offs_qbits = m->i16BurstTiming;
l1sap.u.info.u.meas_ind.ber10k = (unsigned int) (m->fBer * 100);
l1sap.u.info.u.meas_ind.inv_rssi = (uint8_t) (m->fRssi * -1);
/* l1sap wants to take msgb ownership. However, as there is no
* msg, it will msgb_free(l1sap.oph.msg == NULL) */
return l1sap_up(trx, &l1sap);
}
static int handle_ph_data_ind(struct femtol1_hdl *fl1, GsmL1_PhDataInd_t *data_ind,
struct msgb *l1p_msg)
{
struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1);
struct gsm_bts_role_bts *btsb = bts_role_bts(trx->bts);
uint8_t chan_nr, link_id;
struct msgb *sap_msg;
struct osmo_phsap_prim *l1sap;
uint32_t fn;
int rc = 0;
chan_nr = chan_nr_by_sapi(&trx->ts[data_ind->u8Tn], data_ind->sapi,
data_ind->subCh, data_ind->u8Tn, data_ind->u32Fn);
if (!chan_nr) {
LOGP(DL1C, LOGL_ERROR, "PH-DATA-INDICATION for unknown sapi "
"%d\n", data_ind->sapi);
msgb_free(l1p_msg);
return ENOTSUP;
}
fn = data_ind->u32Fn;
link_id = (data_ind->sapi == GsmL1_Sapi_Sacch) ? 0x40 : 0x00;
process_meas_res(trx, chan_nr, &data_ind->measParam);
if (data_ind->measParam.fLinkQuality < btsb->min_qual_norm
&& data_ind->msgUnitParam.u8Size != 0) {
msgb_free(l1p_msg);
return 0;
}
DEBUGP(DL1C, "Rx PH-DATA.ind %s (hL2 %08x): %s",
get_value_string(femtobts_l1sapi_names, data_ind->sapi),
data_ind->hLayer2,
osmo_hexdump(data_ind->msgUnitParam.u8Buffer,
data_ind->msgUnitParam.u8Size));
dump_meas_res(LOGL_DEBUG, &data_ind->measParam);
/* check for TCH */
if (data_ind->sapi == GsmL1_Sapi_TchF
|| data_ind->sapi == GsmL1_Sapi_TchH) {
/* TCH speech frame handling */
rc = l1if_tch_rx(trx, chan_nr, l1p_msg);
msgb_free(l1p_msg);
return rc;
}
/* fill L1SAP header */
sap_msg = l1sap_msgb_alloc(data_ind->msgUnitParam.u8Size);
l1sap = msgb_l1sap_prim(sap_msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_DATA,
PRIM_OP_INDICATION, sap_msg);
l1sap->u.data.link_id = link_id;
l1sap->u.data.chan_nr = chan_nr;
l1sap->u.data.fn = fn;
l1sap->u.data.rssi = (int8_t) (data_ind->measParam.fRssi);
if (!pcu_direct) {
l1sap->u.data.ber10k = data_ind->measParam.fBer * 10000;
l1sap->u.data.ta_offs_qbits = data_ind->measParam.i16BurstTiming;
l1sap->u.data.lqual_cb = data_ind->measParam.fLinkQuality * 10;
}
/* copy data from L1 primitive to L1SAP primitive */
sap_msg->l2h = msgb_put(sap_msg, data_ind->msgUnitParam.u8Size);
memcpy(sap_msg->l2h, data_ind->msgUnitParam.u8Buffer,
data_ind->msgUnitParam.u8Size);
msgb_free(l1p_msg);
return l1sap_up(trx, l1sap);
}
static int handle_ph_ra_ind(struct femtol1_hdl *fl1, GsmL1_PhRaInd_t *ra_ind,
struct msgb *l1p_msg)
{
struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1);
struct gsm_bts *bts = trx->bts;
struct gsm_bts_role_bts *btsb = bts->role;
struct gsm_lchan *lchan;
struct osmo_phsap_prim *l1sap;
uint32_t fn;
uint8_t acc_delay = 0;
uint16_t ra = 0, is_11bit = 0, burst_type = 0, temp = 0;
int rc;
/* increment number of busy RACH slots, if required */
if (trx == bts->c0 &&
ra_ind->measParam.fRssi >= btsb->load.rach.busy_thresh)
btsb->load.rach.busy++;
if (ra_ind->measParam.fLinkQuality < btsb->min_qual_rach) {
msgb_free(l1p_msg);
return 0;
}
if (ra_ind->measParam.i16BurstTiming > 0)
acc_delay = ra_ind->measParam.i16BurstTiming >> 2;
/* increment number of RACH slots with valid non-handover RACH burst */
lchan = l1if_hLayer_to_lchan(trx, ra_ind->hLayer2);
