osmo-bsc/openbsc/src/gsm_04_08_utils.c

786 lines
21 KiB
C

/* GSM Mobile Radio Interface Layer 3 messages on the A-bis interface
* 3GPP TS 04.08 version 7.21.0 Release 1998 / ETSI TS 100 940 V7.21.0
* utility functions
*/
/* (C) 2008-2009 by Harald Welte <laforge@gnumonks.org>
* (C) 2008, 2009 by Holger Hans Peter Freyther <zecke@selfish.org>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <netinet/in.h>
#include <osmocore/msgb.h>
#include <openbsc/debug.h>
#include <openbsc/gsm_04_08.h>
#include <openbsc/transaction.h>
#include <openbsc/paging.h>
#include <openbsc/signal.h>
#define GSM48_ALLOC_SIZE 1024
#define GSM48_ALLOC_HEADROOM 128
/* should ip.access BTS use direct RTP streams between each other (1),
* or should OpenBSC always act as RTP relay/proxy in between (0) ? */
int ipacc_rtp_direct = 1;
const char *gsm0408_cc_msg_names[] = {
"unknown 0x00",
"ALERTING",
"CALL_PROC",
"PROGRESS",
"ESTAB",
"SETUP",
"ESTAB_CONF",
"CONNECT",
"CALL_CONF",
"START_CC",
"unknown 0x0a",
"RECALL",
"unknown 0x0c",
"unknown 0x0d",
"EMERG_SETUP",
"CONNECT_ACK",
"USER_INFO",
"unknown 0x11",
"unknown 0x12",
"MODIFY_REJECT",
"unknown 0x14",
"unknown 0x15",
"unknown 0x16",
"MODIFY",
"HOLD",
"HOLD_ACK",
"HOLD_REJ",
"unknown 0x1b",
"RETR",
"RETR_ACK",
"RETR_REJ",
"MODIFY_COMPL",
"unknown 0x20",
"unknown 0x21",
"unknown 0x22",
"unknown 0x23",
"unknown 0x24",
"DISCONNECT",
"unknown 0x26",
"unknown 0x27",
"unknown 0x28",
"unknown 0x29",
"RELEASE_COMPL",
"unknown 0x2b",
"unknown 0x2c",
"RELEASE",
"unknown 0x2e",
"unknown 0x2f",
"unknown 0x30",
"STOP_DTMF",
"STOP_DTMF_ACK",
"unknown 0x33",
"STATUS_ENQ",
"START_DTMF",
"START_DTMF_ACK",
"START_DTMF_REJ",
"unknown 0x38",
"CONG_CTRL",
"FACILITY",
"unknown 0x3b",
"STATUS",
"unknown 0x3c",
"NOTIFY",
"unknown 0x3f",
};
struct msgb *gsm48_msgb_alloc(void)
{
return msgb_alloc_headroom(GSM48_ALLOC_SIZE, GSM48_ALLOC_HEADROOM,
"GSM 04.08");
}
int gsm48_sendmsg(struct msgb *msg, struct gsm_trans *trans)
{
struct gsm48_hdr *gh = (struct gsm48_hdr *) msg->data;
/* if we get passed a transaction reference, do some common
* work that the caller no longer has to do */
if (trans) {
gh->proto_discr = trans->protocol | (trans->transaction_id << 4);
msg->lchan = trans->lchan;
}
if (msg->lchan) {
msg->trx = msg->lchan->ts->trx;
if ((gh->proto_discr & GSM48_PDISC_MASK) == GSM48_PDISC_CC)
DEBUGP(DCC, "(bts %d trx %d ts %d ti %02x) "
"Sending '%s' to MS.\n", msg->trx->bts->nr,
msg->trx->nr, msg->lchan->ts->nr,
gh->proto_discr & 0xf0,
gsm0408_cc_msg_names[gh->msg_type & 0x3f]);
else
DEBUGP(DCC, "(bts %d trx %d ts %d pd %02x) "
"Sending 0x%02x to MS.\n", msg->trx->bts->nr,
msg->trx->nr, msg->lchan->ts->nr,
gh->proto_discr, gh->msg_type);
}
msg->l3h = msg->data;
return rsl_data_request(msg, 0);
}
static void to_bcd(u_int8_t *bcd, u_int16_t val)
{
bcd[2] = val % 10;
val = val / 10;
bcd[1] = val % 10;
val = val / 10;
bcd[0] = val % 10;
val = val / 10;
}
static char bcd2char(u_int8_t bcd)
