osmo-bsc/src/osmo-bsc/gsm_08_08.c

431 lines
14 KiB
C
Raw Normal View History

/* (C) 2009-2015 by Holger Hans Peter Freyther <zecke@selfish.org>
* (C) 2009-2011 by On-Waves
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
#include <osmocom/bsc/bsc_subscr_conn_fsm.h>
#include <osmocom/bsc/osmo_bsc.h>
#include <osmocom/bsc/bsc_msc_data.h>
#include <osmocom/bsc/bsc_subscriber.h>
#include <osmocom/bsc/debug.h>
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
#include <osmocom/bsc/paging.h>
#include <osmocom/bsc/gsm_08_08.h>
#include <osmocom/bsc/codec_pref.h>
#include <osmocom/bsc/gsm_04_08_rr.h>
#include <osmocom/bsc/a_reset.h>
#include <osmocom/gsm/protocol/gsm_08_08.h>
#include <osmocom/gsm/gsm0808.h>
#include <osmocom/gsm/mncc.h>
#include <osmocom/gsm/gsm48.h>
#include <osmocom/bsc/osmo_bsc_sigtran.h>
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
#define LOG_COMPL_L3(pdisc, mtype, loglevel, format, args...) \
LOGP(DRSL, loglevel, "%s %s: " format, gsm48_pdisc_name(pdisc), gsm48_pdisc_msgtype_name(pdisc, mtype), ##args)
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
/* Check if we have a proper connection to the MSC */
static bool msc_connected(struct gsm_subscriber_connection *conn)
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
{
/* No subscriber conn at all */
if (!conn)
return false;
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
/* Connection to MSC not established */
if (!conn->sccp.msc)
return false;
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
/* Reset procedure not (yet) executed */
if (a_reset_conn_ready(conn->sccp.msc) == false)
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
return false;
return true;
}
2010-11-05 10:02:28 +00:00
/*! BTS->MSC: tell MSC a SAPI was not established. */
void bsc_sapi_n_reject(struct gsm_subscriber_connection *conn, int dlci)
{
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
int rc;
struct msgb *resp;
if (!msc_connected(conn))
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
return;
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
LOGP(DMSC, LOGL_NOTICE, "Tx MSC SAPI N REJECT DLCI=0x%02x\n", dlci);
resp = gsm0808_create_sapi_reject(dlci);
rate_ctr_inc(&conn->sccp.msc->msc_ctrs->ctr[MSC_CTR_BSSMAP_TX_DT1_SAPI_N_REJECT]);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
rc = osmo_fsm_inst_dispatch(conn->fi, GSCON_EV_TX_SCCP, resp);
if (rc != 0)
msgb_free(resp);
}
/*! MS->MSC: Tell MSC that ciphering has been enabled. */
void bsc_cipher_mode_compl(struct gsm_subscriber_connection *conn, struct msgb *msg, uint8_t chosen_encr)
{
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
int rc;
struct msgb *resp;
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
if (!msc_connected(conn))
return;
LOGP(DMSC, LOGL_DEBUG, "CIPHER MODE COMPLETE from MS, forwarding to MSC\n");
resp = gsm0808_create_cipher_complete(msg, chosen_encr);
rate_ctr_inc(&conn->sccp.msc->msc_ctrs->ctr[MSC_CTR_BSSMAP_TX_DT1_CIPHER_COMPLETE]);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
rc = osmo_fsm_inst_dispatch(conn->fi, GSCON_EV_TX_SCCP, resp);
if (rc != 0)
msgb_free(resp);
}
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
/* 9.2.5 CM service accept */
int gsm48_tx_mm_serv_ack(struct gsm_subscriber_connection *conn)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 SERV ACK");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
msg->lchan = conn->lchan;
gh->proto_discr = GSM48_PDISC_MM;
gh->msg_type = GSM48_MT_MM_CM_SERV_ACC;
DEBUGP(DMM, "-> CM SERVICE ACK\n");
gscon_submit_rsl_dtap(conn, msg, 0, 0);
return 0;
}
static bool is_cm_service_for_emerg(struct msgb *msg)
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
{
struct gsm48_service_request *cm;
struct gsm48_hdr *gh = msgb_l3(msg);
if (msgb_l3len(msg) < sizeof(*gh) + sizeof(*cm)) {
LOGP(DMSC, LOGL_ERROR, "CM ServiceRequest does not fit.\n");
return false;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
}
cm = (struct gsm48_service_request *) &gh->data[0];
return cm->cm_service_type == GSM48_CMSERV_EMERGENCY;
}
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
static bool is_msc_usable(struct bsc_msc_data *msc, bool is_emerg)
{
if (is_emerg && !msc->allow_emerg)
return false;
if (!a_reset_conn_ready(msc))
return false;
return true;
}
/* Decide which MSC to forward this Complete Layer 3 request to.
