osmo-ttcn3-hacks/pcu/PCU_Tests_RAW.ttcn

1810 lines
60 KiB
Plaintext

module PCU_Tests_RAW {
/* "RAW" PCU tests: Talk directly to the PCU socket of OsmoPCU on the one hand side (emulating
the BTS/BSC side PCU socket server) and the Gb interface on the other hand side. No NS/BSSGP
Emulation is used; rather, we simply use the NS_CodecPort to implement both standard and non-
standard procedures on the NS and BSSGP level. The goal of these tests is to test exactly
those NS and BSSGP implementations on the BSS (PCU) side. */
/* (C) 2018-2019 Harald Welte <laforge@gnumonks.org>
* (C) 2019 Vadim Yanitskiy <axilirator@gmail.com>
* All rights reserved.
*
* Released under the terms of GNU General Public License, Version 2 or
* (at your option) any later version.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
import from General_Types all;
import from Osmocom_Types all;
import from GSM_Types all;
import from GSM_RR_Types all;
import from Osmocom_VTY_Functions all;
import from TELNETasp_PortType all;
import from RLCMAC_CSN1_Types all;
import from RLCMAC_Types all;
import from MobileL3_CommonIE_Types all;
import from L3_Templates all;
import from NS_Types all;
import from BSSGP_Types all;
import from Osmocom_Gb_Types all;
import from BSSGP_Emulation all; /* BssgpConfig */
import from NS_Emulation all; /* NSConfiguration */
import from UD_Types all;
import from PCUIF_Types all;
import from PCUIF_CodecPort all;
import from PCUIF_RAW_Components all;
import from IPL4asp_Types all;
import from NS_CodecPort all;
import from NS_CodecPort_CtrlFunct all;
import from Native_Functions all;
import from PCU_Tests all;
modulepar {
charstring mp_pcu_sock_path := PCU_SOCK_DEFAULT;
float X2002 := 0.2; /* Timer -2002, IMM ASSIGN confirm delay */
}
type component RAW_NS_CT {
/* UDP port towards the bottom (IUT) */
port NS_CODEC_PT NSCP[4];
var ConnectionId g_ns_conn_id[4] := {-1, -1, -1, -1};
var NSConfiguration g_nsconfig[4];
timer g_T_guard;
}
type component RAW_PCU_CT {
/* PCUIF (we emulate the BTS part) */
port PCUIF_CODEC_PT PCU;
var ConnectionId g_pcu_conn_id := -1;
}
type component RAW_Test_CT extends RAW_NS_CT, RAW_PCU_CT {
}
private altstep as_Tguard() runs on RAW_NS_CT {
[] g_T_guard.timeout {
setverdict(fail, "Timeout of T_guard");
mtc.stop;
}
}
/* FIXME: make sure to use parameters from mp_gb_cfg.cell_id in the PCU INFO IND */
template (value) PCUIF_info_ind ts_PCUIF_INFO_default := {
version := PCU_IF_VERSION,
flags := c_PCUIF_Flags_default,
trx := valueof(ts_PCUIF_InfoTrxs_def),
bsic := 7,
mcc := 262,
mnc := 42,
mnc_3_digits := 0,
lac := 13135,
rac := 0,
nsei := mp_nsconfig.nsei,
nse_timer := { 3, 3, 3, 3, 30, 3, 10 },
cell_timer := { 3, 3, 3, 3, 3, 10, 3, 10, 3, 10, 3 },
cell_id := 20960,
repeat_time := 5 * 50,
repeat_count := 3,
bvci := mp_gb_cfg.bvci,
t3142 := 20,
t3169 := 5,
t3191 := 5,
t3193_10ms := 160,
t3195 := 5,
t3101 := 10,
t3103 := 4,
t3105 := 8,
cv_countdown := 15,
dl_tbf_ext := 250 * 10, /* ms */
ul_tbf_ext := 250 * 10, /* ms */
initial_cs := 2,
initial_mcs := 6,
nsvci := { mp_nsconfig.nsvci, 0 },
local_pprt := { mp_nsconfig.remote_udp_port, 0 },
remote_port := { mp_nsconfig.local_udp_port, 0 },
remote_ip := { f_inet_haddr(mp_nsconfig.local_ip) , '00000000'O }
}
function f_init_pcuif() runs on RAW_PCU_CT {
var PCUIF_info_ind info_ind;
map(self:PCU, system:PCU);
info_ind := valueof(ts_PCUIF_INFO_default);
/* Connect the Unix Domain Socket */
g_pcu_conn_id := f_pcuif_listen(PCU, mp_pcu_sock_path);
PCU.receive(UD_connected:?);
/* Wait for PCU_VERSION and return INFO_IND */
PCU.receive(t_SD_PCUIF(g_pcu_conn_id, tr_PCUIF_TXT_IND(0, PCU_VERSION, ?)));
/* FIXME: make sure to use parameters from mp_gb_cfg.cell_id in the PCU INFO IND */
var template PCUIF_Message info_ind_msg := ts_PCUIF_INFO_IND(0, info_ind);
PCU.send(t_SD_PCUIF(g_pcu_conn_id, info_ind_msg));
}
function f_pcuif_tx(template (value) PCUIF_Message msg) runs on RAW_PCU_CT {
PCU.send(t_SD_PCUIF(g_pcu_conn_id, msg));
}
function f_init_ns_codec(integer idx := 0, float guard_secs := 60.0) runs on RAW_NS_CT {
var Result res;
if (not g_T_guard.running) {
