osmo-bsc/src/osmo-bsc/acc.c

617 lines
20 KiB
C

/* (C) 2018-2020 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
*
* Author: Stefan Sperling <ssperling@sysmocom.de>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <strings.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <stdbool.h>
#include <osmocom/bsc/debug.h>
#include <osmocom/bsc/acc.h>
#include <osmocom/bsc/gsm_data.h>
#include <osmocom/bsc/chan_alloc.h>
#include <osmocom/bsc/signal.h>
#include <osmocom/bsc/abis_nm.h>
#include <osmocom/bsc/bts.h>
/*
* Check if an ACC has been permanently barred for a BTS,
* e.g. with the 'rach access-control-class' VTY command.
*/
static bool acc_is_permanently_barred(struct gsm_bts *bts, unsigned int acc)
{
OSMO_ASSERT(acc <= 9);
if (acc == 8 || acc == 9)
return (bts->si_common.rach_control.t2 & (1 << (acc - 8)));
return (bts->si_common.rach_control.t3 & (1 << (acc)));
}
/*!
* Return bitmasks which correspond to access control classes that are currently
* denied access. Ramping is only concerned with those bits which control access
* for ACCs 0-9, and any of the other bits will always be set to zero in these masks, i.e.
* it is safe to OR these bitmasks with the corresponding fields in struct gsm48_rach_control.
* \param[in] acc_mgr Pointer to acc_mgr structure.
*/
static inline uint8_t acc_mgr_get_barred_t2(struct acc_mgr *acc_mgr)
{
return ((~acc_mgr->allowed_subset_mask) >> 8) & 0x03;
};
static inline uint8_t acc_mgr_get_barred_t3(struct acc_mgr *acc_mgr)
{
return (~acc_mgr->allowed_subset_mask) & 0xff;
}
static uint8_t acc_mgr_subset_len(struct acc_mgr *acc_mgr)
{
return OSMO_MIN(acc_mgr->len_allowed_ramp, acc_mgr->len_allowed_adm);
}
static void acc_mgr_enable_rotation_cond(struct acc_mgr *acc_mgr)
{
if (acc_mgr->allowed_permanent_count && acc_mgr->allowed_subset_mask_count &&
acc_mgr->allowed_permanent_count != acc_mgr->allowed_subset_mask_count) {
if (!osmo_timer_pending(&acc_mgr->rotate_timer))
osmo_timer_schedule(&acc_mgr->rotate_timer, acc_mgr->rotation_time_sec, 0);
} else {
/* No rotation needed, disable rotation timer */
if (osmo_timer_pending(&acc_mgr->rotate_timer))
osmo_timer_del(&acc_mgr->rotate_timer);
}
}
static void acc_mgr_gen_subset(struct acc_mgr *acc_mgr, bool update_si)
{
uint8_t acc;
acc_mgr->allowed_subset_mask = 0; /* clean mask */
acc_mgr->allowed_subset_mask_count = 0;
acc_mgr->allowed_permanent_count = 0;
for (acc = 0; acc < 10; acc++) {
if (acc_is_permanently_barred(acc_mgr->bts, acc))
continue;
acc_mgr->allowed_permanent_count++;
if (acc_mgr->allowed_subset_mask_count < acc_mgr_subset_len(acc_mgr)) {
acc_mgr->allowed_subset_mask |= (1 << acc);
acc_mgr->allowed_subset_mask_count++;
}
}
acc_mgr_enable_rotation_cond(acc_mgr);
LOG_BTS(acc_mgr->bts, DRSL, LOGL_INFO,
"ACC: New ACC allowed subset 0x%03" PRIx16 " (active_len=%" PRIu8
", ramp_len=%" PRIu8 ", adm_len=%" PRIu8 ", perm_len=%" PRIu8 ", rotation=%s)\n",
acc_mgr->allowed_subset_mask, acc_mgr->allowed_subset_mask_count,
acc_mgr->len_allowed_ramp, acc_mgr->len_allowed_adm,
acc_mgr->allowed_permanent_count,
osmo_timer_pending(&(acc_mgr)->rotate_timer) ? "on" : "off");
/* Trigger SI data update, acc_mgr_apply_acc will bew called */