* a) If the subscriber was previously paged from a particular MSC, that MSC shall receive the Paging Response.
* b) If the message contains an NRI indicating a particular MSC and the MSC is connected, that MSC shall handle this
* conn.
* c) All other cases distribute the messages across connected MSCs in a round-robin fashion.
*/
static struct bsc_msc_data *bsc_find_msc(struct gsm_subscriber_connection *conn,
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
struct msgb *msg)
{
struct gsm_network *net = conn->network;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
struct gsm48_hdr *gh;
int8_t pdisc;
uint8_t mtype;
struct osmo_mobile_identity mi;
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
struct bsc_msc_data *msc;
struct bsc_msc_data *msc_target = NULL;
struct bsc_msc_data *msc_round_robin_next = NULL;
struct bsc_msc_data *msc_round_robin_first = NULL;
uint8_t round_robin_next_nr;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
struct bsc_subscr *subscr;
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
bool is_emerg = false;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
if (msgb_l3len(msg) < sizeof(*gh)) {
LOGP(DMSC, LOGL_ERROR, "There is no GSM48 header here.\n");
return NULL;
}
gh = msgb_l3(msg);
pdisc = gsm48_hdr_pdisc(gh);
mtype = gsm48_hdr_msg_type(gh);
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
is_emerg = (pdisc == GSM48_PDISC_MM && mtype == GSM48_MT_MM_CM_SERV_REQ) && is_cm_service_for_emerg(msg);
if (osmo_mobile_identity_decode_from_l3(&mi, msg, false)) {
LOG_COMPL_L3(pdisc, mtype, LOGL_ERROR, "Cannot extract Mobile Identity: %s\n",
msgb_hexdump_c(OTC_SELECT, msg));
/* There is no Mobile Identity to pick a matching MSC from. Likely this is an invalid Complete Layer 3
* message that deserves to be rejected. However, the current state of our ttcn3 tests does send invalid
* Layer 3 Info in some tests and expects osmo-bsc to not care about that. So, changing the behavior to
* rejecting on missing MI causes test failure and, if at all, should happen in a separate patch.
* See e.g. BSC_Tests.TC_chan_rel_rll_rel_ind: "dt := f_est_dchan('23'O, 23, '00010203040506'O);" */
}
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* Has the subscriber been paged from a connected MSC? */
if (pdisc == GSM48_PDISC_RR && mtype == GSM48_MT_RR_PAG_RESP) {
subscr = bsc_subscr_find_by_mi(conn->network->bsc_subscribers, &mi);
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
if (subscr) {
msc_target = paging_get_msc(conn_get_bts(conn), subscr);
bsc_subscr_put(subscr);
if (is_msc_usable(msc_target, is_emerg))
return msc_target;
msc_target = NULL;
}
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
}
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* TODO: extract NRI from MI */
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* Iterate MSCs to find one that matches the extracted NRI, and the next round-robin target for the case no NRI
* match is found. */
round_robin_next_nr = (is_emerg ? net->mscs_round_robin_next_emerg_nr : net->mscs_round_robin_next_nr);
llist_for_each_entry(msc, &net->mscs, entry) {
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
if (!is_msc_usable(msc, is_emerg))
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
continue;
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* TODO: return msc when extracted NRI matches this MSC */
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* Figure out the next round-robin MSC. The MSCs may appear unsorted in net->mscs. Make sure to linearly
* round robin the MSCs by number: pick the lowest msc->nr >= round_robin_next_nr, and also remember the
* lowest available msc->nr to wrap back to that in case no next MSC is left. */
if (!msc_round_robin_first || msc->nr < msc_round_robin_first->nr)
msc_round_robin_first = msc;
if (msc->nr >= round_robin_next_nr
&& (!msc_round_robin_next || msc->nr < msc_round_robin_next->nr))
msc_round_robin_next = msc;
}
/* No dedicated MSC found. Choose by round-robin.