if (trx == bts->c0 && !(lchan && lchan->ho.active == HANDOVER_ENABLED))
btsb->load.rach.access++;
dump_meas_res(LOGL_DEBUG, &ra_ind->measParam);
burst_type = ra_ind->burstType;
if ((ra_ind->msgUnitParam.u8Size != 1) &&
(ra_ind->msgUnitParam.u8Size != 2)) {
LOGP(DL1C, LOGL_ERROR, "PH-RACH-INDICATION has %d bits\n",
ra_ind->sapi);
msgb_free(l1p_msg);
return 0;
}
if (ra_ind->msgUnitParam.u8Size == 2) {
is_11bit = 1;
ra = ra_ind->msgUnitParam.u8Buffer[0];
ra = ra << 3;
temp = (ra_ind->msgUnitParam.u8Buffer[1] & 0x7);
ra = ra | temp;
} else {
is_11bit = 0;
ra = ra_ind->msgUnitParam.u8Buffer[0];
}
fn = ra_ind->u32Fn;
rc = msgb_trim(l1p_msg, sizeof(*l1sap));
if (rc < 0)
MSGB_ABORT(l1p_msg, "No room for primitive data\n");
l1sap = msgb_l1sap_prim(l1p_msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RACH, PRIM_OP_INDICATION,
l1p_msg);
l1sap->u.rach_ind.ra = ra;
l1sap->u.rach_ind.acc_delay = acc_delay;
l1sap->u.rach_ind.fn = fn;
l1sap->u.rach_ind.is_11bit = is_11bit; /* no of bits in 11 bit RACH */
/*mapping of the burst type, the values are specific to osmo-bts-sysmo*/
switch (burst_type) {
case GsmL1_BurstType_Access_0:
l1sap->u.rach_ind.burst_type =
GSM_L1_BURST_TYPE_ACCESS_0;
break;
case GsmL1_BurstType_Access_1:
l1sap->u.rach_ind.burst_type =
GSM_L1_BURST_TYPE_ACCESS_1;
break;
case GsmL1_BurstType_Access_2:
l1sap->u.rach_ind.burst_type =
GSM_L1_BURST_TYPE_ACCESS_2;
break;
default:
l1sap->u.rach_ind.burst_type =
GSM_L1_BURST_TYPE_NONE;
break;
}
if (!lchan || lchan->ts->pchan == GSM_PCHAN_CCCH ||
lchan->ts->pchan == GSM_PCHAN_CCCH_SDCCH4)
l1sap->u.rach_ind.chan_nr = 0x88;
else
l1sap->u.rach_ind.chan_nr = gsm_lchan2chan_nr(lchan);
return l1sap_up(trx, l1sap);
}
/* handle any random indication from the L1 */
static int l1if_handle_ind(struct femtol1_hdl *fl1, struct msgb *msg)
{
GsmL1_Prim_t *l1p = msgb_l1prim(msg);
int rc = 0;
/* all the below called functions must take ownership of the msgb */
switch (l1p->id) {
case GsmL1_PrimId_MphTimeInd:
rc = handle_mph_time_ind(fl1, &l1p->u.mphTimeInd, msg);
break;
case GsmL1_PrimId_MphSyncInd:
break;
case GsmL1_PrimId_PhConnectInd:
break;
case GsmL1_PrimId_PhReadyToSendInd:
rc = handle_ph_readytosend_ind(fl1, &l1p->u.phReadyToSendInd,
msg);
break;
case GsmL1_PrimId_PhDataInd:
rc = handle_ph_data_ind(fl1, &l1p->u.phDataInd, msg);
break;
case GsmL1_PrimId_PhRaInd:
rc = handle_ph_ra_ind(fl1, &l1p->u.phRaInd, msg);
break;
default:
break;
}
return rc;
}
static inline int is_prim_compat(GsmL1_Prim_t *l1p, struct wait_l1_conf *wlc)
{
if (wlc->is_sys_prim != 0)
return 0;
if (l1p->id != wlc->conf_prim_id)
return 0;
if (l1p_get_hLayer3(l1p) != wlc->conf_hLayer3)
return 0;
return 1;
}
int l1if_handle_l1prim(int wq, struct femtol1_hdl *fl1h, struct msgb *msg)
{
GsmL1_Prim_t *l1p = msgb_l1prim(msg);
struct wait_l1_conf *wlc;
int rc;
switch (l1p->id) {
case GsmL1_PrimId_MphTimeInd:
/* silent, don't clog the log file */
break;
default:
LOGP(DL1P, LOGL_DEBUG, "Rx L1 prim %s on queue %d\n",
get_value_string(femtobts_l1prim_names, l1p->id), wq);
}
/* check if this is a resposne to a sync-waiting request */
llist_for_each_entry(wlc, &fl1h->wlc_list, list) {
if (is_prim_compat(l1p, wlc)) {
llist_del(&wlc->list);
if (wlc->cb) {
/* call-back function must take
* ownership of msgb */
rc = wlc->cb(femtol1_hdl_trx(fl1h), msg,
wlc->cb_data);