{
if (bcd < 0xa)
return '0' + bcd;
else
return 'A' + (bcd - 0xa);
}
/* only works for numbers in ascci */
static u_int8_t char2bcd(char c)
{
return c - 0x30;
}
void gsm0408_generate_lai(struct gsm48_loc_area_id *lai48, u_int16_t mcc,
u_int16_t mnc, u_int16_t lac)
{
u_int8_t bcd[3];
to_bcd(bcd, mcc);
lai48->digits[0] = bcd[0] | (bcd[1] << 4);
lai48->digits[1] = bcd[2];
to_bcd(bcd, mnc);
/* FIXME: do we need three-digit MNC? See Table 10.5.3 */
#if 0
lai48->digits[1] |= bcd[2] << 4;
lai48->digits[2] = bcd[0] | (bcd[1] << 4);
#else
lai48->digits[1] |= 0xf << 4;
lai48->digits[2] = bcd[1] | (bcd[2] << 4);
#endif
lai48->lac = htons(lac);
}
int gsm48_generate_mid_from_tmsi(u_int8_t *buf, u_int32_t tmsi)
{
u_int32_t *tptr = (u_int32_t *) &buf[3];
buf[0] = GSM48_IE_MOBILE_ID;
buf[1] = GSM48_TMSI_LEN;
buf[2] = 0xf0 | GSM_MI_TYPE_TMSI;
*tptr = htonl(tmsi);
return 7;
}
int gsm48_generate_mid_from_imsi(u_int8_t *buf, const char *imsi)
{
unsigned int length = strlen(imsi), i, off = 0;
u_int8_t odd = (length & 0x1) == 1;
buf[0] = GSM48_IE_MOBILE_ID;
buf[2] = char2bcd(imsi[0]) << 4 | GSM_MI_TYPE_IMSI | (odd << 3);
/* if the length is even we will fill half of the last octet */
if (odd)
buf[1] = (length + 1) >> 1;
else
buf[1] = (length + 2) >> 1;
for (i = 1; i < buf[1]; ++i) {
u_int8_t lower, upper;
lower = char2bcd(imsi[++off]);
if (!odd && off + 1 == length)
upper = 0x0f;
else
upper = char2bcd(imsi[++off]) & 0x0f;
buf[2 + i] = (upper << 4) | lower;
}
return 2 + buf[1];
}
/* Section 9.1.8 / Table 9.9 */
struct chreq {
u_int8_t val;
u_int8_t mask;
enum chreq_type type;
};
/* If SYSTEM INFORMATION TYPE 4 NECI bit == 1 */
static const struct chreq chreq_type_neci1[] = {
{ 0xa0, 0xe0, CHREQ_T_EMERG_CALL },
{ 0xc0, 0xe0, CHREQ_T_CALL_REEST_TCH_F },
{ 0x68, 0xfc, CHREQ_T_CALL_REEST_TCH_H },
{ 0x6c, 0xfc, CHREQ_T_CALL_REEST_TCH_H_DBL },
{ 0xe0, 0xe0, CHREQ_T_SDCCH },
{ 0x40, 0xf0, CHREQ_T_VOICE_CALL_TCH_H },
{ 0x50, 0xf0, CHREQ_T_DATA_CALL_TCH_H },
{ 0x00, 0xf0, CHREQ_T_LOCATION_UPD },
{ 0x10, 0xf0, CHREQ_T_SDCCH },
{ 0x80, 0xe0, CHREQ_T_PAG_R_ANY_NECI1 },
{ 0x20, 0xf0, CHREQ_T_PAG_R_TCH_F },
{ 0x30, 0xf0, CHREQ_T_PAG_R_TCH_FH },
{ 0x67, 0xff, CHREQ_T_LMU },
{ 0x60, 0xf9, CHREQ_T_RESERVED_SDCCH },
{ 0x61, 0xfb, CHREQ_T_RESERVED_SDCCH },
{ 0x63, 0xff, CHREQ_T_RESERVED_SDCCH },
{ 0x7f, 0xff, CHREQ_T_RESERVED_IGNORE },
};
/* If SYSTEM INFORMATION TYPE 4 NECI bit == 0 */
static const struct chreq chreq_type_neci0[] = {
{ 0xa0, 0xe0, CHREQ_T_EMERG_CALL },
{ 0xc0, 0xe0, CHREQ_T_CALL_REEST_TCH_H },
{ 0xe0, 0xe0, CHREQ_T_TCH_F },
{ 0x50, 0xf0, CHREQ_T_DATA_CALL_TCH_H },
{ 0x00, 0xe0, CHREQ_T_LOCATION_UPD },
{ 0x80, 0xe0, CHREQ_T_PAG_R_ANY_NECI0 },
{ 0x20, 0xf0, CHREQ_T_PAG_R_TCH_F },
{ 0x30, 0xf0, CHREQ_T_PAG_R_TCH_FH },
{ 0x67, 0xff, CHREQ_T_LMU },
{ 0x60, 0xf9, CHREQ_T_RESERVED_SDCCH },
{ 0x61, 0xfb, CHREQ_T_RESERVED_SDCCH },
{ 0x63, 0xff, CHREQ_T_RESERVED_SDCCH },
{ 0x7f, 0xff, CHREQ_T_RESERVED_IGNORE },