* If msc_round_robin_next is NULL, there are either no more MSCs at/after mscs_round_robin_next_nr, or none of
* them are usable -- wrap to the start. */
msc_target = msc_round_robin_next ? : msc_round_robin_first;
if (!msc_target) {
LOG_COMPL_L3(pdisc, mtype, LOGL_ERROR, "%s%s: No suitable MSC for this Complete Layer 3 request found\n",
osmo_mobile_identity_to_str_c(OTC_SELECT, &mi), is_emerg ? " FOR EMERGENCY CALL" : "");
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
return NULL;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
}
refactor bsc_find_msc()'s round-robin Prepare for MSC pooling by NRI. Before introducing actual NRI decoding and MSC matching, fix the bsc_find_msc() implementation. (Indicate the places relevant for NRI by "TODO" comments). bsc_find_msc() puts an MSC to the end of the internal list of MSCs when it was used. This has problems: - Modifying the list affects VTY output, e.g. 'show running-config' and 'show mscs' change their order in which MSCs are shown, depending on how often a round-robin selection has taken place. - Emergency calls and normal calls potentially pick quite different sets of eligible MSCs. When the round-robin choices between these sets affect each other, the choice is not balanced. For example, if only the first MSC is allow_emerg == true, every emergency call would reset the round-robin state to the first MSC in the list, also for normal calls. If there are regular emergency calls, normal calls will then tend to load more onto the first few MSCs after those picked for emergency calls. Fix: Never affect the ordering of MSCs in the internal list of MSCs. Instead, keep a "next_nr" MSC index and determine the next round-robin target like that. Keep a separate "next_emerg_nr" MSC index so that emergency call round-robin does no longer cause normal round-robin to skip MSCs. Further problems in current bsc_find_msc(): - The "blind:" label should also do round-robin. - The "paging:" part should not attempt to use disconnected MSCs. - Both should also heed NRI matches (when they are added). Fix: instead of code dup, determine Paging Response matching with an earlier Paging Request right at the start. If that yields no usable MSC, continue into the normal NRI and round-robin selection. The loop in this patch is inspired by the upcoming implementation of MSC pooling by NRI, as indicated by the two TODO comments. The point is that, in the presence of an NRI from a TMSI identity, we always need to iterate all of the MSCs to find possible NRI matches. The two round-robin sets (Emergency and non-Emergency) are determined in the same loop iteration for cases that have no or match no NRI, or where a matching MSC is currently disconnected. Change-Id: Idf71f07ba5a17d5b870dc1a5a2875b6fedb61291
2020-05-24 22:02:56 +00:00
/* An MSC was picked by round-robin, so update the next round-robin nr to pick */
if (is_emerg)
net->mscs_round_robin_next_emerg_nr = msc_target->nr + 1;
else
net->mscs_round_robin_next_nr = msc_target->nr + 1;
return msc_target;
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
}
static int handle_page_resp(struct gsm_subscriber_connection *conn, struct msgb *msg)
{
struct osmo_mobile_identity mi;
struct bsc_subscr *subscr = NULL;
if (osmo_mobile_identity_decode_from_l3(&mi, msg, false)) {
LOGP(DRSL, LOGL_ERROR, "Unable to extract Mobile Identity from Paging Response\n");
return -1;
}
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
subscr = bsc_subscr_find_by_mi(conn->network->bsc_subscribers, &mi);
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
if (!subscr) {