} else {
rc = 0;
msgb_free(msg);
}
release_wlc(wlc);
return rc;
}
}
/* if we reach here, it is not a Conf for a pending Req */
return l1if_handle_ind(fl1h, msg);
}
int l1if_handle_sysprim(struct femtol1_hdl *fl1h, struct msgb *msg)
{
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
struct wait_l1_conf *wlc;
int rc;
LOGP(DL1P, LOGL_DEBUG, "Rx SYS prim %s\n",
get_value_string(femtobts_sysprim_names, sysp->id));
/* check if this is a resposne to a sync-waiting request */
llist_for_each_entry(wlc, &fl1h->wlc_list, list) {
/* the limitation here is that we cannot have multiple callers
* sending the same primitive */
if (wlc->is_sys_prim && sysp->id == wlc->conf_prim_id) {
llist_del(&wlc->list);
if (wlc->cb) {
/* call-back function must take
* ownership of msgb */
rc = wlc->cb(femtol1_hdl_trx(fl1h), msg,
wlc->cb_data);
} else {
rc = 0;
msgb_free(msg);
}
release_wlc(wlc);
return rc;
}
}
/* if we reach here, it is not a Conf for a pending Req */
return l1if_handle_ind(fl1h, msg);
}
#if 0
/* called by RSL if the BCCH SI has been modified */
int sysinfo_has_changed(struct gsm_bts *bts, int si)
{
/* FIXME: Determine BS_AG_BLKS_RES and
* * set cfgParams.u.agch.u8NbrOfAgch
* * determine implications on paging
*/
/* FIXME: Check for Extended BCCH presence */
/* FIXME: Check for CCCH_CONF */
/* FIXME: Check for BS_PA_MFRMS: update paging */
return 0;
}
#endif
static int activate_rf_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
GsmL1_Status_t status;
int on = 0;
unsigned int i;
if (sysp->id == SuperFemto_PrimId_ActivateRfCnf)
on = 1;
if (on)
status = sysp->u.activateRfCnf.status;
else
status = sysp->u.deactivateRfCnf.status;
LOGP(DL1C, LOGL_INFO, "Rx RF-%sACT.conf (status=%s)\n", on ? "" : "DE",
get_value_string(femtobts_l1status_names, status));
if (on) {
if (status != GsmL1_Status_Success) {
LOGP(DL1C, LOGL_FATAL, "RF-ACT.conf with status %s\n",
get_value_string(femtobts_l1status_names, status));
bts_shutdown(trx->bts, "RF-ACT failure");
} else
bts_update_status(BTS_STATUS_RF_ACTIVE, 1);
/* signal availability */
oml_mo_state_chg(&trx->mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OK);
oml_mo_tx_sw_act_rep(&trx->mo);
oml_mo_state_chg(&trx->bb_transc.mo, -1, NM_AVSTATE_OK);
oml_mo_tx_sw_act_rep(&trx->bb_transc.mo);
for (i = 0; i < ARRAY_SIZE(trx->ts); i++)
oml_mo_state_chg(&trx->ts[i].mo, NM_OPSTATE_DISABLED, NM_AVSTATE_DEPENDENCY);
} else {
bts_update_status(BTS_STATUS_RF_ACTIVE, 0);
oml_mo_state_chg(&trx->mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OFF_LINE);
oml_mo_state_chg(&trx->bb_transc.mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OFF_LINE);
}
msgb_free(resp);
return 0;
}
static int get_clk_cal(struct femtol1_hdl *hdl)
{
#ifdef FEMTOBTS_API_VERSION
return hdl->clk_cal;
#else
switch (hdl->clk_src) {
case SuperFemto_ClkSrcId_Ocxo:
case SuperFemto_ClkSrcId_Tcxo:
/* only for those on-board clocks it makes sense to use
* the calibration value */
return hdl->clk_cal;
default:
/* external clocks like GPS are taken 1:1 without any
* modification by a local calibration value */
LOGP(DL1C, LOGL_INFO, "Ignoring Clock Calibration for "
"selected %s clock\n",
get_value_string(femtobts_clksrc_names, hdl->clk_src));
return 0;
}
#endif
}
/*
* RevC was the last HW revision without an external
* attenuator. Check for that.
