osmo-bts/tests/power/ms_power_loop_test.c

434 lines
16 KiB
C

/*
* (C) 2013,2014 by Holger Hans Peter Freyther
* Contributions by sysmocom - s.m.f.c. GmbH <info@sysmocom.de>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <osmocom/core/talloc.h>
#include <osmocom/core/application.h>
#include <osmo-bts/bts.h>
#include <osmo-bts/logging.h>
#include <osmo-bts/l1sap.h>
#include <osmo-bts/power_control.h>
#include <stdio.h>
#define PWR_TEST_RXLEV_TARGET_DBM -75
#define PWR_TEST_RXLEV_TARGET \
dbm2rxlev(PWR_TEST_RXLEV_TARGET_DBM)
static struct gsm_bts *g_bts = NULL;
static struct gsm_bts_trx *g_trx = NULL;
static void init_test(const char *name)
{
if (g_trx != NULL)
talloc_free(g_trx);
if (g_bts != NULL)
talloc_free(g_bts);
g_bts = talloc_zero(tall_bts_ctx, struct gsm_bts);
OSMO_ASSERT(g_bts != NULL);
INIT_LLIST_HEAD(&g_bts->trx_list);
g_trx = gsm_bts_trx_alloc(g_bts);
OSMO_ASSERT(g_trx != NULL);
g_trx->ms_pwr_ctl_soft = true;
g_bts->band = GSM_BAND_1800;
g_bts->c0 = g_trx;
/* Init default MS power control parameters, enable dynamic power control */
struct gsm_power_ctrl_params *params = &g_trx->ts[0].lchan[0].ms_dpc_params;
g_trx->ts[0].lchan[0].ms_power_ctrl.dpc_params = params;
*params = power_ctrl_params_def;
/* Disable loop SACCH block skip by default: */
params->ctrl_interval = 0;
/* Disable RxLev pre-processing and hysteresis by default */
struct gsm_power_ctrl_meas_params *mp = &params->rxlev_meas;
mp->lower_thresh = mp->upper_thresh = PWR_TEST_RXLEV_TARGET;
mp->algo = GSM_PWR_CTRL_MEAS_AVG_ALGO_NONE;
printf("\nStarting test case '%s'\n", name);
}
static void apply_power_test_ext(struct gsm_lchan *lchan, uint8_t ms_pwr, int rxlev, int lqual_cb, int exp_ret, uint8_t exp_current)
{
int ret;
ret = lchan_ms_pwr_ctrl(lchan, ms_pwr, rxlev, lqual_cb);
/* Keep the measurement counter updated */
lchan->meas.res_nr++;
printf("lchan_ms_pwr_ctrl(RxLvl=%d dBm) returns %d (expected %d)\n",
rxlev, ret, exp_ret);
printf("\tMS current power %u -> %u (expected %u)\n",
ms_pwr, lchan->ms_power_ctrl.current, exp_current);
}
static inline void apply_power_test(struct gsm_lchan *lchan, int rxlev, int lqual_cb, int exp_ret, uint8_t exp_current)
{
apply_power_test_ext(lchan, lchan->ms_power_ctrl.current, rxlev, lqual_cb, exp_ret, exp_current);
}
static void test_power_loop(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
params = lchan->ms_power_ctrl.dpc_params;
lchan->type = GSM_LCHAN_SDCCH;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
lchan->ms_power_ctrl.current = ms_pwr_ctl_lvl(GSM_BAND_1800, 0);
OSMO_ASSERT(lchan->ms_power_ctrl.current == 15);
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 26);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 2);
/* Simply clamping */
apply_power_test(lchan, -60, good_lqual, 0, 15);
/*
* Now 15 dB too little and we should power it up. Could be a
* power level of 7 or 8 for 15 dBm. However, since we limit peace at
* which we change values, expect several steps of MS_RAISE_MAX_DB/2 levels:
*/
apply_power_test(lchan, -90, good_lqual, 1, 13);
apply_power_test(lchan, -90, good_lqual, 1, 11);
apply_power_test(lchan, -90, good_lqual, 1, 9);
apply_power_test(lchan, -90, good_lqual, 1, 7);
apply_power_test(lchan, -90, good_lqual, 1, 5);
/* Check good RSSI value keeps it at same power level: */
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM, good_lqual, 0, 5);
apply_power_test(lchan, -90, good_lqual, 1, 3);
apply_power_test(lchan, -90, good_lqual, 1, 2); /* .max is pwr lvl 2 */
apply_power_test(lchan, -90, good_lqual, 0, 2); /* .max is pwr lvl 2 */
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 30);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 0);