LOGP(DMSC, LOGL_ERROR, "Non active subscriber got paged.\n");
rate_ctr_inc(&conn->lchan->ts->trx->bts->bts_ctrs->ctr[BTS_CTR_PAGING_NO_ACTIVE_PAGING]);
rate_ctr_inc(&conn->network->bsc_ctrs->ctr[BSC_CTR_PAGING_NO_ACTIVE_PAGING]);
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
return -1;
}
paging_request_stop(&conn->network->bts_list, conn_get_bts(conn), subscr, conn,
msg);
bsc_subscr_put(subscr);
return 0;
}
/* TS 04.08 sec 9.2.15 "Location updating request" */
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
static void handle_lu_request(struct gsm_subscriber_connection *conn,
struct msgb *msg)
{
struct gsm48_hdr *gh;
struct gsm48_loc_upd_req *lu;
int8_t rc8;
struct gsm_bts *bts = conn_get_bts(conn);
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
if (msgb_l3len(msg) < sizeof(*gh) + sizeof(*lu)) {
LOGP(DMSC, LOGL_ERROR, "LU too small to look at: %u\n", msgb_l3len(msg));
return;
}
gh = msgb_l3(msg);
lu = (struct gsm48_loc_upd_req *) gh->data;
rc8 = osmo_gsm48_rfpowercap2powerclass(bts->band, lu->classmark1.pwr_lev);
if (rc8 < 0) {
LOGP(DMSC, LOGL_NOTICE,
"Unable to decode RF power capability %x from classmark1 during LU.\n",
lu->classmark1.pwr_lev);
rc8 = 0;
}
conn_update_ms_power_class(conn, rc8);
}
/* TS 04.08 sec 9.2.15 "Location updating request" */
static void handle_cm_serv_req(struct gsm_subscriber_connection *conn,
struct msgb *msg)
{
struct gsm48_hdr *gh;
struct gsm48_service_request *serv_req;
struct gsm48_classmark2* cm2;
int8_t rc8;
struct gsm_bts *bts = conn_get_bts(conn);
if (msgb_l3len(msg) < sizeof(*gh) + sizeof(*serv_req)) {
LOGP(DMSC, LOGL_ERROR, "CM Serv Req too small to look at: %u\n", msgb_l3len(msg));
return;
}
gh = msgb_l3(msg);
serv_req = (struct gsm48_service_request *) gh->data;
cm2 = (struct gsm48_classmark2*)(((uint8_t*)&serv_req->classmark)+1);
/* FIXME: one classmark2 is available in libosmocore:
cm2 = &serv_req->classmark2; */
rc8 = osmo_gsm48_rfpowercap2powerclass(bts->band, cm2->pwr_lev);
if (rc8 < 0) {
LOGP(DMSC, LOGL_NOTICE,
"Unable to decode RF power capability %x from classmark2 during CM Service Req.\n",
cm2->pwr_lev);
rc8 = 0;
}
conn_update_ms_power_class(conn, rc8);
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
}
int bsc_scan_bts_msg(struct gsm_subscriber_connection *conn, struct msgb *msg)
{
struct gsm48_hdr *gh = msgb_l3(msg);
uint8_t pdisc = gsm48_hdr_pdisc(gh);
uint8_t mtype = gsm48_hdr_msg_type(gh);
if (pdisc == GSM48_PDISC_MM) {
if (mtype == GSM48_MT_MM_LOC_UPD_REQUEST)
handle_lu_request(conn, msg);
else if(mtype == GSM48_MT_MM_CM_SERV_REQ)
handle_cm_serv_req(conn, msg);
large refactoring: use FSMs for lchans; add inter-BSC HO Add FSMs: - timeslot_fsm: handle dynamic timeslots and OML+RSL availability. - lchan_fsm: handle an individual lchan activation, RTP stream and release, signal the appropriate calling FSMs on success, failure, release. - mgw_endpoint_fsm: handle one entire endpoint with several CI. - assignment_fsm: BSSMAP Assignment Request. - handover_fsm: all of intra, inter-MO and inter-MT handover. Above FSMs absorb large parts of the gscon FSM. The gscon FSM was surpassing the maximum amount events (32), and it is more logical to treat assignment, handover and MGW procedures in separate FSMs. - Add logging macros for each FSM type: - LOG_TS() - LOG_LCHAN() - LOG_MGWEP(), LOG_CI() - LOG_ASSIGNMENT() - LOG_HO() These log with the osmo_fsm_inst where present. New style decision: logging without a final newline char is awkward, especially for gsmtap logging and when other logs interleave LOGPC() calls; we have various cases where the final \n goes missing, and