if (update_si)
gsm_bts_set_system_infos(acc_mgr->bts);
}
static uint8_t get_highest_allowed_acc(uint16_t mask)
{
int i;
for (i = 9; i >= 0; i--) {
if (mask & (1 << i))
return i;
}
OSMO_ASSERT(0);
return 0;
}
static uint8_t get_lowest_allowed_acc(uint16_t mask)
{
int i;
for (i = 0; i < 10; i++) {
if (mask & (1 << i))
return i;
}
OSMO_ASSERT(0);
return 0;
}
#define LOG_ACC_CHG(acc_mgr, level, old_mask, verb_str) \
LOG_BTS((acc_mgr)->bts, DRSL, level, \
"ACC: %s ACC allowed active subset 0x%03" PRIx16 " -> 0x%03" PRIx16 \
" (active_len=%" PRIu8 ", ramp_len=%" PRIu8 ", adm_len=%" PRIu8 \
", perm_len=%" PRIu8 ", rotation=%s)\n", \
verb_str, old_mask, (acc_mgr)->allowed_subset_mask, \
(acc_mgr)->allowed_subset_mask_count, \
(acc_mgr)->len_allowed_ramp, (acc_mgr)->len_allowed_adm, \
(acc_mgr)->allowed_permanent_count, \
osmo_timer_pending(&(acc_mgr)->rotate_timer) ? "on" : "off")
/* Call when either adm_len or ramp_len changed (and values have been updated) */
static void acc_mgr_subset_length_changed(struct acc_mgr *acc_mgr)
{
uint16_t old_mask = acc_mgr->allowed_subset_mask;
uint8_t curr_len = acc_mgr->allowed_subset_mask_count;
uint8_t new_len = acc_mgr_subset_len(acc_mgr);
int8_t diff = new_len - curr_len;
uint8_t i;
if (curr_len == new_len)
return;
if (new_len == 0) {
acc_mgr->allowed_subset_mask = 0;
acc_mgr->allowed_subset_mask_count = 0;
acc_mgr_enable_rotation_cond(acc_mgr);
LOG_ACC_CHG(acc_mgr, LOGL_INFO, old_mask, "update");
gsm_bts_set_system_infos(acc_mgr->bts);
return;
}
if (curr_len == 0) {
acc_mgr_gen_subset(acc_mgr, true);
return;
}
/* Try to add new ACCs to the set starting from highest one (since we rotate rolling up) */
if (diff > 0) { /* curr_len < new_len */
uint8_t highest = get_highest_allowed_acc(acc_mgr->allowed_subset_mask);
/* It's fine skipping highest in the loop since it's known to be already set: */
for (i = (highest + 1) % 10; i != highest; i = (i + 1) % 10) {
if (acc_is_permanently_barred(acc_mgr->bts, i))
continue;
if (acc_mgr->allowed_subset_mask & (1 << i))
continue; /* already in set */
acc_mgr->allowed_subset_mask |= (1 << i);
acc_mgr->allowed_subset_mask_count++;
diff--;
if (diff == 0)
break;
}
} else { /* curr_len > new_len, try removing from lowest one. */
uint8_t lowest = get_lowest_allowed_acc(acc_mgr->allowed_subset_mask);
i = lowest;
do {
if ((acc_mgr->allowed_subset_mask & (1 << i))) {
acc_mgr->allowed_subset_mask &= ~(1 << i);
acc_mgr->allowed_subset_mask_count--;
diff++;
if (diff == 0)
break;
}
i = (i + 1) % 10;
} while(i != lowest);
}
acc_mgr_enable_rotation_cond(acc_mgr);
LOG_ACC_CHG(acc_mgr, LOGL_INFO, old_mask, "update");
/* if we updated the set, notify about it */
if (curr_len != acc_mgr->allowed_subset_mask_count)
gsm_bts_set_system_infos(acc_mgr->bts);
}
/* Eg: (2,3,4) -> first=2; last=4. (3,7,8) -> first=3, last=8; (8,9,2) -> first=8, last=2 */
void get_subset_limits(struct acc_mgr *acc_mgr, uint8_t *first, uint8_t *last)
{
uint8_t lowest = get_lowest_allowed_acc(acc_mgr->allowed_subset_mask);
uint8_t highest = get_highest_allowed_acc(acc_mgr->allowed_subset_mask);
/* check if there's unselected ACCs between lowest and highest, that