*/
static int has_external_atten(struct femtol1_hdl *hdl)
{
/* older version doesn't have an attenuator */
return hdl->hw_info.ver_major > 2;
}
/* activate or de-activate the entire RF-Frontend */
int l1if_activate_rf(struct femtol1_hdl *hdl, int on)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
struct gsm_bts_trx *trx = hdl->phy_inst->trx;
if (on) {
sysp->id = SuperFemto_PrimId_ActivateRfReq;
#ifdef HW_SYSMOBTS_V1
sysp->u.activateRfReq.u12ClkVc = get_clk_cal(hdl);
#else
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(0,2,0)
sysp->u.activateRfReq.timing.u8TimSrc = 1; /* Master */
#endif /* 0.2.0 */
sysp->u.activateRfReq.msgq.u8UseTchMsgq = 0;
sysp->u.activateRfReq.msgq.u8UsePdtchMsgq = pcu_direct;
/* Use clock from OCXO or whatever source is configured */
#if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,1,0)
sysp->u.activateRfReq.rfTrx.u8ClkSrc = hdl->clk_src;
#else
sysp->u.activateRfReq.rfTrx.clkSrc = hdl->clk_src;
#endif /* 2.1.0 */
sysp->u.activateRfReq.rfTrx.iClkCor = get_clk_cal(hdl);
#if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,4,0)
#if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,1,0)
sysp->u.activateRfReq.rfRx.u8ClkSrc = hdl->clk_src;
#else
sysp->u.activateRfReq.rfRx.clkSrc = hdl->clk_src;
#endif /* 2.1.0 */
sysp->u.activateRfReq.rfRx.iClkCor = get_clk_cal(hdl);
#endif /* API 2.4.0 */
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,2,0)
if (has_external_atten(hdl)) {
LOGP(DL1C, LOGL_INFO, "Using external attenuator.\n");
sysp->u.activateRfReq.rfTrx.u8UseExtAtten = 1;
sysp->u.activateRfReq.rfTrx.fMaxTxPower =
sysmobts_get_nominal_power(trx);
}
#endif /* 2.2.0 */
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(3,8,1)
/* maximum cell size in quarter-bits, 90 == 12.456 km */
sysp->u.activateRfReq.u8MaxCellSize = 90;
#endif
#endif /* !HW_SYSMOBTS_V1 */
} else {
sysp->id = SuperFemto_PrimId_DeactivateRfReq;
}
return l1if_req_compl(hdl, msg, activate_rf_compl_cb, NULL);
}
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(3,6,0)
static void mute_handle_ts(struct gsm_bts_trx_ts *ts, int is_muted)
{
int i;
for (i = 0; i < ARRAY_SIZE(ts->lchan); i++) {
struct gsm_lchan *lchan = &ts->lchan[i];
if (!is_muted)
continue;
if (lchan->state != LCHAN_S_ACTIVE)
continue;
/* skip channels that might be active for another reason */
if (lchan->type == GSM_LCHAN_CCCH)
continue;
if (lchan->type == GSM_LCHAN_PDTCH)
continue;
if (lchan->s <= 0)
continue;
lchan->s = 0;
rsl_tx_conn_fail(lchan, RSL_ERR_RADIO_LINK_FAIL);
}
}
static int mute_rf_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx);
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
GsmL1_Status_t status;
status = sysp->u.muteRfCnf.status;
if (status != GsmL1_Status_Success) {
LOGP(DL1C, LOGL_ERROR, "Rx RF-MUTE.conf with status %s\n",
get_value_string(femtobts_l1status_names, status));
oml_mo_rf_lock_chg(&trx->mo, fl1h->last_rf_mute, 0);
} else {
int i;
LOGP(DL1C, LOGL_INFO, "Rx RF-MUTE.conf with status=%s\n",
