osmo-bts/src/common/scheduler.c

1570 lines
47 KiB
C

/* Scheduler for OsmoBTS-TRX */
/* (C) 2013 by Andreas Eversberg <jolly@eversberg.eu>
* (C) 2015 by Alexander Chemeris <Alexander.Chemeris@fairwaves.co>
* (C) 2015 by Harald Welte <laforge@gnumonks.org>
* Contributions by sysmocom - s.f.m.c. GmbH
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <stdint.h>
#include <ctype.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/bits.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/rate_ctr.h>
#include <osmocom/core/stats.h>
#include <osmocom/gsm/protocol/gsm_08_58.h>
#include <osmocom/gsm/a5.h>
#include <osmo-bts/gsm_data.h>
#include <osmo-bts/logging.h>
#include <osmo-bts/rsl.h>
#include <osmo-bts/l1sap.h>
#include <osmo-bts/scheduler.h>
#include <osmo-bts/scheduler_backend.h>
#include <osmo-bts/bts.h>
extern void *tall_bts_ctx;
static int rts_data_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br);
static int rts_tchf_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br);
static int rts_tchh_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br);
/*! \brief Dummy Burst (TS 05.02 Chapter 5.2.6) */
const ubit_t _sched_dummy_burst[GSM_BURST_LEN] = {
0,0,0,
1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0,1,1,1,0,
0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0,
0,1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,
0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,1,1,0,1,0,0,1,1,1,1,1,0,0,0,1,
0,0,1,0,1,1,1,1,1,0,1,0,1,0,
0,0,0,
};
/*! Training Sequences for Normal Burst (see 3GPP TS 45.002, section 5.2.3) */
const ubit_t _sched_train_seq_gmsk_nb[4][8][26] = {
{ /* TSC set 1, table 5.2.3a */
{ 0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1 },
{ 0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1 },
{ 0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,0 },
{ 0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0 },
{ 0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1 },
{ 0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0 },
{ 1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1 },
{ 1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0 },
},
{ /* TSC set 2, table 5.2.3b */
{ 0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1 },
{ 0,1,0,1,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,1 },
{ 0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,0 },
{ 0,0,1,0,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0 },
{ 0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,1,1,1,1,1,0 },
{ 0,1,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,1,1,0,0,1,1 },
{ 0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,1,1,0,1,1,1,0,1,0,1 },
{ 0,1,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,1,0,1,0,0,1 },
},
{ /* TSC set 3, table 5.2.3c */
{ 1,1,0,0,0,0,1,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0,0,0,1,0 },
{ 0,0,1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0 },
{ 1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,0,1,1,0 },
{ 0,0,1,1,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,0,1,1,0,0 },
{ 0,0,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,1,0 },
{ 1,1,0,0,1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0 },
{ 1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0 },
{ 1,1,1,0,0,1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,0,0 },
},
{ /* TSC set 4, table 5.2.3d */
{ 1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0 },
{ 0,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,0,0,0 },
{ 1,1,1,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,0,0,0,0,0 },
{ 0,1,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0,0 },
{ 1,1,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0 },
{ 1,1,0,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,1,1,0,1,0,1,1,0 },
{ 0,0,1,0,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0 },
{ 0,1,0,1,1,1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,0 },
},
};
const ubit_t _sched_train_seq_8psk_nb[8][78] = {
{ 1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,
1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,
1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1, },
{ 1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,
1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,1,1,1,1,1,1,
1,1,0,0,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1, },
{ 1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,
1,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,1,0,
0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1, },
{ 1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,
1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,
0,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,1,1, },
{ 1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,
1,0,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,1, },
{ 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,
1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,
0,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1, },
{ 0,0,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,
1,0,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,
1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, },
{ 0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,1,
1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,
0,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,1,1,1,1,1, },
};
/*! \brief SCH training sequence (TS 05.02 Chapter 5.2.5) */
const ubit_t _sched_train_seq_gmsk_sb[64] = {
1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,
0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,1,0,1,1,
};
/* Logical channel (TRXC_*) description */
const struct trx_chan_desc trx_chan_desc[_TRX_CHAN_MAX] = {
[TRXC_IDLE] = {
.name = "IDLE",
.desc = "Idle channel",
},
[TRXC_FCCH] = {
.name = "FCCH", /* 3GPP TS 05.02, section 3.3.2.1 */
.desc = "Frequency correction channel",
/* Tx only, frequency correction bursts */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.dl_fn = tx_fcch_fn,
},
[TRXC_SCH] = {
.name = "SCH", /* 3GPP TS 05.02, section 3.3.2.2 */
.desc = "Synchronization channel",
/* Tx only, synchronization bursts */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.dl_fn = tx_sch_fn,
},
[TRXC_BCCH] = {
.name = "BCCH", /* 3GPP TS 05.02, section 3.3.2.3 */
.desc = "Broadcast control channel",
.chan_nr = RSL_CHAN_BCCH,
/* Tx only, xCCH convolutional coding (3GPP TS 05.03, section 4.4),
* regular interleaving (3GPP TS 05.02, clause 7, table 3):
* a L2 frame is interleaved over 4 consecutive bursts. */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
},
[TRXC_RACH] = {
.name = "RACH", /* 3GPP TS 05.02, section 3.3.3.1 */
.desc = "Random access channel",
.chan_nr = RSL_CHAN_RACH,
/* Rx only, RACH convolutional coding (3GPP TS 05.03, section 4.6). */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.ul_fn = rx_rach_fn,
},
[TRXC_CCCH] = {
.name = "CCCH", /* 3GPP TS 05.02, section 3.3.3.1 */
.desc = "Common control channel",
.chan_nr = RSL_CHAN_PCH_AGCH,
/* Tx only, xCCH convolutional coding (3GPP TS 05.03, section 4.4),
* regular interleaving (3GPP TS 05.02, clause 7, table 3):
* a L2 frame is interleaved over 4 consecutive bursts. */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
},
[TRXC_TCHF] = {
.name = "TCH/F", /* 3GPP TS 05.02, section 3.2 */
.desc = "Full Rate traffic channel",
.chan_nr = RSL_CHAN_Bm_ACCHs,
.link_id = LID_DEDIC,
/* Rx and Tx, multiple convolutional coding types (3GPP TS 05.03,
* chapter 3), block diagonal interleaving (3GPP TS 05.02, clause 7):