* means subset is wrapping around, eg: (8,9,1)
* Assumption: The permanent set is bigger than the current selected subset */
bool is_wrapped = false;
uint8_t i = (lowest + 1) % 10;
do {
if (!acc_is_permanently_barred(acc_mgr->bts, i) &&
!(acc_mgr->allowed_subset_mask & (1 << i))) {
is_wrapped = true;
break;
}
i = (i + 1 ) % 10;
} while (i != (highest + 1) % 10);
if (is_wrapped) {
*first = highest;
*last = lowest;
} else {
*first = lowest;
*last = highest;
}
}
static void do_acc_rotate_step(void *data)
{
struct acc_mgr *acc_mgr = data;
uint8_t i;
uint8_t first, last;
uint16_t old_mask = acc_mgr->allowed_subset_mask;
/* Assumption: The size of the subset didn't change, that's handled by
* acc_mgr_subset_length_changed()
*/
/* Assumption: Rotation timer has been disabled if no ACC is allowed */
OSMO_ASSERT(acc_mgr->allowed_subset_mask_count != 0);
/* One ACC is rotated at a time: Drop first ACC and add next from last ACC */
get_subset_limits(acc_mgr, &first, &last);
acc_mgr->allowed_subset_mask &= ~(1 << first);
i = (last + 1) % 10;
do {
if (!acc_is_permanently_barred(acc_mgr->bts, i) &&
!(acc_mgr->allowed_subset_mask & (1 << i))) {
/* found first one which can be allowed, do it and be done */
acc_mgr->allowed_subset_mask |= (1 << i);
break;
}
i = (i + 1 ) % 10;
} while (i != (last + 1) % 10);
osmo_timer_schedule(&acc_mgr->rotate_timer, acc_mgr->rotation_time_sec, 0);
if (old_mask != acc_mgr->allowed_subset_mask) {
LOG_ACC_CHG(acc_mgr, LOGL_INFO, old_mask, "rotate");
gsm_bts_set_system_infos(acc_mgr->bts);
}
}
void acc_mgr_init(struct acc_mgr *acc_mgr, struct gsm_bts *bts)
{
acc_mgr->bts = bts;
acc_mgr->len_allowed_adm = 10; /* Allow all by default */
acc_mgr->len_allowed_ramp = 10;
acc_mgr->rotation_time_sec = ACC_MGR_QUANTUM_DEFAULT;
osmo_timer_setup(&acc_mgr->rotate_timer, do_acc_rotate_step, acc_mgr);
/* FIXME: Don't update SI yet, avoid crash due to bts->model being NULL */
acc_mgr_gen_subset(acc_mgr, false);
}
uint8_t acc_mgr_get_len_allowed_adm(struct acc_mgr *acc_mgr)
{
return acc_mgr->len_allowed_adm;
}
uint8_t acc_mgr_get_len_allowed_ramp(struct acc_mgr *acc_mgr)
{
return acc_mgr->len_allowed_ramp;
}
void acc_mgr_set_len_allowed_adm(struct acc_mgr *acc_mgr, uint8_t len_allowed_adm)
{
uint8_t old_len;
OSMO_ASSERT(len_allowed_adm <= 10);
if (acc_mgr->len_allowed_adm == len_allowed_adm)
return;
LOG_BTS(acc_mgr->bts, DRSL, LOGL_DEBUG,
"ACC: administrative rotate subset size set to %" PRIu8 "\n", len_allowed_adm);
old_len = acc_mgr_subset_len(acc_mgr);
acc_mgr->len_allowed_adm = len_allowed_adm;
if (old_len != acc_mgr_subset_len(acc_mgr))
acc_mgr_subset_length_changed(acc_mgr);
}
void acc_mgr_set_len_allowed_ramp(struct acc_mgr *acc_mgr, uint8_t len_allowed_ramp)
{
uint8_t old_len;
OSMO_ASSERT(len_allowed_ramp <= 10);
if (acc_mgr->len_allowed_ramp == len_allowed_ramp)
return;
LOG_BTS(acc_mgr->bts, DRSL, LOGL_DEBUG,
"ACC: ramping rotate subset size set to %" PRIu8 "\n", len_allowed_ramp);
old_len = acc_mgr_subset_len(acc_mgr);
acc_mgr->len_allowed_ramp = len_allowed_ramp;
if (old_len != acc_mgr_subset_len(acc_mgr))
acc_mgr_subset_length_changed(acc_mgr);
}