get_value_string(femtobts_l1status_names, status));
bts_update_status(BTS_STATUS_RF_MUTE, fl1h->last_rf_mute[0]);
oml_mo_rf_lock_chg(&trx->mo, fl1h->last_rf_mute, 1);
osmo_static_assert(
ARRAY_SIZE(trx->ts) >= ARRAY_SIZE(fl1h->last_rf_mute),
ts_array_size);
for (i = 0; i < ARRAY_SIZE(fl1h->last_rf_mute); ++i)
mute_handle_ts(&trx->ts[i], fl1h->last_rf_mute[i]);
}
msgb_free(resp);
return 0;
}
#endif
/* mute/unmute RF time slots */
int l1if_mute_rf(struct femtol1_hdl *hdl, uint8_t mute[8], l1if_compl_cb *cb)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
LOGP(DL1C, LOGL_INFO, "Tx RF-MUTE.req (%d, %d, %d, %d, %d, %d, %d, %d)\n",
mute[0], mute[1], mute[2], mute[3],
mute[4], mute[5], mute[6], mute[7]
);
#if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(3,6,0)
LOGP(DL1C, LOGL_ERROR, "RF-MUTE.req not supported by SuperFemto\n");
msgb_free(msg);
return -ENOTSUP;
#else
sysp->id = SuperFemto_PrimId_MuteRfReq;
memcpy(sysp->u.muteRfReq.u8Mute, mute, sizeof(sysp->u.muteRfReq.u8Mute));
/* save for later use */
memcpy(hdl->last_rf_mute, mute, sizeof(hdl->last_rf_mute));
return l1if_req_compl(hdl, msg, cb ? cb : mute_rf_compl_cb, NULL);
#endif /* < 3.6.0 */
}
/* call-back on arrival of DSP+FPGA version + band capability */
static int info_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
SuperFemto_SystemInfoCnf_t *sic = &sysp->u.systemInfoCnf;
struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx);
int rc;
fl1h->hw_info.dsp_version[0] = sic->dspVersion.major;
fl1h->hw_info.dsp_version[1] = sic->dspVersion.minor;
fl1h->hw_info.dsp_version[2] = sic->dspVersion.build;
fl1h->hw_info.fpga_version[0] = sic->fpgaVersion.major;
fl1h->hw_info.fpga_version[1] = sic->fpgaVersion.minor;
fl1h->hw_info.fpga_version[2] = sic->fpgaVersion.build;
#ifndef HW_SYSMOBTS_V1
fl1h->hw_info.ver_major = sic->boardVersion.rev;
fl1h->hw_info.ver_minor = sic->boardVersion.option;
#endif
LOGP(DL1C, LOGL_INFO, "DSP v%u.%u.%u, FPGA v%u.%u.%u\nn",
sic->dspVersion.major, sic->dspVersion.minor,
sic->dspVersion.build, sic->fpgaVersion.major,
sic->fpgaVersion.minor, sic->fpgaVersion.build);
#ifdef HW_SYSMOBTS_V1
if (sic->rfBand.gsm850)
fl1h->hw_info.band_support |= GSM_BAND_850;
if (sic->rfBand.gsm900)
fl1h->hw_info.band_support |= GSM_BAND_900;
if (sic->rfBand.dcs1800)
fl1h->hw_info.band_support |= GSM_BAND_1800;
if (sic->rfBand.pcs1900)
fl1h->hw_info.band_support |= GSM_BAND_1900;
#endif
if (!(fl1h->hw_info.band_support & trx->bts->band))
LOGP(DL1C, LOGL_FATAL, "BTS band %s not supported by hw\n",
gsm_band_name(trx->bts->band));
/* Request the activation */
l1if_activate_rf(fl1h, 1);
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,4,0)
/* load calibration tables (if we know their path) */
rc = calib_load(fl1h);
if (rc < 0)
LOGP(DL1C, LOGL_ERROR, "Operating without calibration; "
"unable to load tables!\n");
#else
LOGP(DL1C, LOGL_NOTICE, "Operating without calibration "
"as software was compiled against old header files\n");
#endif
msgb_free(resp);