*
* - a traffic frame is interleaved over 8 consecutive bursts
* using the even numbered bits of the first 4 bursts
* and odd numbered bits of the last 4 bursts;
* - a FACCH/F frame 'steals' (replaces) one traffic frame,
* interleaving is done in the same way. */
.rts_fn = rts_tchf_fn,
.dl_fn = tx_tchf_fn,
.ul_fn = rx_tchf_fn,
},
[TRXC_TCHH_0] = {
.name = "TCH/H(0)", /* 3GPP TS 05.02, section 3.2 */
.desc = "Half Rate traffic channel (sub-channel 0)",
.chan_nr = RSL_CHAN_Lm_ACCHs + (0 << 3),
.link_id = LID_DEDIC,
/* Rx and Tx, multiple convolutional coding types (3GPP TS 05.03,
* chapter 3), block diagonal interleaving (3GPP TS 05.02, clause 7):
*
* - a traffic frame is interleaved over 4 consecutive bursts
* using the even numbered bits of the first 2 bursts,
* and odd numbered bits of the last 2 bursts;
* - a FACCH/H frame 'steals' (replaces) two traffic frames,
* interleaving is done over 6 consecutive bursts,
* using the even numbered bits of the first 2 bursts,
* all bits of the middle two 2 bursts,
* and odd numbered bits of the last 2 bursts. */
.rts_fn = rts_tchh_fn,
.dl_fn = tx_tchh_fn,
.ul_fn = rx_tchh_fn,
},
[TRXC_TCHH_1] = {
.name = "TCH/H(1)", /* 3GPP TS 05.02, section 3.2 */
.desc = "Half Rate traffic channel (sub-channel 1)",
.chan_nr = RSL_CHAN_Lm_ACCHs + (1 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_TCHH_0, see above. */
.rts_fn = rts_tchh_fn,
.dl_fn = tx_tchh_fn,
.ul_fn = rx_tchh_fn,
},
[TRXC_SDCCH4_0] = {
.name = "SDCCH/4(0)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 0)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (0 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH4_1] = {
.name = "SDCCH/4(1)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 1)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (1 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH4_2] = {
.name = "SDCCH/4(2)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 2)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (2 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH4_3] = {
.name = "SDCCH/4(3)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 3)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (3 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_0] = {
.name = "SDCCH/8(0)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 0)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (0 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_1] = {
.name = "SDCCH/8(1)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 1)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (1 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_2] = {
.name = "SDCCH/8(2)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 2)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (2 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_3] = {
.name = "SDCCH/8(3)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 3)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (3 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_4] = {
.name = "SDCCH/8(4)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 4)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (4 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_5] = {
.name = "SDCCH/8(5)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 5)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (5 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_6] = {
.name = "SDCCH/8(6)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 6)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (6 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SDCCH8_7] = {
.name = "SDCCH/8(7)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Stand-alone dedicated control channel (sub-channel 7)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (7 << 3),
.link_id = LID_DEDIC,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCHTF] = {
.name = "SACCH/TF", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow TCH/F associated control channel",
.chan_nr = RSL_CHAN_Bm_ACCHs,
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCHTH_0] = {
.name = "SACCH/TH(0)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow TCH/H associated control channel (sub-channel 0)",
.chan_nr = RSL_CHAN_Lm_ACCHs + (0 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCHTH_1] = {
.name = "SACCH/TH(1)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow TCH/H associated control channel (sub-channel 1)",
.chan_nr = RSL_CHAN_Lm_ACCHs + (1 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH4_0] = {
.name = "SACCH/4(0)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/4 associated control channel (sub-channel 0)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (0 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH4_1] = {
.name = "SACCH/4(1)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/4 associated control channel (sub-channel 1)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (1 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH4_2] = {
.name = "SACCH/4(2)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/4 associated control channel (sub-channel 2)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (2 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH4_3] = {
.name = "SACCH/4(3)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/4 associated control channel (sub-channel 3)",
.chan_nr = RSL_CHAN_SDCCH4_ACCH + (3 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH4_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_0] = {
.name = "SACCH/8(0)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 0)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (0 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_1] = {
.name = "SACCH/8(1)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 1)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (1 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_2] = {
.name = "SACCH/8(2)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 2)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (2 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_3] = {
.name = "SACCH/8(3)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 3)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (3 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_4] = {
.name = "SACCH/8(4)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 4)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (4 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_5] = {
.name = "SACCH/8(5)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 5)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (5 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_6] = {
.name = "SACCH/8(6)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 6)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (6 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_SACCH8_7] = {
.name = "SACCH/8(7)", /* 3GPP TS 05.02, section 3.3.4.1 */
.desc = "Slow SDCCH/8 associated control channel (sub-channel 7)",
.chan_nr = RSL_CHAN_SDCCH8_ACCH + (7 << 3),
.link_id = LID_SACCH,
/* Same as for TRXC_BCCH and TRXC_SDCCH8_* (xCCH), see above. */
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
.ul_fn = rx_data_fn,
},
[TRXC_PDTCH] = {
.name = "PDTCH", /* 3GPP TS 05.02, sections 3.2.4, 3.3.2.4 */
.desc = "Packet data traffic & control channel",
.chan_nr = RSL_CHAN_OSMO_PDCH,
/* Rx and Tx, multiple coding schemes: CS-2..4 and MCS-1..9 (3GPP TS
* 05.03, chapter 5), regular interleaving as specified for xCCH.