void acc_mgr_set_rotation_time(struct acc_mgr *acc_mgr, uint32_t rotation_time_sec)
{
LOG_BTS(acc_mgr->bts, DRSL, LOGL_DEBUG,
"ACC: rotate subset time set to %" PRIu32 " seconds\n", rotation_time_sec);
acc_mgr->rotation_time_sec = rotation_time_sec;
}
void acc_mgr_perm_subset_changed(struct acc_mgr *acc_mgr, struct gsm48_rach_control *rach_control)
{
/* Even if amount is the same, the allowed/barred ones may have changed,
* so let's retrigger generation of an entire subset rather than
* rotating it */
acc_mgr_gen_subset(acc_mgr, true);
}
/*!
* Potentially mark certain Access Control Classes (ACCs) as barred in accordance to ACC policy.
* \param[in] acc_mgr Pointer to acc_mgr structure.
* \param[in] rach_control RACH control parameters in which barred ACCs will be configured.
*/
void acc_mgr_apply_acc(struct acc_mgr *acc_mgr, struct gsm48_rach_control *rach_control)
{
rach_control->t2 |= acc_mgr_get_barred_t2(acc_mgr);
rach_control->t3 |= acc_mgr_get_barred_t3(acc_mgr);
}
//////////////////////////
// acc_ramp
//////////////////////////
static unsigned int get_next_step_interval(struct acc_ramp *acc_ramp)
{
struct gsm_bts *bts = acc_ramp->bts;
uint64_t load;
if (acc_ramp->step_interval_is_fixed)
return acc_ramp->step_interval_sec;
/* Scale the step interval to current channel load average. */
load = (bts->chan_load_avg << 8); /* convert to fixed-point */
acc_ramp->step_interval_sec = ((load * ACC_RAMP_STEP_INTERVAL_MAX) / 100) >> 8;
if (acc_ramp->step_interval_sec < ACC_RAMP_STEP_SIZE_MIN)
acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MIN;
else if (acc_ramp->step_interval_sec > ACC_RAMP_STEP_INTERVAL_MAX)
acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MAX;
LOG_BTS(bts, DRSL, LOGL_DEBUG,
"ACC RAMP: step interval set to %u seconds based on %u%% channel load average\n",
acc_ramp->step_interval_sec, bts->chan_load_avg);
return acc_ramp->step_interval_sec;
}
static void do_acc_ramping_step(void *data)
{
struct acc_ramp *acc_ramp = data;
struct acc_mgr *acc_mgr = &acc_ramp->bts->acc_mgr;
uint8_t old_len = acc_mgr_get_len_allowed_ramp(acc_mgr);
uint8_t new_len = OSMO_MIN(10, old_len + acc_ramp->step_size);
acc_mgr_set_len_allowed_ramp(acc_mgr, new_len);
/* If we have not allowed all ACCs yet, schedule another ramping step. */
if (new_len != 10)
osmo_timer_schedule(&acc_ramp->step_timer, get_next_step_interval(acc_ramp), 0);
}
/* Implements osmo_signal_cbfn() -- trigger or abort ACC ramping upon changes RF lock state. */
static int acc_ramp_nm_sig_cb(unsigned int subsys, unsigned int signal, void *handler_data, void *signal_data)
{
struct nm_statechg_signal_data *nsd = signal_data;
struct acc_ramp *acc_ramp = handler_data;
struct gsm_bts_trx *trx = NULL;
bool trigger_ramping = false, abort_ramping = false;
/* Handled signals map to an Administrative State Change ACK, or a State Changed Event Report. */
if (signal != S_NM_STATECHG_ADM && signal != S_NM_STATECHG_OPER)
return 0;
if (nsd->obj_class != NM_OC_RADIO_CARRIER)
return 0;
trx = nsd->obj;
LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: administrative state %s -> %s\n",
get_value_string(abis_nm_adm_state_names, nsd->old_state->administrative),