apply_power_test(lchan, -90, good_lqual, 1, 0); /* .max is pwr lvl 0 */
apply_power_test(lchan, -90, good_lqual, 0, 0); /* .max is pwr lvl 0 */
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 36);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 29);
apply_power_test(lchan, -90, good_lqual, 1, 30);
apply_power_test(lchan, -90, good_lqual, 1, 29);
apply_power_test(lchan, -90, good_lqual, 0, 29);
/* Check good RSSI value keeps it at same power level: */
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM, good_lqual, 0, 29);
/* Now go down, steps are double size in this direction: */
apply_power_test(lchan, -45, good_lqual, 1, 1);
apply_power_test(lchan, -45, good_lqual, 1, 5);
apply_power_test(lchan, -45, good_lqual, 1, 9);
/* Go down only one level down and up: */
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM + 2, good_lqual, 1, 10);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM - 2, good_lqual, 1, 9);
/* Check if BSC requesting a low max power is applied after loop calculation: */
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 2);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 14);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM + 2, good_lqual, 1, 14);
/* Set back a more normal max: */
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 30);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 0);
/* Disable dynamic power control and jump down */
lchan->ms_power_ctrl.dpc_params = NULL;
apply_power_test(lchan, -60, good_lqual, 0, 14);
/* Enable and leave it again */
lchan->ms_power_ctrl.dpc_params = &lchan->ms_dpc_params;
apply_power_test(lchan, -40, good_lqual, 1, 15);
}
static void test_pf_algo_ewma(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual;
const int *avg100;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
lchan->type = GSM_LCHAN_SDCCH;
params = lchan->ms_power_ctrl.dpc_params;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
avg100 = &lchan->ms_power_ctrl.rxlev_meas_proc.ewma.Avg100;
struct gsm_power_ctrl_meas_params *mp = &lchan->ms_dpc_params.rxlev_meas;
mp->algo = GSM_PWR_CTRL_MEAS_AVG_ALGO_OSMO_EWMA;
mp->ewma.alpha = 20; /* 80% smoothing */
lchan->ms_power_ctrl.current = ms_pwr_ctl_lvl(GSM_BAND_1800, 0);
OSMO_ASSERT(lchan->ms_power_ctrl.current == 15);
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 26);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 2);
#define CHECK_RXLEV_AVG100(exp) \
printf("\tAvg[t] is RxLev %2.2f (expected %2.2f)\n", \
((float) *avg100) / 100, exp);
/* UL RSSI remains constant => no UL power change */
apply_power_test(lchan, -75, good_lqual, 0, 15);
CHECK_RXLEV_AVG100((float)dbm2rxlev(-75)); /* RXLEV 35 */
/* Avg[t] = (0.2 * 20) + (0.8 * 35) = RXLEV 32, (-78 dBm) */
apply_power_test(lchan, -90, good_lqual, 1, 13); /* -90 dBm = RXLEV 20 */
CHECK_RXLEV_AVG100(32.00);
/* Avg[t] = (0.2 * 20) + (0.8 * 32) = RXLEV 29.6 (-80.4 dBm) */
apply_power_test(lchan, -90, good_lqual, 1, 11); /* -90 dBm = RXLEV 20 */
CHECK_RXLEV_AVG100(29.60);
/* Avg[t] = (0.2 * 40) + (0.8 * 29.60) = RXLEV 31.68 (-78.32 dBm),
* but due to up-/down-scaling artefacts we get the following:
* Avg100[t] = Avg100[t - 1] + A * (Pwr - Avg[t] / 100)
* Avg100[t] = 2960 + 20 * (40 - ((2960+50) / 100)) <- HERE we lose 0.1: (2960+50) / 100) = 30.1
* Avg100[t] = 2960 + 20 * (40 - 30) <- HERE we lose 20*0.1 = 2.0! (upscaled, hence we lose finally 2.0/100=0.2)
* Avg[t] = (3160) / 100 = 31.60*/
apply_power_test(lchan, -70, good_lqual, 1, 9); /* RXLEV 40 */
CHECK_RXLEV_AVG100(31.60);
mp->ewma.alpha = 70; /* 30% smoothing */
lchan->ms_power_ctrl.current = 15;
lchan->ms_power_ctrl.rxlev_meas_proc = \