* NOTE: the burst buffer is three times bigger because the
* payload of EDGE bursts is three times longer. */
.rts_fn = rts_data_fn,
.dl_fn = tx_pdtch_fn,
.ul_fn = rx_pdtch_fn,
},
[TRXC_PTCCH] = {
.name = "PTCCH", /* 3GPP TS 05.02, section 3.3.4.2 */
.desc = "Packet Timing advance control channel",
.chan_nr = RSL_CHAN_OSMO_PDCH,
/* On the Uplink, mobile stations transmit random Access Bursts
* to allow estimation of the timing advance for one MS in packet
* transfer mode. On Downlink, the network sends timing advance
* updates for several mobile stations. The coding scheme used
* for PTCCH/D messages is the same as for PDTCH CS-1. */
.rts_fn = rts_data_fn,
.dl_fn = tx_pdtch_fn,
.ul_fn = rx_rach_fn,
},
[TRXC_CBCH] = {
/* TODO: distinguish CBCH on SDCCH/4 and SDCCH/8 */
.name = "CBCH", /* 3GPP TS 05.02, section 3.3.5 */
.desc = "Cell Broadcast channel",
.chan_nr = RSL_CHAN_OSMO_CBCH4,
/* Tx only, same as for TRXC_BCCH (xCCH), see above. */
.flags = TRX_CHAN_FLAG_AUTO_ACTIVE,
.rts_fn = rts_data_fn,
.dl_fn = tx_data_fn,
},
};
enum {
L1SCHED_TS_CTR_DL_LATE,
L1SCHED_TS_CTR_DL_NOT_FOUND,
};
static const struct rate_ctr_desc l1sched_ts_ctr_desc[] = {
[L1SCHED_TS_CTR_DL_LATE] = {"l1sched_ts:dl_late", "Downlink frames arrived too late to submit to lower layers"},
[L1SCHED_TS_CTR_DL_NOT_FOUND] = {"l1sched_ts:dl_not_found", "Downlink frames not found while scheduling"},
};
static const struct rate_ctr_group_desc l1sched_ts_ctrg_desc = {
"l1sched_ts",
"L1 scheduler timeslot",
OSMO_STATS_CLASS_GLOBAL,
ARRAY_SIZE(l1sched_ts_ctr_desc),
l1sched_ts_ctr_desc
};
/*
* init / exit
*/
static void trx_sched_init_ts(struct gsm_bts_trx_ts *ts,
const unsigned int rate_ctr_idx)
{
struct l1sched_ts *l1ts;
unsigned int i;
char name[128];
l1ts = talloc_zero(ts->trx, struct l1sched_ts);
OSMO_ASSERT(l1ts != NULL);
/* Link both structures */
ts->priv = l1ts;
l1ts->ts = ts;
l1ts->ctrs = rate_ctr_group_alloc(ts->trx,
&l1sched_ts_ctrg_desc,
rate_ctr_idx);
snprintf(name, sizeof(name), "bts%u-trx%u-ts%u%s",
ts->trx->bts->nr, ts->trx->nr, ts->nr,
ts->vamos.is_shadow ? "-shadow" : "");
rate_ctr_group_set_name(l1ts->ctrs, name);
INIT_LLIST_HEAD(&l1ts->dl_prims);
for (i = 0; i < ARRAY_SIZE(l1ts->chan_state); i++) {
struct l1sched_chan_state *chan_state;
chan_state = &l1ts->chan_state[i];
chan_state->active = false;
}
}
void trx_sched_init(struct gsm_bts_trx *trx)
{
unsigned int tn;
OSMO_ASSERT(trx != NULL);
LOGPTRX(trx, DL1C, LOGL_DEBUG, "Init scheduler structures\n");
/* Allocate shadow timeslots */
gsm_bts_trx_init_shadow_ts(trx);
for (tn = 0; tn < ARRAY_SIZE(trx->ts); tn++) {
unsigned int rate_ctr_idx = trx->nr * 100 + tn;
struct gsm_bts_trx_ts *ts = &trx->ts[tn];
/* Init primary and shadow timeslots */
trx_sched_init_ts(ts, rate_ctr_idx);
trx_sched_init_ts(ts->vamos.peer, rate_ctr_idx + 10);
}
}
static void trx_sched_clean_ts(struct gsm_bts_trx_ts *ts)
{
struct l1sched_ts *l1ts = ts->priv;
unsigned int i;
msgb_queue_free(&l1ts->dl_prims);
rate_ctr_group_free(l1ts->ctrs);
l1ts->ctrs = NULL;
/* clear lchan channel states */
for (i = 0; i < ARRAY_SIZE(ts->lchan); i++)
lchan_set_state(&ts->lchan[i], LCHAN_S_NONE);
talloc_free(l1ts);
ts->priv = NULL;
}
void trx_sched_clean(struct gsm_bts_trx *trx)
{
unsigned int tn;
LOGPTRX(trx, DL1C, LOGL_DEBUG, "Clean scheduler structures\n");
for (tn = 0; tn < ARRAY_SIZE(trx->ts); tn++) {
struct gsm_bts_trx_ts *ts = &trx->ts[tn];
/* Clean primary and shadow timeslots */
trx_sched_clean_ts(ts);
trx_sched_clean_ts(ts->vamos.peer);
}
/* Free previously allocated shadow timeslots */
gsm_bts_trx_free_shadow_ts(trx);
}
struct msgb *_sched_dequeue_prim(struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br)
{
struct msgb *msg, *msg2;
uint32_t prim_fn, l1sap_fn;
uint8_t chan_nr, link_id;
/* get prim of current fn from queue */
llist_for_each_entry_safe(msg, msg2, &l1ts->dl_prims, list) {
struct osmo_phsap_prim *l1sap = msgb_l1sap_prim(msg);
switch (l1sap->oph.primitive) {
case PRIM_PH_DATA:
chan_nr = l1sap->u.data.chan_nr;
link_id = l1sap->u.data.link_id;
l1sap_fn = l1sap->u.data.fn;
break;
case PRIM_TCH:
chan_nr = l1sap->u.tch.chan_nr;
link_id = 0;
l1sap_fn = l1sap->u.tch.fn;
break;
default:
LOGL1SB(DL1P, LOGL_ERROR, l1ts, br, "Prim has wrong type.\n");
goto free_msg;
}
prim_fn = GSM_TDMA_FN_SUB(l1sap_fn, br->fn);
if (prim_fn > 100) { /* l1sap_fn < fn */
LOGL1SB(DL1P, LOGL_NOTICE, l1ts, br,
"Prim %u is out of range (%u vs exp %u), or channel %s with "
"type %s is already disabled. If this happens in "
"conjunction with PCU, increase 'rts-advance' by 5.\n",
prim_fn, l1sap_fn, br->fn,
get_lchan_by_chan_nr(l1ts->ts->trx, chan_nr)->name,
trx_chan_desc[br->chan].name);
rate_ctr_inc2(l1ts->ctrs, L1SCHED_TS_CTR_DL_LATE);
/* unlink and free message */
llist_del(&msg->list);
msgb_free(msg);
continue;
}
if (prim_fn > 0) /* l1sap_fn > fn */
break;
/* l1sap_fn == fn */
if ((chan_nr ^ (trx_chan_desc[br->chan].chan_nr | br->tn))
|| ((link_id & 0xc0) ^ trx_chan_desc[br->chan].link_id)) {
LOGL1SB(DL1P, LOGL_ERROR, l1ts, br, "Prim has wrong chan_nr=0x%02x link_id=%02x, "
"expecting chan_nr=0x%02x link_id=%02x.\n", chan_nr, link_id,
trx_chan_desc[br->chan].chan_nr | br->tn, trx_chan_desc[br->chan].link_id);
goto free_msg;
}
/* unlink and return message */
llist_del(&msg->list);
return msg;
}
/* Queue was traversed with no candidate, no prim is available for current FN: */
rate_ctr_inc2(l1ts->ctrs, L1SCHED_TS_CTR_DL_NOT_FOUND);
return NULL;
free_msg:
/* unlink and free message */
llist_del(&msg->list);
msgb_free(msg);
return NULL;
}
int _sched_compose_ph_data_ind(struct l1sched_ts *l1ts, uint32_t fn,
enum trx_chan_type chan, uint8_t *l2,
uint8_t l2_len, float rssi,
int16_t ta_offs_256bits, int16_t link_qual_cb,
uint16_t ber10k,
enum osmo_ph_pres_info_type presence_info)
{
struct msgb *msg;
struct osmo_phsap_prim *l1sap;
uint8_t chan_nr = trx_chan_desc[chan].chan_nr | l1ts->ts->nr;
/* VAMOS: use Osmocom specific channel number */
if (l1ts->ts->vamos.is_shadow)
chan_nr |= RSL_CHAN_OSMO_VAMOS_MASK;
/* compose primitive */
msg = l1sap_msgb_alloc(l2_len);
l1sap = msgb_l1sap_prim(msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_DATA,
PRIM_OP_INDICATION, msg);
l1sap->u.data.chan_nr = chan_nr;
l1sap->u.data.link_id = trx_chan_desc[chan].link_id;
l1sap->u.data.fn = fn;
l1sap->u.data.rssi = (int8_t) (rssi);
l1sap->u.data.ber10k = ber10k;
l1sap->u.data.ta_offs_256bits = ta_offs_256bits;
l1sap->u.data.lqual_cb = link_qual_cb;
l1sap->u.data.pdch_presence_info = presence_info;
msg->l2h = msgb_put(msg, l2_len);
if (l2_len)
memcpy(msg->l2h, l2, l2_len);
/* forward primitive */
l1sap_up(l1ts->ts->trx, l1sap);
return 0;
}
int _sched_compose_tch_ind(struct l1sched_ts *l1ts, uint32_t fn,
enum trx_chan_type chan, uint8_t *tch, uint8_t tch_len,
int16_t ta_offs_256bits, uint16_t ber10k, float rssi,
int16_t link_qual_cb, uint8_t is_sub)
{
struct msgb *msg;
struct osmo_phsap_prim *l1sap;
uint8_t chan_nr = trx_chan_desc[chan].chan_nr | l1ts->ts->nr;
struct gsm_lchan *lchan = &l1ts->ts->lchan[l1sap_chan2ss(chan_nr)];
/* VAMOS: use Osmocom specific channel number */
if (l1ts->ts->vamos.is_shadow)
chan_nr |= RSL_CHAN_OSMO_VAMOS_MASK;
/* compose primitive */
msg = l1sap_msgb_alloc(tch_len);
l1sap = msgb_l1sap_prim(msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_TCH,
PRIM_OP_INDICATION, msg);
l1sap->u.tch.chan_nr = chan_nr;
l1sap->u.tch.fn = fn;
l1sap->u.tch.rssi = (int8_t) (rssi);
l1sap->u.tch.ber10k = ber10k;
l1sap->u.tch.ta_offs_256bits = ta_offs_256bits;
l1sap->u.tch.lqual_cb = link_qual_cb;
l1sap->u.tch.is_sub = is_sub & 1;
msg->l2h = msgb_put(msg, tch_len);
if (tch_len)
memcpy(msg->l2h, tch, tch_len);
LOGL1S(DL1P, LOGL_DEBUG, l1ts, chan, l1sap->u.data.fn, "%s Rx -> RTP: %s\n",
gsm_lchan_name(lchan), osmo_hexdump(msgb_l2(msg), msgb_l2len(msg)));
/* forward primitive */
l1sap_up(l1ts->ts->trx, l1sap);
return 0;
}
/*
* data request (from upper layer)
*/