/* FIXME: clock related */
return 0;
}
/* request DSP+FPGA code versions + band capability */
static int l1if_get_info(struct femtol1_hdl *hdl)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
sysp->id = SuperFemto_PrimId_SystemInfoReq;
return l1if_req_compl(hdl, msg, info_compl_cb, NULL);
}
static int reset_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx);
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
GsmL1_Status_t status = sysp->u.layer1ResetCnf.status;
LOGP(DL1C, LOGL_NOTICE, "Rx L1-RESET.conf (status=%s)\n",
get_value_string(femtobts_l1status_names, status));
msgb_free(resp);
/* If we're coming out of reset .. */
if (status != GsmL1_Status_Success) {
LOGP(DL1C, LOGL_FATAL, "L1-RESET.conf with status %s\n",
get_value_string(femtobts_l1status_names, status));
bts_shutdown(trx->bts, "L1-RESET failure");
}
/* as we cannot get the current DSP trace flags, we simply
* set them to zero (or whatever dsp_trace_f has been initialized to */
l1if_set_trace_flags(fl1h, fl1h->dsp_trace_f);
/* obtain version information on DSP/FPGA and band capabilities */
l1if_get_info(fl1h);
return 0;
}
int l1if_reset(struct femtol1_hdl *hdl)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
sysp->id = SuperFemto_PrimId_Layer1ResetReq;
return l1if_req_compl(hdl, msg, reset_compl_cb, NULL);
}
/* set the trace flags within the DSP */
int l1if_set_trace_flags(struct femtol1_hdl *hdl, uint32_t flags)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
LOGP(DL1C, LOGL_INFO, "Tx SET-TRACE-FLAGS.req (0x%08x)\n",
flags);
sysp->id = SuperFemto_PrimId_SetTraceFlagsReq;
sysp->u.setTraceFlagsReq.u32Tf = flags;
hdl->dsp_trace_f = flags;
/* There is no confirmation we could wait for */
if (osmo_wqueue_enqueue(&hdl->write_q[MQ_SYS_WRITE], msg) != 0) {
LOGP(DL1C, LOGL_ERROR, "MQ_SYS_WRITE queue full. Dropping msg\n");
msgb_free(msg);
return -EAGAIN;
}
return 0;
}
/* get those femtol1_hdl.hw_info elements that sre in EEPROM */
static int get_hwinfo_eeprom(struct femtol1_hdl *fl1h)
{
eeprom_SysInfo_t sysinfo;
int val, rc;
rc = sysmobts_par_get_int(SYSMOBTS_PAR_MODEL_NR, &val);
if (rc < 0)
return rc;
fl1h->hw_info.model_nr = val;
rc = sysmobts_par_get_int(SYSMOBTS_PAR_MODEL_FLAGS, &val);
if (rc < 0)
return rc;
fl1h->hw_info.model_flags = val;
rc = sysmobts_par_get_int(SYSMOBTS_PAR_TRX_NR, &val);
if (rc < 0)
return rc;
fl1h->hw_info.trx_nr = val;
rc = eeprom_ReadSysInfo(&sysinfo);
if (rc != EEPROM_SUCCESS) {
/* some early units don't yet have the EEPROM
* information structure */
LOGP(DL1C, LOGL_ERROR, "Unable to read band support "
"from EEPROM, assuming all bands\n");
fl1h->hw_info.band_support = GSM_BAND_850 | GSM_BAND_900 | GSM_BAND_1800 | GSM_BAND_1900;
return 0;
}
if (sysinfo.u8GSM850)
fl1h->hw_info.band_support |= GSM_BAND_850;
if (sysinfo.u8GSM900)
fl1h->hw_info.band_support |= GSM_BAND_900;
if (sysinfo.u8DCS1800)
fl1h->hw_info.band_support |= GSM_BAND_1800;
if (sysinfo.u8PCS1900)
fl1h->hw_info.band_support |= GSM_BAND_1900;
return 0;
}