(struct gsm_power_ctrl_meas_proc_state) { 0 };
/* This is the first sample, the filter outputs it as-is */
apply_power_test(lchan, -50, good_lqual, 0, 15); /* RXLEV 60 */
CHECK_RXLEV_AVG100((float)dbm2rxlev(-50));
/* Avg[t] = (0.7 * 60) + (0.3 * 60) = RXLEV 60 (-50.0 dBm) */
apply_power_test(lchan, -50, good_lqual, 0, 15);
CHECK_RXLEV_AVG100((float)dbm2rxlev(-50));
/* Simulate SACCH block loss (-110 dBm):
* Avg[t] = (0.7 * 0) + (0.3 * 60) = RXLEV 18.0 (-92.0 dBm) */
apply_power_test(lchan, -110, good_lqual, 1, 13); /* RXLEV 0 */
CHECK_RXLEV_AVG100(18.0);
}
static void test_power_hysteresis(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
lchan->type = GSM_LCHAN_SDCCH;
params = lchan->ms_power_ctrl.dpc_params;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
/* Tolerate power deviations in range -80 .. -70 */
lchan->ms_dpc_params.rxlev_meas.lower_thresh = 30;
lchan->ms_dpc_params.rxlev_meas.upper_thresh = 40;
lchan->ms_power_ctrl.current = ms_pwr_ctl_lvl(GSM_BAND_1800, 0);
OSMO_ASSERT(lchan->ms_power_ctrl.current == 15);
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 26);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 2);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM + 3, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM - 3, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM + 5, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM - 5, good_lqual, 0, 15);
apply_power_test(lchan, PWR_TEST_RXLEV_TARGET_DBM - 10, good_lqual, 1, 13);
}
static void test_power_ctrl_interval(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual;
unsigned int i, j;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
lchan->type = GSM_LCHAN_SDCCH;
params = lchan->ms_power_ctrl.dpc_params;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 26);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 2);
const int script[][8][4] = {
{ /* P_Con_INTERVAL=0 (480 ms) */
/* { UL RxLev, expected rc, expected Tx power level } */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 13 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 11 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 9 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 7 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 5 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 3 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 2 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 2 },
},
{ /* P_Con_INTERVAL=1 (960 ms) */
/* { UL RxLev, expected rc, expected Tx power level } */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 13 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 13 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 11 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 11 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 9 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 9 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 7 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 7 }, /* skipped */
},
{ /* P_Con_INTERVAL=2 (1920 ms) */
/* { UL RxLev, expected rc, expected Tx power level } */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 13 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 13 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 13 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 13 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 1, 11 },
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 11 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 11 }, /* skipped */
{ PWR_TEST_RXLEV_TARGET_DBM - 15, good_lqual, 0, 11 }, /* skipped */
},
};
for (i = 0; i < ARRAY_SIZE(script); i++) {
lchan->ms_power_ctrl.current = ms_pwr_ctl_lvl(GSM_BAND_1800, 0);