int trx_sched_ph_data_req(struct gsm_bts_trx *trx, struct osmo_phsap_prim *l1sap)
{
uint8_t tn = L1SAP_CHAN2TS(l1sap->u.data.chan_nr);
struct l1sched_ts *l1ts = trx->ts[tn].priv;
LOGL1S(DL1P, LOGL_DEBUG, l1ts, -1, l1sap->u.data.fn,
"PH-DATA.req: chan_nr=0x%02x link_id=0x%02x\n",
l1sap->u.data.chan_nr, l1sap->u.data.link_id);
/* ignore empty frame */
if (!l1sap->oph.msg->l2h || msgb_l2len(l1sap->oph.msg) == 0) {
msgb_free(l1sap->oph.msg);
return 0;
}
/* VAMOS: convert Osmocom specific channel number to a generic one */
if (trx->ts[tn].vamos.is_shadow)
l1sap->u.data.chan_nr &= ~RSL_CHAN_OSMO_VAMOS_MASK;
msgb_enqueue(&l1ts->dl_prims, l1sap->oph.msg);
return 0;
}
int trx_sched_tch_req(struct gsm_bts_trx *trx, struct osmo_phsap_prim *l1sap)
{
uint8_t tn = L1SAP_CHAN2TS(l1sap->u.tch.chan_nr);
struct l1sched_ts *l1ts = trx->ts[tn].priv;
LOGL1S(DL1P, LOGL_DEBUG, l1ts, -1, l1sap->u.tch.fn,
"TCH.req: chan_nr=0x%02x\n", l1sap->u.tch.chan_nr);
/* ignore empty frame */
if (!msgb_l2len(l1sap->oph.msg)) {
msgb_free(l1sap->oph.msg);
return 0;
}
/* VAMOS: convert Osmocom specific channel number to a generic one */
if (trx->ts[tn].vamos.is_shadow)
l1sap->u.tch.chan_nr &= ~RSL_CHAN_OSMO_VAMOS_MASK;
msgb_enqueue(&l1ts->dl_prims, l1sap->oph.msg);
return 0;
}
/*
* ready-to-send indication (to upper layer)
*/
/* RTS for data frame */
static int rts_data_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br)
{
uint8_t chan_nr, link_id;
struct msgb *msg;
struct osmo_phsap_prim *l1sap;
/* get data for RTS indication */
chan_nr = trx_chan_desc[br->chan].chan_nr | br->tn;
link_id = trx_chan_desc[br->chan].link_id;
/* VAMOS: use Osmocom specific channel number */
if (l1ts->ts->vamos.is_shadow)
chan_nr |= RSL_CHAN_OSMO_VAMOS_MASK;
/* For handover detection, there are cases where the SACCH should remain inactive until the first RACH
* indicating the TA is received. */
if (L1SAP_IS_LINK_SACCH(link_id)
&& !l1ts->chan_state[br->chan].lchan->want_dl_sacch_active)
return 0;
LOGL1SB(DL1P, LOGL_DEBUG, l1ts, br, "PH-RTS.ind: chan_nr=0x%02x link_id=0x%02x\n", chan_nr, link_id);
/* generate prim */
msg = l1sap_msgb_alloc(200);
if (!msg)
return -ENOMEM;
l1sap = msgb_l1sap_prim(msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RTS,
PRIM_OP_INDICATION, msg);
l1sap->u.data.chan_nr = chan_nr;
l1sap->u.data.link_id = link_id;
l1sap->u.data.fn = br->fn;
return l1sap_up(l1ts->ts->trx, l1sap);
}
static int rts_tch_common(const struct l1sched_ts *l1ts,
const struct trx_dl_burst_req *br,
bool facch)
{
uint8_t chan_nr, link_id;
struct msgb *msg;
struct osmo_phsap_prim *l1sap;
int rc = 0;
/* get data for RTS indication */
chan_nr = trx_chan_desc[br->chan].chan_nr | br->tn;
link_id = trx_chan_desc[br->chan].link_id;
/* VAMOS: use Osmocom specific channel number */
if (l1ts->ts->vamos.is_shadow)
chan_nr |= RSL_CHAN_OSMO_VAMOS_MASK;
LOGL1SB(DL1P, LOGL_DEBUG, l1ts, br, "TCH RTS.ind: chan_nr=0x%02x\n", chan_nr);
/* only send, if FACCH is selected */
if (facch) {
/* generate prim */
msg = l1sap_msgb_alloc(200);
if (!msg)
return -ENOMEM;
l1sap = msgb_l1sap_prim(msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RTS,
PRIM_OP_INDICATION, msg);
l1sap->u.data.chan_nr = chan_nr;
l1sap->u.data.link_id = link_id;
l1sap->u.data.fn = br->fn;
rc = l1sap_up(l1ts->ts->trx, l1sap);
}
/* don't send, if TCH is in signalling only mode */
if (l1ts->chan_state[br->chan].rsl_cmode != RSL_CMOD_SPD_SIGN) {
/* generate prim */
msg = l1sap_msgb_alloc(200);
if (!msg)
return -ENOMEM;
l1sap = msgb_l1sap_prim(msg);
osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_TCH_RTS,
PRIM_OP_INDICATION, msg);
l1sap->u.tch.chan_nr = chan_nr;
l1sap->u.tch.fn = br->fn;
return l1sap_up(l1ts->ts->trx, l1sap);
}
return rc;
}
/* RTS for full rate traffic frame */
static int rts_tchf_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br)
{
/* TCH/F may include FACCH on every 4th burst */
return rts_tch_common(l1ts, br, true);
}
/* FACCH/H channel mapping for Downlink (see 3GPP TS 45.002, table 1).