/* Set the clock calibration to the value read from the eeprom. */
static void clk_cal_use_eeprom(struct femtol1_hdl *hdl)
{
struct phy_instance *pinst = hdl->phy_inst;
eeprom_RfClockCal_t rf_clk;
int rc;
if (!pinst->u.sysmobts.clk_use_eeprom)
return;
rc = eeprom_ReadRfClockCal(&rf_clk);
if (rc != EEPROM_SUCCESS) {
LOGP(DL1C, LOGL_ERROR, "Failed to read from EEPROM.\n");
return;
}
hdl->clk_cal = rf_clk.iClkCor;
LOGP(DL1C, LOGL_NOTICE,
"Read clock calibration(%d) from EEPROM.\n", hdl->clk_cal);
}
struct femtol1_hdl *l1if_open(struct phy_instance *pinst)
{
struct femtol1_hdl *fl1h;
int rc;
#ifndef HW_SYSMOBTS_V1
LOGP(DL1C, LOGL_INFO, "sysmoBTSv2 L1IF compiled against API headers "
"v%u.%u.%u\n", SUPERFEMTO_API_VERSION >> 16,
(SUPERFEMTO_API_VERSION >> 8) & 0xff,
SUPERFEMTO_API_VERSION & 0xff);
#else
LOGP(DL1C, LOGL_INFO, "sysmoBTSv1 L1IF compiled against API headers "
"v%u.%u.%u\n", FEMTOBTS_API_VERSION >> 16,
(FEMTOBTS_API_VERSION >> 8) & 0xff,
FEMTOBTS_API_VERSION & 0xff);
#endif
fl1h = talloc_zero(pinst, struct femtol1_hdl);
if (!fl1h)
return NULL;
INIT_LLIST_HEAD(&fl1h->wlc_list);
fl1h->phy_inst = pinst;
fl1h->dsp_trace_f = pinst->u.sysmobts.dsp_trace_f;
fl1h->clk_src = pinst->u.sysmobts.clk_src;
fl1h->clk_cal = pinst->u.sysmobts.clk_cal;
clk_cal_use_eeprom(fl1h);
get_hwinfo_eeprom(fl1h);
#if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,1,0)
if (fl1h->hw_info.model_nr == 2050) {
/* On the sysmoBTS 2050, we don't have an OCXO but
* start with the TCXO and will sync it with the PPS
* of the GPS in case there is a fix. */
fl1h->clk_src = SuperFemto_ClkSrcId_Tcxo;
LOGP(DL1C, LOGL_INFO, "Clock source defaulting to GPS 1PPS "
"on sysmoBTS 2050\n");
} else {
/* default clock source: OCXO */
fl1h->clk_src = SuperFemto_ClkSrcId_Ocxo;
}
#else
fl1h->clk_src = SF_CLKSRC_OCXO;
#endif
rc = l1if_transport_open(MQ_SYS_WRITE, fl1h);
if (rc < 0) {
talloc_free(fl1h);
return NULL;
}
rc = l1if_transport_open(MQ_L1_WRITE, fl1h);
if (rc < 0) {
l1if_transport_close(MQ_SYS_WRITE, fl1h);
talloc_free(fl1h);
return NULL;
}
l1if_reset(fl1h);
return fl1h;
}
int l1if_close(struct femtol1_hdl *fl1h)
{
l1if_transport_close(MQ_L1_WRITE, fl1h);
l1if_transport_close(MQ_SYS_WRITE, fl1h);
return 0;
}
#ifdef HW_SYSMOBTS_V1
int l1if_rf_clock_info_reset(struct femtol1_hdl *fl1h)
{
LOGP(DL1C, LOGL_ERROR, "RfClock calibration not supported on v1 hw.\n");
return -ENOTSUP;
}
int l1if_rf_clock_info_correct(struct femtol1_hdl *fl1h)
{
LOGP(DL1C, LOGL_ERROR, "RfClock calibration not supported on v1 hw.\n");
return -ENOTSUP;
}
#else
static int clock_reset_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
msgb_free(resp);
return 0;
}
static int clock_setup_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
if (sysp->u.rfClockSetupCnf.status != GsmL1_Status_Success)
LOGP(DL1C, LOGL_ERROR, "Rx RfClockSetupConf failed with: %d\n",
sysp->u.rfClockSetupCnf.status);
msgb_free(resp);
return 0;
}
static int clock_correct_info_cb(struct gsm_bts_trx *trx, struct msgb *resp,