also this invokes the log category checking N times instead of once. So I decided to make these macros *always* append a newline, but only if there is no final newline yet. I hope that the compiler optimizes the strlen() of the constant format strings away. Thus I can log with or without typing "\n" and always get an \n termination anyway. General: - replace osmo_timers, state enums and program-wide osmo_signal_dispatch() with dedicated FSM timeouts, states and events. - introduce a common way to handle Tnnn timers: gsm_timers.h/.c: struct T_def. These can be used (with some macro magic) to define a state's timeout once, and not make mistakes for each osmo_fsm_inst_state_chg(). Details: bsc_subscr_conn_fsm.c: - move most states of this FSM to lchan_fsm, assignment_fsm, handover_fsm and mgw_endpoint_fsm. - There is exactly one state for an ongoing Assignment, with all details handled in conn->assignment.fi. The state relies on the assignment_fsm's timeout. - There is one state for an ongoing Handover; except for an incoming Handover from a remote BSS, the gscon remains in ST_INIT until the new lchan and conn are both established. - move bssmap_add_lcls_status() to osmo_bsc_lcls.c abis_rsl.c: - move all dynamic timeslot logic away into timeslot_fsm. Only keep plain send/receive functions in abis_rsl.c - reduce some rsl functions to merely send a message, rename to "_tx_". - rsl_ipacc_mdcx(): add '_tx_' in the name; move parts that change the lchan state out into the lchan_fsm, the lchan->abis_ip.* are now set there prior to invoking this function. - move all timers and error/release handling away into various FSMs. - tweak ipa_smod_s_for_lchan() and ipa_rtp_pt_for_lchan() to not require an lchan passed, but just mode,type that they require. Rename to ipacc_speech_mode*() and ipacc_payload_type(). - add rsl_forward_layer3_info, used for inter-BSC HO MO, to just send the RR message received during BSSMAP Handover Command. - move various logging to LOG_LCHAN() in order to log with the lchan FSM instance. One drawback is that the lchan FSM is limited to one logging category, i.e. this moves some logging from DRR to DRSL. It might actually make sense to combine those categories. - lose LOGP...LOGPC logging cascades: they are bad for gsmtap logging and for performance. - handle_classmark_chg(): change logging, move cm2 len check out of the cm3 condition (I hope that's correct). - gsm48_send_ho_cmd(): split off gsm48_make_ho_cmd() which doesn't send right away, so that during inter-bsc HO we can make an RR Handover Command to send via the MSC to the remote BSS. assignment_fsm.c: - the Chan Mode Modify in case of re-using the same lchan is not implemented yet, because this was also missing in the previous implementation (OS#3357). osmo_bsc_api.c: - simplify bsc_mr_config() and move to lchan_fsm.c, the only caller; rename to lchan_mr_config(). (bsc_mr_config() used to copy the values to mr_bts_lv twice, once by member assignment and then again with a memcpy.) - During handover, we used to copy the MR config from the old lchan. Since we may handover between FR and HR, rather set the MR Config anew every time, so that FR rates are always available on FR lchans, and never on HR lchans. Depends: I03ee7ce840ecfa0b6a33358e7385528aabd4873f (libosmocore), I1f2918418c38918c5ac70acaa51a47adfca12b5e (libosmocore) Change-Id: I82e3f918295daa83274a4cf803f046979f284366
2018-05-14 16:14:15 +00:00
} else if (pdisc == GSM48_PDISC_RR) {
if (mtype == GSM48_MT_RR_PAG_RESP)
handle_page_resp(conn, msg);
}
return 0;
}
/*! MS->MSC: New MM context with L3 payload. */