get_value_string(abis_nm_adm_state_names, nsd->new_state->administrative));
LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: operational state %s -> %s\n",
abis_nm_opstate_name(nsd->old_state->operational),
abis_nm_opstate_name(nsd->new_state->operational));
/* We only care about state changes of the first TRX. */
if (trx->nr != 0)
return 0;
/* RSL must already be up. We cannot send RACH system information to the BTS otherwise. */
if (trx->rsl_link == NULL) {
LOG_TRX(trx, DRSL, LOGL_DEBUG,
"ACC RAMP: ignoring state change because RSL link is down\n");
return 0;
}
/* Trigger or abort ACC ramping based on the new state of this TRX. */
if (nsd->old_state->administrative != nsd->new_state->administrative) {
switch (nsd->new_state->administrative) {
case NM_STATE_UNLOCKED:
if (nsd->old_state->operational != nsd->new_state->operational) {
/*
* Administrative and operational state have both changed.
* Trigger ramping only if TRX 0 will be both enabled and unlocked.
*/
if (nsd->new_state->operational == NM_OPSTATE_ENABLED)
trigger_ramping = true;
else
LOG_TRX(trx, DRSL, LOGL_DEBUG,
"ACC RAMP: ignoring state change because TRX is "
"transitioning into operational state '%s'\n",
abis_nm_opstate_name(nsd->new_state->operational));
} else {
/*
* Operational state has not changed.
* Trigger ramping only if TRX 0 is already usable.
*/
if (trx_is_usable(trx))
trigger_ramping = true;
else
LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change "
"because TRX is not usable\n");
}
break;
case NM_STATE_LOCKED:
case NM_STATE_SHUTDOWN:
abort_ramping = true;
break;
case NM_STATE_NULL:
default:
LOG_TRX(trx, DRSL, LOGL_ERROR, "ACC RAMP: unrecognized administrative state '0x%x' "
"reported for TRX 0\n", nsd->new_state->administrative);
break;
}
}
if (nsd->old_state->operational != nsd->new_state->operational) {
switch (nsd->new_state->operational) {
case NM_OPSTATE_ENABLED:
if (nsd->old_state->administrative != nsd->new_state->administrative) {
/*
* Administrative and operational state have both changed.
* Trigger ramping only if TRX 0 will be both enabled and unlocked.
*/
if (nsd->new_state->administrative == NM_STATE_UNLOCKED)
trigger_ramping = true;
else
LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change "
"because TRX is transitioning into administrative state '%s'\n",
get_value_string(abis_nm_adm_state_names, nsd->new_state->administrative));
} else {
/*
* Administrative state has not changed.
* Trigger ramping only if TRX 0 is already unlocked.
*/
if (trx->mo.nm_state.administrative == NM_STATE_UNLOCKED)
trigger_ramping = true;
else
LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change "
"because TRX is in administrative state '%s'\n",
get_value_string(abis_nm_adm_state_names, trx->mo.nm_state.administrative));
}
break;
case NM_OPSTATE_DISABLED:
abort_ramping = true;
break;
case NM_OPSTATE_NULL:
default:
LOG_TRX(trx, DRSL, LOGL_ERROR, "ACC RAMP: unrecognized operational state '0x%x' "
"reported for TRX 0\n", nsd->new_state->administrative);
break;
}
}
if (trigger_ramping)
acc_ramp_trigger(acc_ramp);
else if (abort_ramping)
acc_ramp_abort(acc_ramp);
return 0;
}
/*!