void *data)
{
struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx);
SuperFemto_Prim_t *sysp = msgb_sysprim(resp);
LOGP(DL1C, LOGL_NOTICE,
"RfClockInfo iClkCor=%d/clkSrc=%s Err=%d/ErrRes=%d/clkSrc=%s\n",
sysp->u.rfClockInfoCnf.rfTrx.iClkCor,
get_value_string(femtobts_clksrc_names,
sysp->u.rfClockInfoCnf.rfTrx.clkSrc),
sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErr,
sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErrRes,
get_value_string(femtobts_clksrc_names,
sysp->u.rfClockInfoCnf.rfTrxClkCal.clkSrc));
if (sysp->u.rfClockInfoCnf.rfTrx.clkSrc == SuperFemto_ClkSrcId_GpsPps) {
LOGP(DL1C, LOGL_ERROR,
"Calibrating GPS against GPS doesn not make sense.\n");
msgb_free(resp);
return -1;
}
if (sysp->u.rfClockInfoCnf.rfTrxClkCal.clkSrc == SuperFemto_ClkSrcId_None) {
LOGP(DL1C, LOGL_ERROR,
"No reference clock set. Please reset first.\n");
msgb_free(resp);
return -1;
}
if (sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErrRes == 0) {
LOGP(DL1C, LOGL_ERROR,
"Couldn't determine the clock difference.\n");
msgb_free(resp);
return -1;
}
fl1h->clk_cal = sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErr;
fl1h->phy_inst->u.sysmobts.clk_use_eeprom = 0;
msgb_free(resp);
/*
* Let's reset the counter and this will lead to applying the
* new calibration.
*/
l1if_rf_clock_info_reset(fl1h);
return 0;
}
int l1if_rf_clock_info_reset(struct femtol1_hdl *fl1h)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
/* Set GPS/PPS as reference */
sysp->id = SuperFemto_PrimId_RfClockSetupReq;
sysp->u.rfClockSetupReq.rfTrx.iClkCor = get_clk_cal(fl1h);
sysp->u.rfClockSetupReq.rfTrx.clkSrc = fl1h->clk_src;
sysp->u.rfClockSetupReq.rfTrxClkCal.clkSrc = SuperFemto_ClkSrcId_GpsPps;
l1if_req_compl(fl1h, msg, clock_setup_cb, NULL);
/* Reset the error counters */
msg = sysp_msgb_alloc();
sysp = msgb_sysprim(msg);
sysp->id = SuperFemto_PrimId_RfClockInfoReq;
sysp->u.rfClockInfoReq.u8RstClkCal = 1;
return l1if_req_compl(fl1h, msg, clock_reset_cb, NULL);
}
int l1if_rf_clock_info_correct(struct femtol1_hdl *fl1h)
{
struct msgb *msg = sysp_msgb_alloc();
SuperFemto_Prim_t *sysp = msgb_sysprim(msg);
sysp->id = SuperFemto_PrimId_RfClockInfoReq;
sysp->u.rfClockInfoReq.u8RstClkCal = 0;
return l1if_req_compl(fl1h, msg, clock_correct_info_cb, NULL);
}
#endif
int bts_model_phy_link_open(struct phy_link *plink)
{
struct phy_instance *pinst = phy_instance_by_num(plink, 0);
struct gsm_bts *bts;
OSMO_ASSERT(pinst);
phy_link_state_set(plink, PHY_LINK_CONNECTING);
pinst->u.sysmobts.hdl = l1if_open(pinst);
if (!pinst->u.sysmobts.hdl) {
LOGP(DL1C, LOGL_FATAL, "Cannot open L1 interface\n");
return -EIO;
}
bts = pinst->trx->bts;
if (pinst->trx == bts->c0) {
int rc;
rc = sysmobts_get_nominal_power(bts->c0);
if (rc < 0) {
LOGP(DL1C, LOGL_NOTICE, "Cannot determine nominal "
"transmit power. Assuming 23dBm.\n");
}
bts->c0->nominal_power = rc;
bts->c0->power_params.trx_p_max_out_mdBm = to_mdB(rc);
}
phy_link_state_set(plink, PHY_LINK_CONNECTED);
return 0;
}