int bsc_compl_l3(struct gsm_subscriber_connection *conn, struct msgb *msg, uint16_t chosen_channel)
{
struct bsc_msc_data *msc;
struct msgb *resp;
struct gsm0808_speech_codec_list scl;
int rc = -2;
log_set_context(LOG_CTX_BSC_SUBSCR, conn->bsub);
LOGP(DMSC, LOGL_INFO, "Tx MSC COMPL L3\n");
/* find the MSC link we want to use */
msc = bsc_find_msc(conn, msg);
if (!msc) {
LOGP(DMSC, LOGL_ERROR, "Failed to find a MSC for a connection.\n");
rc = -1;
goto early_fail;
}
/* allocate resource for a new connection */
if (osmo_bsc_sigtran_new_conn(conn, msc) != BSC_CON_SUCCESS)
goto early_fail;
bsc_scan_bts_msg(conn, msg);
if (gscon_is_aoip(conn)) {
gen_bss_supported_codec_list(&scl, msc, conn_get_bts(conn));
if (scl.len > 0)
resp = gsm0808_create_layer3_2(msg, cgi_for_msc(conn->sccp.msc, conn_get_bts(conn)), &scl);
else {
/* Note: 3GPP TS 48.008 3.2.1.32, COMPLETE LAYER 3 INFORMATION clearly states that
* Codec List (BSS Supported) shall be included, if the radio access network
* supports an IP based user plane interface. It may be intentional that the
* current configuration does not support any voice codecs, in those cases the
* network does not support an IP based user plane interface, and therefore the
* Codec List (BSS Supported) IE can be left out in those situations. */
resp = gsm0808_create_layer3_2(msg, cgi_for_msc(conn->sccp.msc, conn_get_bts(conn)), NULL);
}
} else
resp = gsm0808_create_layer3_2(msg, cgi_for_msc(conn->sccp.msc, conn_get_bts(conn)), NULL);
if (resp)
rc = osmo_fsm_inst_dispatch(conn->fi, GSCON_EV_A_CONN_REQ, resp);
else
LOGP(DMSC, LOGL_DEBUG, "Failed to create layer3 message.\n");
early_fail:
log_set_context(LOG_CTX_BSC_SUBSCR, NULL);
return rc;
}
/*! MS->BSC/MSC: Um L3 message. */
void bsc_dtap(struct gsm_subscriber_connection *conn, uint8_t link_id, struct msgb *msg)
{
log_set_context(LOG_CTX_BSC_SUBSCR, conn->bsub);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
if (!msc_connected(conn))
goto done;
LOGP(DMSC, LOGL_INFO, "Tx MSC DTAP LINK_ID=0x%02x\n", link_id);
bsc_scan_bts_msg(conn, msg);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
/* Store link_id in msg->cb */
OBSC_LINKID_CB(msg) = link_id;
osmo_fsm_inst_dispatch(conn->fi, GSCON_EV_MO_DTAP, msg);
done:
log_set_context(LOG_CTX_BSC_SUBSCR, NULL);
return;
}
/*! BSC->MSC: Classmark Update. */
void bsc_cm_update(struct gsm_subscriber_connection *conn,
const uint8_t *cm2, uint8_t cm2_len,
const uint8_t *cm3, uint8_t cm3_len)
{
struct gsm48_classmark2 *cm2_parsed = (struct gsm48_classmark2 *)cm2;
int8_t rc8;
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
int rc;
struct msgb *resp;
struct gsm_bts *bts = conn_get_bts(conn);
rc8 = osmo_gsm48_rfpowercap2powerclass(bts->band, cm2_parsed->pwr_lev);
if (rc8 < 0) {
LOGP(DMSC, LOGL_NOTICE,
"Unable to decode RF power capability %x from classmark1 during CM Update.\n",
cm2_parsed->pwr_lev);
rc8 = 0;
}
conn_update_ms_power_class(conn, rc8);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
if (!msc_connected(conn))
return;
rate_ctr_inc(&conn->sccp.msc->msc_ctrs->ctr[MSC_CTR_BSSMAP_TX_DT1_CLASSMARK_UPDATE]);