OSMO_ASSERT(lchan->ms_power_ctrl.current == 15);
/* Set the corresponding power control interval */
printf("%s(): power control interval is now %u\n", __func__, i);
lchan->ms_dpc_params.ctrl_interval = i;
for (j = 0; j < ARRAY_SIZE(script[i]); j++) {
apply_power_test(lchan, script[i][j][0], /* UL RxLev */
script[i][j][1], /* UL C/I */
script[i][j][2], /* expected rc */
script[i][j][3]); /* expected Tx power level */
}
printf("\n");
}
}
static void test_power_loop_ci(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual, too_low_lqual, too_high_lqual;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
params = lchan->ms_power_ctrl.dpc_params;
lchan->type = GSM_LCHAN_SDCCH;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
too_low_lqual = (params->ci_sdcch_meas.lower_thresh - 1) * 10;
too_high_lqual = (params->ci_sdcch_meas.upper_thresh + 1) * 10;
lchan->ms_power_ctrl.current = ms_pwr_ctl_lvl(GSM_BAND_1800, 0);
OSMO_ASSERT(lchan->ms_power_ctrl.current == 15);
lchan->ms_power_ctrl.max = ms_pwr_ctl_lvl(GSM_BAND_1800, 26);
OSMO_ASSERT(lchan->ms_power_ctrl.max == 2);
/* Simply clamping */
apply_power_test(lchan, -60, good_lqual, 0, 15);
/* Now UL C/I is too bad as well as RSSI: */
apply_power_test(lchan, -100, too_low_lqual, 1, 13);
apply_power_test(lchan, -100, too_low_lqual, 1, 11);
/* Now UL C/I is good again while RSSI is good: */
apply_power_test(lchan, -60, good_lqual, 1, 12);
apply_power_test(lchan, -60, too_high_lqual, 1, 13);
/* Now UL C/I is good while RSSI is bad, C/I mandates: */
apply_power_test(lchan, -100, good_lqual, 1, 11);
apply_power_test(lchan, -100, too_high_lqual, 1, 12);
/* Now UL C/I is bad again while RSSI is good, C/I mandates: */
apply_power_test(lchan, -60, good_lqual, 1, 13);
apply_power_test(lchan, -60, too_high_lqual, 1, 14);
}
/* Test whether ping pong between requested MS Power Level and announced MS
* Power level occurs, oscillating between considered good levels all the time:
* FIXME: Current code shows there's an issue with oscillating values. */
static void test_good_threshold_convergence(void)
{
struct gsm_lchan *lchan;
const struct gsm_power_ctrl_params *params;
int16_t good_lqual, good_rxlev;
init_test(__func__);
lchan = &g_trx->ts[0].lchan[0];
params = lchan->ms_power_ctrl.dpc_params;
lchan->ms_dpc_params.rxlev_meas.upper_thresh = 37;
lchan->ms_dpc_params.rxlev_meas.lower_thresh = 30;
lchan->type = GSM_LCHAN_SDCCH;
good_lqual = (params->ci_sdcch_meas.lower_thresh + 2) * 10;
good_rxlev = rxlev2dbm(params->rxlev_meas.lower_thresh + 2);
lchan->ms_power_ctrl.current = 10;
lchan->ms_power_ctrl.max = 2;
apply_power_test_ext(lchan, 9, good_rxlev, good_lqual, 0, 10);
apply_power_test_ext(lchan, 10, good_rxlev, good_lqual, 0, 10);
apply_power_test_ext(lchan, 9, good_rxlev, good_lqual, 0, 10);
apply_power_test_ext(lchan, 10, good_rxlev, good_lqual, 0, 10);
apply_power_test_ext(lchan, 9, good_rxlev, good_lqual, 0, 10);
}
int main(int argc, char **argv)
{
printf("Testing power loop...\n");
tall_bts_ctx = talloc_named_const(NULL, 1, "OsmoBTS context");
msgb_talloc_ctx_init(tall_bts_ctx, 0);
osmo_init_logging2(tall_bts_ctx, &bts_log_info);
osmo_stderr_target->categories[DLOOP].loglevel = LOGL_DEBUG;
osmo_stderr_target->categories[DL1C].loglevel = LOGL_DEBUG;
log_set_print_filename2(osmo_stderr_target, LOG_FILENAME_NONE);
log_set_use_color(osmo_stderr_target, 0);
log_set_print_category(osmo_stderr_target, 0);
log_set_print_category_hex(osmo_stderr_target, 0);
test_power_loop();
test_pf_algo_ewma();
test_power_hysteresis();
test_power_ctrl_interval();
test_power_loop_ci();
test_good_threshold_convergence();
printf("Power loop test OK\n");
return 0;
}