* Initialize an acc_ramp data structure.
* Storage for this structure must be provided by the caller.
*
* By default, ACC ramping is disabled and all ACCs are allowed.
*
* \param[in] acc_ramp Pointer to acc_ramp structure to be initialized.
* \param[in] bts BTS which uses this ACC ramp data structure.
*/
void acc_ramp_init(struct acc_ramp *acc_ramp, struct gsm_bts *bts)
{
acc_ramp->bts = bts;
acc_ramp_set_enabled(acc_ramp, false);
acc_ramp->step_size = ACC_RAMP_STEP_SIZE_DEFAULT;
acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MIN;
acc_ramp->step_interval_is_fixed = false;
osmo_timer_setup(&acc_ramp->step_timer, do_acc_ramping_step, acc_ramp);
osmo_signal_register_handler(SS_NM, acc_ramp_nm_sig_cb, acc_ramp);
}
/*!
* Change the ramping step size which controls how many ACCs will be allowed per ramping step.
* Returns negative on error (step_size out of range), else zero.
* \param[in] acc_ramp Pointer to acc_ramp structure.
* \param[in] step_size The new step size value.
*/
int acc_ramp_set_step_size(struct acc_ramp *acc_ramp, unsigned int step_size)
{
if (step_size < ACC_RAMP_STEP_SIZE_MIN || step_size > ACC_RAMP_STEP_SIZE_MAX)
return -ERANGE;
acc_ramp->step_size = step_size;
LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step size set to %u\n", step_size);
return 0;
}
/*!
* Change the ramping step interval to a fixed value. Unless this function is called,
* the interval is automatically scaled to the BTS channel load average.
* \param[in] acc_ramp Pointer to acc_ramp structure.
* \param[in] step_interval The new fixed step interval in seconds.
*/
int acc_ramp_set_step_interval(struct acc_ramp *acc_ramp, unsigned int step_interval)
{
if (step_interval < ACC_RAMP_STEP_INTERVAL_MIN || step_interval > ACC_RAMP_STEP_INTERVAL_MAX)
return -ERANGE;
acc_ramp->step_interval_sec = step_interval;
acc_ramp->step_interval_is_fixed = true;
LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step interval set to %u seconds\n",
step_interval);
return 0;
}
/*!
* Clear a previously set fixed ramping step interval, so that the interval
* is again automatically scaled to the BTS channel load average.
* \param[in] acc_ramp Pointer to acc_ramp structure.
*/
void acc_ramp_set_step_interval_dynamic(struct acc_ramp *acc_ramp)
{
acc_ramp->step_interval_is_fixed = false;
LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step interval set to 'dynamic'\n");
}
/*!
* Determine if ACC ramping should be started according to configuration, and
* begin the ramping process if the necessary conditions are present.
* Perform at least one ramping step to allow 'step_size' ACCs.
* If 'step_size' is ACC_RAMP_STEP_SIZE_MAX, or if ACC ramping is disabled,
* all ACCs will be allowed immediately.
* \param[in] acc_ramp Pointer to acc_ramp structure.
*/
void acc_ramp_trigger(struct acc_ramp *acc_ramp)
{
/* Abort any previously running ramping process and allow all available ACCs. */
acc_ramp_abort(acc_ramp);
if (acc_ramp_is_enabled(acc_ramp)) {
/* Set all available ACCs to barred and start ramping up. */
acc_mgr_set_len_allowed_ramp(&acc_ramp->bts->acc_mgr, 0);
do_acc_ramping_step(acc_ramp);
}
}
/*!
* Abort the ramping process and allow all available ACCs immediately.
* \param[in] acc_ramp Pointer to acc_ramp structure.
*/
void acc_ramp_abort(struct acc_ramp *acc_ramp)
{
if (osmo_timer_pending(&acc_ramp->step_timer))
osmo_timer_del(&acc_ramp->step_timer);
acc_mgr_set_len_allowed_ramp(&acc_ramp->bts->acc_mgr, 10);
}