};
static const enum gsm_chan_t ctype_by_chreq[] = {
[CHREQ_T_EMERG_CALL] = GSM_LCHAN_TCH_F,
[CHREQ_T_CALL_REEST_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_CALL_REEST_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_CALL_REEST_TCH_H_DBL] = GSM_LCHAN_TCH_H,
[CHREQ_T_SDCCH] = GSM_LCHAN_SDCCH,
[CHREQ_T_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_VOICE_CALL_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_DATA_CALL_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_LOCATION_UPD] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_ANY_NECI1] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_ANY_NECI0] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_PAG_R_TCH_FH] = GSM_LCHAN_TCH_F,
[CHREQ_T_LMU] = GSM_LCHAN_SDCCH,
[CHREQ_T_RESERVED_SDCCH] = GSM_LCHAN_SDCCH,
[CHREQ_T_RESERVED_IGNORE] = GSM_LCHAN_UNKNOWN,
};
static const enum gsm_chreq_reason_t reason_by_chreq[] = {
[CHREQ_T_EMERG_CALL] = GSM_CHREQ_REASON_EMERG,
[CHREQ_T_CALL_REEST_TCH_F] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_CALL_REEST_TCH_H] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_CALL_REEST_TCH_H_DBL] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_SDCCH] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_TCH_F] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_VOICE_CALL_TCH_H] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_DATA_CALL_TCH_H] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_LOCATION_UPD] = GSM_CHREQ_REASON_LOCATION_UPD,
[CHREQ_T_PAG_R_ANY_NECI1] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_ANY_NECI0] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_TCH_F] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_TCH_FH] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_LMU] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_RESERVED_SDCCH] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_RESERVED_IGNORE] = GSM_CHREQ_REASON_OTHER,
};
enum gsm_chan_t get_ctype_by_chreq(struct gsm_bts *bts, u_int8_t ra, int neci)
{
int i;
int length;
const struct chreq *chreq;
if (neci) {
chreq = chreq_type_neci1;
length = ARRAY_SIZE(chreq_type_neci1);
} else {
chreq = chreq_type_neci0;
length = ARRAY_SIZE(chreq_type_neci0);
}
for (i = 0; i < length; i++) {
const struct chreq *chr = &chreq[i];
if ((ra & chr->mask) == chr->val)
return ctype_by_chreq[chr->type];
}
LOGP(DRR, LOGL_ERROR, "Unknown CHANNEL REQUEST RQD 0x%02x\n", ra);
return GSM_LCHAN_SDCCH;
}
enum gsm_chreq_reason_t get_reason_by_chreq(struct gsm_bts *bts, u_int8_t ra, int neci)
{
int i;
int length;
const struct chreq *chreq;
if (neci) {
chreq = chreq_type_neci1;
length = ARRAY_SIZE(chreq_type_neci1);
} else {
chreq = chreq_type_neci0;
length = ARRAY_SIZE(chreq_type_neci0);
}
for (i = 0; i < length; i++) {
const struct chreq *chr = &chreq[i];
if ((ra & chr->mask) == chr->val)
return reason_by_chreq[chr->type];
}
LOGP(DRR, LOGL_ERROR, "Unknown CHANNEL REQUEST REASON 0x%02x\n", ra);