* This mapping is valid for both FACCH/H(0) and FACCH/H(1). */
const uint8_t sched_tchh_dl_facch_map[26] = {
[4] = 1, /* FACCH/H(0): B0(4,6,8,10,13,15) */
[5] = 1, /* FACCH/H(1): B0(5,7,9,11,14,16) */
[13] = 1, /* FACCH/H(0): B1(13,15,17,19,21,23) */
[14] = 1, /* FACCH/H(1): B1(14,16,18,20,22,24) */
[21] = 1, /* FACCH/H(0): B2(21,23,0,2,4,6) */
[22] = 1, /* FACCH/H(1): B2(22,24,1,3,5,7) */
};
/* RTS for half rate traffic frame */
static int rts_tchh_fn(const struct l1sched_ts *l1ts, const struct trx_dl_burst_req *br)
{
return rts_tch_common(l1ts, br, sched_tchh_dl_facch_map[br->fn % 26]);
}
/* set multiframe scheduler to given pchan */
int trx_sched_set_pchan(struct gsm_bts_trx_ts *ts, enum gsm_phys_chan_config pchan)
{
struct l1sched_ts *l1ts = ts->priv;
int i = find_sched_mframe_idx(pchan, ts->nr);
if (i < 0) {
LOGP(DL1C, LOGL_NOTICE, "%s Failed to configure multiframe (pchan=0x%02x)\n",
gsm_ts_name(ts), pchan);
return -ENOTSUP;
}
l1ts->mf_index = i;
l1ts->mf_period = trx_sched_multiframes[i].period;
l1ts->mf_frames = trx_sched_multiframes[i].frames;
if (ts->vamos.peer != NULL) {
l1ts = ts->vamos.peer->priv;
l1ts->mf_index = i;
l1ts->mf_period = trx_sched_multiframes[i].period;
l1ts->mf_frames = trx_sched_multiframes[i].frames;
}
LOGP(DL1C, LOGL_NOTICE, "%s Configured multiframe with '%s'\n",
gsm_ts_name(ts), trx_sched_multiframes[i].name);
return 0;
}
/* Remove all matching (by chan_nr & link_id) primitives from the given queue */
static void trx_sched_queue_filter(struct llist_head *q, uint8_t chan_nr, uint8_t link_id)
{
struct msgb *msg, *_msg;
llist_for_each_entry_safe(msg, _msg, q, list) {
struct osmo_phsap_prim *l1sap = msgb_l1sap_prim(msg);
switch (l1sap->oph.primitive) {
case PRIM_PH_DATA:
if (l1sap->u.data.chan_nr != chan_nr)
continue;
if (l1sap->u.data.link_id != link_id)
continue;
break;
case PRIM_TCH:
if (l1sap->u.tch.chan_nr != chan_nr)
continue;
if (link_id != 0x00)
continue;
break;
default:
/* Shall not happen */
OSMO_ASSERT(0);
}
/* Unlink and free() */
llist_del(&msg->list);
talloc_free(msg);
}
}
/* setting all logical channels given attributes to active/inactive */
int trx_sched_set_lchan(struct gsm_lchan *lchan, uint8_t chan_nr, uint8_t link_id, bool active)
{
struct l1sched_ts *l1ts = lchan->ts->priv;
uint8_t tn = L1SAP_CHAN2TS(chan_nr);
uint8_t ss = l1sap_chan2ss(chan_nr);
bool found = false;
int i;
if (!l1ts) {
LOGPLCHAN(lchan, DL1C, LOGL_ERROR, "%s lchan with uninitialized scheduler structure\n",
(active) ? "Activating" : "Deactivating");
return -EINVAL;
}
/* VAMOS: convert Osmocom specific channel number to a generic one,
* otherwise we won't match anything in trx_chan_desc[]. */
if (lchan->ts->vamos.is_shadow)
chan_nr &= ~RSL_CHAN_OSMO_VAMOS_MASK;
/* look for all matching chan_nr/link_id */
for (i = 0; i < _TRX_CHAN_MAX; i++) {
struct l1sched_chan_state *chan_state = &l1ts->chan_state[i];
if (trx_chan_desc[i].chan_nr != (chan_nr & RSL_CHAN_NR_MASK))
continue;
if (trx_chan_desc[i].link_id != link_id)
continue;
if (chan_state->active == active)
continue;
found = true;
LOGPLCHAN(lchan, DL1C, LOGL_INFO, "%s %s\n",
(active) ? "Activating" : "Deactivating",
trx_chan_desc[i].name);
/* free burst memory, to cleanly start with burst 0 */
if (chan_state->dl_bursts) {
talloc_free(chan_state->dl_bursts);
chan_state->dl_bursts = NULL;
}
if (chan_state->ul_bursts) {
talloc_free(chan_state->ul_bursts);
chan_state->ul_bursts = NULL;
}
if (chan_state->ul_bursts_prev) {
talloc_free(chan_state->ul_bursts_prev);
chan_state->ul_bursts_prev = NULL;
}
if (active) {
/* Clean up everything */
memset(chan_state, 0, sizeof(*chan_state));
/* Bind to generic 'struct gsm_lchan' */
chan_state->lchan = lchan;
} else {
chan_state->ho_rach_detect = 0;
/* Remove pending Tx prims belonging to this lchan */
trx_sched_queue_filter(&l1ts->dl_prims, chan_nr, link_id);
}
chan_state->active = active;
}
/* disable handover detection (on deactivation) */
if (!active)
_sched_act_rach_det(lchan->ts->trx, tn, ss, 0);
return found ? 0 : -EINVAL;
}
/* setting all logical channels given attributes to active/inactive */
int trx_sched_set_mode(struct gsm_bts_trx_ts *ts, uint8_t chan_nr, uint8_t rsl_cmode,
uint8_t tch_mode, int codecs, uint8_t codec0, uint8_t codec1,
uint8_t codec2, uint8_t codec3, uint8_t initial_id, uint8_t handover)
{
struct l1sched_ts *l1ts = ts->priv;
uint8_t tn = L1SAP_CHAN2TS(chan_nr);
uint8_t ss = l1sap_chan2ss(chan_nr);
int i;
int rc = -EINVAL;
/* no mode for PDCH */
if (ts->pchan == GSM_PCHAN_PDCH)
return 0;
/* VAMOS: convert Osmocom specific channel number to a generic one,
* otherwise we won't match anything in trx_chan_desc[]. */
if (ts->vamos.is_shadow)
chan_nr &= ~RSL_CHAN_OSMO_VAMOS_MASK;
/* look for all matching chan_nr/link_id */
for (i = 0; i < _TRX_CHAN_MAX; i++) {
if (trx_chan_desc[i].chan_nr == (chan_nr & 0xf8)
&& trx_chan_desc[i].link_id == 0x00) {
struct l1sched_chan_state *chan_state = &l1ts->chan_state[i];
LOGP(DL1C, LOGL_INFO,
"%s Set mode for %s (rsl_cmode=%u, tch_mode=%u, handover=%u)\n",
gsm_ts_name(ts), trx_chan_desc[i].name,
rsl_cmode, tch_mode, handover);
chan_state->rsl_cmode = rsl_cmode;
chan_state->tch_mode = tch_mode;
chan_state->ho_rach_detect = handover;
if (rsl_cmode == RSL_CMOD_SPD_SPEECH
&& tch_mode == GSM48_CMODE_SPEECH_AMR) {
chan_state->codecs = codecs;
chan_state->codec[0] = codec0;
chan_state->codec[1] = codec1;
chan_state->codec[2] = codec2;
chan_state->codec[3] = codec3;
chan_state->ul_ft = initial_id;
chan_state->dl_ft = initial_id;
chan_state->ul_cmr = initial_id;
chan_state->dl_cmr = initial_id;
chan_state->lqual_cb_sum = 0;
chan_state->lqual_cb_num = 0;
}
rc = 0;
}
}
/* command rach detection
* always enable handover, even if state is still set (due to loss
* of transceiver link).