introduce an osmo_fsm for gsm_subscriber_connection In the current implementation of osmo-bsc, the subscriber connection is not handled (very) statefully. However, there is some state keeping in the code that handles the mgcp connection, but there are still to much loose ends which allow odd situations to happen, which then lead severe error situations (see also closes tags at the end) This commit adds a number of improvements to fix those problems. - Use an osmo-fsm to control the gsm_subscriber_connection state and make sure that certain operations can only take place at certain states (e.g let connection oriented SCCP traffic only pass when an SCCP connection actually exists. Remove the old osmo_bsc_mgcp.c code. Use the recently developed MGCP client FSM to handle the MGCP connections. Also make sure that stuff that already works does not break. This in particular refers to the internal handover capability and the respective unit-tests. See also OS#2823, OS#2768 and OS#2898 - Fix logic to permit assignment to a signalling channel. (OS#2762) - Introduce T993210 to release lchan + subscr_conn if MSC fails to respond The GSM specs don't have an explicit timer for this, so let's introdcue a custom timer (hence starting with 99). This timeout catches the following situation: * we send a SCCP CR with COMPL_L3_INFO from the MS to the MSC, * the MSC doesn't respond (e.g. SCCP routing failure, program down, ...) The MS is supposed to timeout with T3210, 3220 or 3230. But the BSC shouldn't trust the MS but have some timer on its own. SCCP would have a timer T(conn est), but that one is specified to be 1-2min and hence rather long. See also: OS#2775 - Terminate bsc_subscr_conn_fsm on SCCP N-DISC.ind from MSC If the MSC is disconnecting the SCCP channel, we must terminate the FSM which in turn will release all lchan's and other state. This makes TC_chan_rel_hard_rlsd pass, see also OS#2731 As a side-effect, this fixes TC_chan_act_ack_est_ind_refused(), where the MSC is answering with CREF to our CR/COMPL_L3. - Release subscriber connection on RLL RELEASE IND of SAPI0 on main DCCH The subscriber connection isn't really useful for anything after the SAPI0 main signalling link has been released. We could try to re-establish, but our best option is probably simply releasing the subscriber_conn and anything related to it. This will make TC_chan_rel_rll_rel_ind pass, see also OS#2730 This commit has been tested using the BSC_Tests TTCN3 testsuit and the following tests were passed: TC_chan_act_noreply TC_chan_act_ack_noest TC_chan_act_ack_est_ind_noreply TC_chan_act_ack_est_ind_refused TC_chan_act_nack TC_chan_exhaustion TC_ctrl TC_chan_rel_conn_fail TC_chan_rel_hard_clear TC_chan_rel_hard_rlsd TC_chan_rel_a_reset TC_rll_est_ind_inact_lchan TC_rll_est_ind_inval_sapi1 TC_rll_est_ind_inval_sapi3 TC_rll_est_ind_inval_sacch TC_assignment_cic_only TC_assignment_csd TC_assignment_ctm TC_assignment_fr_a5_0 TC_assignment_fr_a5_1_codec_missing TC_assignment_fr_a5_1 TC_assignment_fr_a5_3 TC_assignment_fr_a5_4 TC_paging_imsi_nochan TC_paging_tmsi_nochan TC_paging_tmsi_any TC_paging_tmsi_sdcch TC_paging_tmsi_tch_f TC_paging_tmsi_tch_hf TC_paging_imsi_nochan_cgi TC_paging_imsi_nochan_lac_ci TC_paging_imsi_nochan_ci TC_paging_imsi_nochan_lai TC_paging_imsi_nochan_lac TC_paging_imsi_nochan_all TC_paging_imsi_nochan_plmn_lac_rnc TC_paging_imsi_nochan_rnc TC_paging_imsi_nochan_lac_rnc TC_paging_imsi_nochan_lacs TC_paging_imsi_nochan_lacs_empty TC_paging_imsi_a_reset TC_paging_counter TC_rsl_drop_counter TC_classmark TC_unsol_ass_fail TC_unsol_ass_compl TC_unsol_ho_fail TC_err_82_short_msg TC_ho_int Authors: Harald Welte <laforge@gnumonks.org> Philipp Maier <pmaier@sysmocom.de> Neels Hofmeyr <neels@hofmeyr.de> Closes: OS#2730 Closes: OS#2731 Closes: OS#2762 Closes: OS#2768 Closes: OS#2775 Closes: OS#2823 Closes: OS#2898 Closes: OS#2936 Change-Id: I68286d26e2014048b054f39ef29c35fef420cc97
2018-01-28 02:04:16 +00:00
resp = gsm0808_create_classmark_update(cm2, cm2_len, cm3, cm3_len);
rc = osmo_fsm_inst_dispatch(conn->fi, GSCON_EV_TX_SCCP, resp);
if (rc != 0)
msgb_free(resp);
}