return GSM_CHREQ_REASON_OTHER;
}
/* 7.1.7 and 9.1.7: RR CHANnel RELease */
int gsm48_send_rr_release(struct gsm_lchan *lchan)
{
struct msgb *msg = gsm48_msgb_alloc();
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
u_int8_t *cause;
msg->lchan = lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CHAN_REL;
cause = msgb_put(msg, 1);
cause[0] = GSM48_RR_CAUSE_NORMAL;
DEBUGP(DRR, "Sending Channel Release: Chan: Number: %d Type: %d\n",
lchan->nr, lchan->type);
/* Send actual release request to MS */
gsm48_sendmsg(msg, NULL);
/* FIXME: Start Timer T3109 */
/* Deactivate the SACCH on the BTS side */
return rsl_deact_sacch(lchan);
}
/* Convert Mobile Identity (10.5.1.4) to string */
int gsm48_mi_to_string(char *string, const int str_len, const u_int8_t *mi, const int mi_len)
{
int i;
u_int8_t mi_type;
char *str_cur = string;
u_int32_t tmsi;
mi_type = mi[0] & GSM_MI_TYPE_MASK;
switch (mi_type) {
case GSM_MI_TYPE_NONE:
break;
case GSM_MI_TYPE_TMSI:
/* Table 10.5.4.3, reverse generate_mid_from_tmsi */
if (mi_len == GSM48_TMSI_LEN && mi[0] == (0xf0 | GSM_MI_TYPE_TMSI)) {
memcpy(&tmsi, &mi[1], 4);
tmsi = ntohl(tmsi);
return snprintf(string, str_len, "%u", tmsi);
}
break;
case GSM_MI_TYPE_IMSI:
case GSM_MI_TYPE_IMEI:
case GSM_MI_TYPE_IMEISV:
*str_cur++ = bcd2char(mi[0] >> 4);
for (i = 1; i < mi_len; i++) {
if (str_cur + 2 >= string + str_len)
return str_cur - string;
*str_cur++ = bcd2char(mi[i] & 0xf);
/* skip last nibble in last input byte when GSM_EVEN */
if( (i != mi_len-1) || (mi[0] & GSM_MI_ODD))
*str_cur++ = bcd2char(mi[i] >> 4);
}
break;
default:
break;
}
*str_cur++ = '\0';
return str_cur - string;
}
int send_siemens_mrpci(struct gsm_lchan *lchan,
u_int8_t *classmark2_lv)
{
struct rsl_mrpci mrpci;
if (classmark2_lv[0] < 2)
return -EINVAL;
mrpci.power_class = classmark2_lv[1] & 0x7;
mrpci.vgcs_capable = classmark2_lv[2] & (1 << 1);
mrpci.vbs_capable = classmark2_lv[2] & (1 <<2);
mrpci.gsm_phase = (classmark2_lv[1]) >> 5 & 0x3;
return rsl_siemens_mrpci(lchan, &mrpci);
}
int gsm48_paging_extract_mi(struct msgb *msg, char *mi_string, u_int8_t *mi_type)
{
struct gsm48_hdr *gh = msgb_l3(msg);
u_int8_t *classmark2_lv = gh->data + 1;
u_int8_t *mi_lv = gh->data + 2 + *classmark2_lv;
*mi_type = mi_lv[1] & GSM_MI_TYPE_MASK;
return gsm48_mi_to_string(mi_string, GSM48_MI_SIZE, mi_lv+1, *mi_lv);
}
int gsm48_handle_paging_resp(struct msgb *msg, struct gsm_subscriber *subscr)
{
struct gsm_bts *bts = msg->lchan->ts->trx->bts;
struct gsm48_hdr *gh = msgb_l3(msg);
u_int8_t *classmark2_lv = gh->data + 1;
struct paging_signal_data sig_data;
if (is_siemens_bts(bts))
send_siemens_mrpci(msg->lchan, classmark2_lv);
if (!msg->lchan->subscr) {
msg->lchan->subscr = subscr;
} else if (msg->lchan->subscr != subscr) {
LOGP(DRR, LOGL_ERROR, "<- Channel already owned by someone else?\n");
subscr_put(subscr);
return -EINVAL;
} else {
DEBUGP(DRR, "<- Channel already owned by us\n");