* disable handover, if state is still set, since we might not know
* the actual state of transceiver (due to loss of link) */
_sched_act_rach_det(ts->trx, tn, ss, handover);
return rc;
}
/* setting cipher on logical channels */
int trx_sched_set_cipher(struct gsm_lchan *lchan, uint8_t chan_nr, bool downlink)
{
int algo = lchan->encr.alg_id - 1;
int i, rc = -EINVAL;
/* no cipher for PDCH */
if (ts_pchan(lchan->ts) == GSM_PCHAN_PDCH)
return 0;
/* VAMOS: convert Osmocom specific channel number to a generic one,
* otherwise we won't match anything in trx_chan_desc[]. */
if (lchan->ts->vamos.is_shadow)
chan_nr &= ~RSL_CHAN_OSMO_VAMOS_MASK;
/* no algorithm given means a5/0 */
if (algo <= 0)
algo = 0;
else if (lchan->encr.key_len != 8 && lchan->encr.key_len != 16) {
LOGPLCHAN(lchan, DL1C, LOGL_ERROR,
"Algo A5/%d not supported with given key_len=%u\n",
algo, lchan->encr.key_len);
return -ENOTSUP;
}
/* look for all matching chan_nr */
for (i = 0; i < _TRX_CHAN_MAX; i++) {
if (trx_chan_desc[i].chan_nr == (chan_nr & RSL_CHAN_NR_MASK)) {
struct l1sched_ts *l1ts = lchan->ts->priv;
struct l1sched_chan_state *l1cs = &l1ts->chan_state[i];
LOGPLCHAN(lchan, DL1C, LOGL_INFO, "Set A5/%d %s for %s\n",
algo, (downlink) ? "downlink" : "uplink",
trx_chan_desc[i].name);
if (downlink) {
l1cs->dl_encr_algo = algo;
memcpy(l1cs->dl_encr_key, lchan->encr.key, lchan->encr.key_len);
l1cs->dl_encr_key_len = lchan->encr.key_len;
} else {
l1cs->ul_encr_algo = algo;
memcpy(l1cs->ul_encr_key, lchan->encr.key, lchan->encr.key_len);
l1cs->ul_encr_key_len = lchan->encr.key_len;
}
rc = 0;
}
}
return rc;
}
/* process ready-to-send */
int _sched_rts(const struct l1sched_ts *l1ts, uint32_t fn)
{
const struct trx_sched_frame *frame;
uint8_t offset, period, bid;
trx_sched_rts_func *func;
enum trx_chan_type chan;
/* no multiframe set */
if (!l1ts->mf_index)
return 0;
/* get frame from multiframe */
period = l1ts->mf_period;
offset = fn % period;
frame = l1ts->mf_frames + offset;
chan = frame->dl_chan;
bid = frame->dl_bid;
func = trx_chan_desc[frame->dl_chan].rts_fn;
/* only on bid == 0 */
if (bid != 0)
return 0;
/* no RTS function */
if (!func)
return 0;
/* check if channel is active */
if (!TRX_CHAN_IS_ACTIVE(&l1ts->chan_state[chan], chan))
return -EINVAL;
/* There is no burst, just for logging */
struct trx_dl_burst_req dbr = {
.fn = fn,
.tn = l1ts->ts->nr,
.bid = bid,
.chan = chan,
};
return func(l1ts, &dbr);
}
static void trx_sched_apply_att(const struct gsm_lchan *lchan,
struct trx_dl_burst_req *br)
{
const struct trx_chan_desc *desc = &trx_chan_desc[br->chan];
/* Current BS power reduction value in dB */
br->att = lchan->bs_power_ctrl.current;
/* Temporary Overpower for SACCH/FACCH bursts */
if (!lchan->top_acch_active)
return;
if ((lchan->top_acch_cap.sacch_enable && desc->link_id == LID_SACCH) ||
(lchan->top_acch_cap.facch_enable && br->flags & TRX_BR_F_FACCH)) {
if (br->att > lchan->top_acch_cap.overpower_db)
br->att -= lchan->top_acch_cap.overpower_db;
else
br->att = 0;
}
}
/* process downlink burst */
void _sched_dl_burst(struct l1sched_ts *l1ts, struct trx_dl_burst_req *br)
{
const struct l1sched_chan_state *l1cs;
const struct trx_sched_frame *frame;
uint8_t offset, period;
trx_sched_dl_func *func;
if (!l1ts->mf_index)
return;
/* get frame from multiframe */
period = l1ts->mf_period;
offset = br->fn % period;
frame = l1ts->mf_frames + offset;
br->chan = frame->dl_chan;
br->bid = frame->dl_bid;
func = trx_chan_desc[br->chan].dl_fn;
l1cs = &l1ts->chan_state[br->chan];
/* check if channel is active */
if (!TRX_CHAN_IS_ACTIVE(l1cs, br->chan))
return;
/* Training Sequence Code and Set */
br->tsc_set = l1ts->ts->tsc_set;
br->tsc = l1ts->ts->tsc;
/* get burst from function */
if (func(l1ts, br) != 0)
return;
/* Modulation is indicated by func() */
br->mod = l1cs->dl_mod_type;
/* BS Power reduction (in dB) per logical channel */
if (l1cs->lchan != NULL)
trx_sched_apply_att(l1cs->lchan, br);
/* encrypt */
if (br->burst_len && l1cs->dl_encr_algo) {
ubit_t ks[114];
int i;
osmo_a5(l1cs->dl_encr_algo, l1cs->dl_encr_key, br->fn, ks, NULL);
for (i = 0; i < 57; i++) {
br->burst[i + 3] ^= ks[i];
br->burst[i + 88] ^= ks[i + 57];
}
}
}
static int trx_sched_calc_frame_loss(struct l1sched_ts *l1ts,
struct l1sched_chan_state *l1cs,
const struct trx_ul_burst_ind *bi)
{
const struct trx_sched_frame *frame;
uint32_t elapsed_fs;
uint8_t offset, i;
uint32_t fn_i;
/**
* When a channel is just activated, the MS needs some time
* to synchronize and start burst transmission,
* so let's wait until the first UL burst...
*/
if (l1cs->proc_tdma_fs == 0)
return 0;
/* Not applicable for some logical channels */
switch (bi->chan) {
case TRXC_IDLE:
case TRXC_RACH:
case TRXC_PDTCH:
case TRXC_PTCCH:
return 0;
default:
/* No applicable if we are waiting for handover RACH */
if (l1cs->ho_rach_detect)
return 0;
}
/* How many frames elapsed since the last one? */
elapsed_fs = GSM_TDMA_FN_SUB(bi->fn, l1cs->last_tdma_fn);
if (elapsed_fs > l1ts->mf_period) { /* Too many! */
LOGL1SB(DL1P, LOGL_ERROR, l1ts, bi,
"Too many (>%u) contiguous TDMA frames=%u elapsed "
"since the last processed fn=%u\n", l1ts->mf_period,
elapsed_fs, l1cs->last_tdma_fn);
/* FIXME: how should this affect the measurements? */
return -EINVAL;
}
/**
* There are several TDMA frames between the last processed
* frame and currently received one. Let's walk through this
* path and count potentially lost frames, i.e. for which
* we didn't receive the corresponding UL bursts.
*
* Start counting from the last_fn + 1.
*/
for (i = 1; i < elapsed_fs; i++) {
fn_i = GSM_TDMA_FN_SUM(l1cs->last_tdma_fn, i);
offset = fn_i % l1ts->mf_period;
frame = l1ts->mf_frames + offset;
if (frame->ul_chan == bi->chan)
l1cs->lost_tdma_fs++;
}
if (l1cs->lost_tdma_fs > 0) {
LOGL1SB(DL1P, LOGL_NOTICE, l1ts, bi,
"At least %u TDMA frames were lost since the last "
"processed fn=%u\n", l1cs->lost_tdma_fs, l1cs->last_tdma_fn);
/**
* HACK: substitute lost bursts by zero-filled ones
*
* Instead of doing this, it makes sense to use the
* amount of lost frames in measurement calculations.
*/
trx_sched_ul_func *func;
/* Prepare dummy burst indication */
struct trx_ul_burst_ind dbi = {
.flags = TRX_BI_F_NOPE_IND,
.burst_len = GSM_BURST_LEN,
.burst = { 0 },
.rssi = -128,
.toa256 = 0,
.chan = bi->chan,
/* TDMA FN is set below */
.tn = bi->tn,
};
for (i = 1; i < elapsed_fs; i++) {
fn_i = GSM_TDMA_FN_SUM(l1cs->last_tdma_fn, i);
offset = fn_i % l1ts->mf_period;
frame = l1ts->mf_frames + offset;
func = trx_chan_desc[frame->ul_chan].ul_fn;
if (frame->ul_chan != bi->chan)
continue;
dbi.bid = frame->ul_bid;
dbi.fn = fn_i;
LOGL1SB(DL1P, LOGL_NOTICE, l1ts, &dbi,
"Substituting lost burst with NOPE.ind\n");
func(l1ts, &dbi);
l1cs->lost_tdma_fs--;
}
}
return 0;
}
/* Process a single noise measurement for an inactive timeslot. */
static void trx_sched_noise_meas(struct l1sched_chan_state *l1cs,
const struct trx_ul_burst_ind *bi)
{
int *Avg = &l1cs->meas.interf_avg;
/* EWMA (Exponentially Weighted Moving Average):
*
* Avg[n] = a * Val[n] + (1 - a) * Avg[n - 1]
*
* Implemented using the '+=' operator:
*
* Avg += a * Val - a * Avg
* Avg += a * (Val - Avg)
*
* We use constant 'a' = 0.5, what is equal to:
*
* Avg += (Val - Avg) / 2
*
* We don't really need precisity here, so no scaling.
*/
*Avg += (bi->rssi - *Avg) / 2;
}
/* Process an Uplink burst indication */
int trx_sched_ul_burst(struct l1sched_ts *l1ts, struct trx_ul_burst_ind *bi)
{
struct l1sched_chan_state *l1cs;
const struct trx_sched_frame *frame;
uint8_t offset, period;
trx_sched_ul_func *func;
/* VAMOS: redirect to the shadow timeslot */
if (bi->flags & TRX_BI_F_SHADOW_IND)
l1ts = l1ts->ts->vamos.peer->priv;
if (!l1ts->mf_index)
return -EINVAL;
/* get frame from multiframe */
period = l1ts->mf_period;
offset = bi->fn % period;
frame = l1ts->mf_frames + offset;
bi->chan = frame->ul_chan;
bi->bid = frame->ul_bid;
l1cs = &l1ts->chan_state[bi->chan];
func = trx_chan_desc[bi->chan].ul_fn;
/* check if channel is active */
if (!TRX_CHAN_IS_ACTIVE(l1cs, bi->chan)) {
/* handle noise measurements on dedicated and idle channels */
if (TRX_CHAN_IS_DEDIC(bi->chan) || bi->chan == TRXC_IDLE)
trx_sched_noise_meas(l1cs, bi);
return 0;
}
/* omit bursts which have no handler, like IDLE bursts */
if (!func)
return -EINVAL;
/* calculate how many TDMA frames were potentially lost */
trx_sched_calc_frame_loss(l1ts, l1cs, bi);
/* update TDMA frame counters */
l1cs->last_tdma_fn = bi->fn;
l1cs->proc_tdma_fs++;
/* handle NOPE indications */
if (bi->flags & TRX_BI_F_NOPE_IND) {
/* NOTE: Uplink burst handler must check bi->burst_len before
* accessing bi->burst to avoid uninitialized memory access. */
return func(l1ts, bi);
}
/* decrypt */
if (bi->burst_len && l1cs->ul_encr_algo) {
ubit_t ks[114];
int i;
osmo_a5(l1cs->ul_encr_algo, l1cs->ul_encr_key, bi->fn, NULL, ks);
for (i = 0; i < 57; i++) {
if (ks[i])
bi->burst[i + 3] = - bi->burst[i + 3];
if (ks[i + 57])
bi->burst[i + 88] = - bi->burst[i + 88];
}
}
/* Invoke the logical channel handler */
func(l1ts, bi);
return 0;
}