subscr_put(subscr);
subscr = msg->lchan->subscr;
}
sig_data.subscr = subscr;
sig_data.bts = msg->lchan->ts->trx->bts;
sig_data.lchan = msg->lchan;
bts->network->stats.paging.completed++;
dispatch_signal(SS_PAGING, S_PAGING_SUCCEEDED, &sig_data);
/* Stop paging on the bts we received the paging response */
paging_request_stop(msg->trx->bts, subscr, msg->lchan);
return 0;
}
/* Chapter 9.1.9: Ciphering Mode Command */
int gsm48_send_rr_ciph_mode(struct gsm_lchan *lchan, int want_imeisv)
{
struct msgb *msg = gsm48_msgb_alloc();
struct gsm48_hdr *gh;
u_int8_t ciph_mod_set;
msg->lchan = lchan;
DEBUGP(DRR, "TX CIPHERING MODE CMD\n");
if (lchan->encr.alg_id <= RSL_ENC_ALG_A5(0))
ciph_mod_set = 0;
else
ciph_mod_set = (lchan->encr.alg_id-2)<<1 | 1;
gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh) + 1);
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CIPH_M_CMD;
gh->data[0] = (want_imeisv & 0x1) << 4 | (ciph_mod_set & 0xf);
return rsl_encryption_cmd(msg);
}
static void gsm48_cell_desc(struct gsm48_cell_desc *cd,
const struct gsm_bts *bts)
{
cd->ncc = (bts->bsic >> 3 & 0x7);
cd->bcc = (bts->bsic & 0x7);
cd->arfcn_hi = bts->c0->arfcn >> 8;
cd->arfcn_lo = bts->c0->arfcn & 0xff;
}
static void gsm48_chan_desc(struct gsm48_chan_desc *cd,
const struct gsm_lchan *lchan)
{
u_int16_t arfcn = lchan->ts->trx->arfcn & 0x3ff;
cd->chan_nr = lchan2chan_nr(lchan);
cd->h0.tsc = lchan->ts->trx->bts->tsc;
cd->h0.h = 0;
cd->h0.arfcn_high = arfcn >> 8;
cd->h0.arfcn_low = arfcn & 0xff;
}
/* Chapter 9.1.15: Handover Command */
int gsm48_send_ho_cmd(struct gsm_lchan *old_lchan, struct gsm_lchan *new_lchan,
u_int8_t power_command, u_int8_t ho_ref)
{
struct msgb *msg = gsm48_msgb_alloc();
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_ho_cmd *ho =
(struct gsm48_ho_cmd *) msgb_put(msg, sizeof(*ho));
msg->lchan = old_lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_HANDO_CMD;
/* mandatory bits */
gsm48_cell_desc(&ho->cell_desc, new_lchan->ts->trx->bts);
gsm48_chan_desc(&ho->chan_desc, new_lchan);
ho->ho_ref = ho_ref;
ho->power_command = power_command;
/* FIXME: optional bits for type of synchronization? */
return gsm48_sendmsg(msg, NULL);
}
/* Chapter 9.1.2: Assignment Command */
int gsm48_send_rr_ass_cmd(struct gsm_lchan *dest_lchan, struct gsm_lchan *lchan, u_int8_t power_command)
{
struct msgb *msg = gsm48_msgb_alloc();
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_ass_cmd *ass =
(struct gsm48_ass_cmd *) msgb_put(msg, sizeof(*ass));
DEBUGP(DRR, "-> ASSIGNMENT COMMAND tch_mode=0x%02x\n", lchan->tch_mode);
msg->lchan = dest_lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_ASS_CMD;
/*
* fill the channel information element, this code
* should probably be shared with rsl_rx_chan_rqd(),
* gsm48_tx_chan_mode_modify. But beware that 10.5.2.5
* 10.5.2.5.a have slightly different semantic for
* the chan_desc. But as long as multi-slot configurations
* are not used we seem to be fine.
*/
gsm48_chan_desc(&ass->chan_desc, lchan);
ass->power_command = power_command;
msgb_tv_put(msg, GSM48_IE_CHANMODE_1, lchan->tch_mode);
/* in case of multi rate we need to attach a config */
if (lchan->tch_mode == GSM48_CMODE_SPEECH_AMR) {
if (lchan->mr_conf.ver == 0) {
LOGP(DRR, LOGL_ERROR, "BUG: Using multirate codec "
"without multirate config.\n");
} else {
u_int8_t *data = msgb_put(msg, 4);
data[0] = GSM48_IE_MUL_RATE_CFG;
data[1] = 0x2;
memcpy(&data[2], &lchan->mr_conf, 2);
}
}
return gsm48_sendmsg(msg, NULL);
}
/* 9.1.5 Channel mode modify: Modify the mode on the MS side */
int gsm48_tx_chan_mode_modify(struct gsm_lchan *lchan, u_int8_t mode)
{
struct msgb *msg = gsm48_msgb_alloc();
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_chan_mode_modify *cmm =
(struct gsm48_chan_mode_modify *) msgb_put(msg, sizeof(*cmm));
u_int16_t arfcn = lchan->ts->trx->arfcn & 0x3ff;
DEBUGP(DRR, "-> CHANNEL MODE MODIFY mode=0x%02x\n", mode);
lchan->tch_mode = mode;
msg->lchan = lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CHAN_MODE_MODIF;
/* fill the channel information element, this code
* should probably be shared with rsl_rx_chan_rqd() */
cmm->chan_desc.chan_nr = lchan2chan_nr(lchan);
cmm->chan_desc.h0.tsc = lchan->ts->trx->bts->tsc;
cmm->chan_desc.h0.h = 0;
cmm->chan_desc.h0.arfcn_high = arfcn >> 8;
cmm->chan_desc.h0.arfcn_low = arfcn & 0xff;
cmm->mode = mode;
/* in case of multi rate we need to attach a config */
if (lchan->tch_mode == GSM48_CMODE_SPEECH_AMR) {
if (lchan->mr_conf.ver == 0) {
LOGP(DRR, LOGL_ERROR, "BUG: Using multirate codec "
"without multirate config.\n");
} else {
u_int8_t *data = msgb_put(msg, 4);
data[0] = GSM48_IE_MUL_RATE_CFG;
data[1] = 0x2;
memcpy(&data[2], &lchan->mr_conf, 2);
}
}
return gsm48_sendmsg(msg, NULL);
}
int gsm48_lchan_modify(struct gsm_lchan *lchan, u_int8_t lchan_mode)
{
int rc;
rc = gsm48_tx_chan_mode_modify(lchan, lchan_mode);
if (rc < 0)
return rc;
return rc;
}
int gsm48_rx_rr_modif_ack(struct msgb *msg)
{
int rc;
struct gsm48_hdr *gh = msgb_l3(msg);
struct gsm48_chan_mode_modify *mod =
(struct gsm48_chan_mode_modify *) gh->data;
DEBUGP(DRR, "CHANNEL MODE MODIFY ACK\n");
if (mod->mode != msg->lchan->tch_mode) {
LOGP(DRR, LOGL_ERROR, "CHANNEL MODE change failed. Wanted: %d Got: %d\n",
msg->lchan->tch_mode, mod->mode);
return -1;
}
/* update the channel type */
switch (mod->mode) {
case GSM48_CMODE_SIGN:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_SIGN;
break;
case GSM48_CMODE_SPEECH_V1:
case GSM48_CMODE_SPEECH_EFR:
case GSM48_CMODE_SPEECH_AMR:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_SPEECH;
break;
case GSM48_CMODE_DATA_14k5:
case GSM48_CMODE_DATA_12k0:
case GSM48_CMODE_DATA_6k0:
case GSM48_CMODE_DATA_3k6:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_DATA;
break;
}
/* We've successfully modified the MS side of the channel,
* now go on to modify the BTS side of the channel */
rc = rsl_chan_mode_modify_req(msg->lchan);
/* FIXME: we not only need to do this after mode modify, but
* also after channel activation */
if (is_ipaccess_bts(msg->lchan->ts->trx->bts) && mod->mode != GSM48_CMODE_SIGN)
rsl_ipacc_crcx(msg->lchan);
return rc;
}
int gsm48_parse_meas_rep(struct gsm_meas_rep *rep, struct msgb *msg)
{
struct gsm48_hdr *gh = msgb_l3(msg);
unsigned int payload_len = msgb_l3len(msg) - sizeof(*gh);
u_int8_t *data = gh->data;
struct gsm_bts *bts = msg->lchan->ts->trx->bts;
struct bitvec *nbv = &bts->si_common.neigh_list;
struct gsm_meas_rep_cell *mrc;
if (gh->msg_type != GSM48_MT_RR_MEAS_REP)
return -EINVAL;
if (data[0] & 0x80)
rep->flags |= MEAS_REP_F_BA1;
if (data[0] & 0x40)
rep->flags |= MEAS_REP_F_UL_DTX;
if ((data[1] & 0x40) == 0x00)
rep->flags |= MEAS_REP_F_DL_VALID;
rep->dl.full.rx_lev = data[0] & 0x3f;
rep->dl.sub.rx_lev = data[1] & 0x3f;
rep->dl.full.rx_qual = (data[3] >> 4) & 0x7;
rep->dl.sub.rx_qual = (data[3] >> 1) & 0x7;
rep->num_cell = ((data[3] >> 6) & 0x3) | ((data[2] & 0x01) << 2);
if (rep->num_cell < 1 || rep->num_cell > 6)
return 0;
/* an encoding nightmare in perfection */
mrc = &rep->cell[0];
mrc->rxlev = data[3] & 0x3f;
mrc->neigh_idx = data[4] >> 3;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[4] & 0x07) << 3) | (data[5] >> 5);
if (rep->num_cell < 2)
return 0;
mrc = &rep->cell[1];
mrc->rxlev = ((data[5] & 0x1f) << 1) | (data[6] >> 7);
mrc->neigh_idx = (data[6] >> 2) & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[6] & 0x03) << 4) | (data[7] >> 4);
if (rep->num_cell < 3)
return 0;
mrc = &rep->cell[2];
mrc->rxlev = ((data[7] & 0x0f) << 2) | (data[8] >> 6);
mrc->neigh_idx = (data[8] >> 1) & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[8] & 0x01) << 5) | (data[9] >> 3);
if (rep->num_cell < 4)
return 0;
mrc = &rep->cell[3];
mrc->rxlev = ((data[9] & 0x07) << 3) | (data[10] >> 5);
mrc->neigh_idx = data[10] & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = data[11] >> 2;
if (rep->num_cell < 5)
return 0;
mrc = &rep->cell[4];
mrc->rxlev = ((data[11] & 0x03) << 4) | (data[12] >> 4);
mrc->neigh_idx = ((data[12] & 0xf) << 1) | (data[13] >> 7);
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = (data[13] >> 1) & 0x3f;
if (rep->num_cell < 6)
return 0;
mrc = &rep->cell[5];
mrc->rxlev = ((data[13] & 0x01) << 5) | (data[14] >> 3);
mrc->neigh_idx = ((data[14] & 0x07) << 2) | (data[15] >> 6);
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = data[15] & 0x3f;
return 0;
}