g_T_guard.start(guard_secs);
activate(as_Tguard());
}
if (not isbound(g_nsconfig) or not isbound(g_nsconfig[idx])) {
/* copy most parts from mp_nsconfig */
g_nsconfig[idx] := mp_nsconfig;
/* adjust those parts different for each NS-VC */
g_nsconfig[idx].nsvci := mp_nsconfig.nsvci + idx;
g_nsconfig[idx].local_udp_port := mp_nsconfig.local_udp_port + idx;
}
map(self:NSCP[idx], system:NSCP);
/* Connect the UDP socket */
log("connecting NSCP[", idx, "] to ", g_nsconfig[idx]);
res := f_IPL4_connect(NSCP[idx], g_nsconfig[idx].remote_ip, g_nsconfig[idx].remote_udp_port,
g_nsconfig[idx].local_ip, g_nsconfig[idx].local_udp_port, 0, { udp := {}});
if (not ispresent(res.connId)) {
setverdict(fail, "Could not connect NS UDP socket, check your configuration ", g_nsconfig[idx]);
mtc.stop;
}
g_ns_conn_id[idx] := res.connId;
}
function f_ns_exp(template PDU_NS exp_rx, integer idx := 0) runs on RAW_NS_CT return PDU_NS {
var NS_RecvFrom nrf;
log("f_ns_exp() expecting ", exp_rx);
alt {
[] NSCP[idx].receive(t_NS_RecvFrom(exp_rx)) -> value nrf { }
[] NSCP[idx].receive {
setverdict(fail, "Received unexpected NS: ", nrf);
mtc.stop;
}
}
return nrf.msg;
}
/* perform outbound NS-ALIVE procedure */
function f_outgoing_ns_alive(integer idx := 0) runs on RAW_NS_CT {
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE));
alt {
[] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE_ACK));
[] NSCP[idx].receive { repeat; }
}
}
/* perform outbound NS-ALIVE procedure */
function f_outgoing_ns_alive_no_ack(integer idx := 0, float tout := 10.0) runs on RAW_NS_CT {
timer T := tout;
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE));
T.start;
alt {
[] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE_ACK)) {
setverdict(fail, "Received unexpected NS-ALIVE ACK");
}
[] NSCP[idx].receive { repeat; }
[] T.timeout {
setverdict(pass);
}
}
}
/* ensure no matching message is received within 'tout' */
function f_ensure_no_ns(template PDU_NS ns := ?, integer idx := 0, float tout := 3.0)
runs on RAW_Test_CT {
timer T := tout;
T.start;
alt {
[] NSCP[idx].receive(t_NS_RecvFrom(ns)) {
setverdict(fail, "NS-ALIVE from unconfigured (possibly initial) endpoint");
}
[] T.timeout {
setverdict(pass);
}
}
}
/* perform outbound NS-BLOCK procedure */
function f_outgoing_ns_block(NsCause cause, integer idx := 0) runs on RAW_NS_CT {
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_BLOCK(cause, g_nsconfig[idx].nsvci)));
alt {
[] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_BLOCK_ACK(g_nsconfig[idx].nsvci)));
[] NSCP[idx].receive { repeat; }
}
}
/* receive NS-ALIVE and ACK it */
altstep as_rx_alive_tx_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
[] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE)) {
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE_ACK));
if (not oneshot) { repeat; }
}
}
/* Transmit BSSGP RESET for given BVCI and expect ACK */
function f_tx_bvc_reset_rx_ack(BssgpBvci bvci, integer idx := 0, boolean exp_ack := true)
runs on RAW_NS_CT {
var PDU_BSSGP bssgp_tx := valueof(ts_BVC_RESET(BSSGP_CAUSE_NET_SV_CAP_MOD_GT_ZERO_KBPS, bvci,
mp_gb_cfg.cell_id));
timer T := 5.0;
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx))));
T.start;
alt {
[exp_ack] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0,
decmatch tr_BVC_RESET_ACK(bvci, ?)))) {
setverdict(pass);
}
[exp_ack] T.timeout {
setverdict(fail, "No response to BVC-RESET");
}
[not exp_ack] T.timeout {
setverdict(pass);
}
[] NSCP[idx].receive { repeat; }
}
}
/* Receive a BSSGP RESET for given BVCI and ACK it */
altstep as_rx_bvc_reset_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
var NS_RecvFrom ns_rf;
/* FIXME: nail down received cell_id in match */
[] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0,
decmatch tr_BVC_RESET(?, bvci, ?))))
-> value ns_rf {
var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU);
var PDU_BSSGP bssgp_tx := valueof(ts_BVC_RESET_ACK(bvci, mp_gb_cfg.cell_id));
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx))));
if (not oneshot) { repeat; }
}
}
/* Receive a BSSGP UNBLOCK for given BVCI and ACK it */
altstep as_rx_bvc_unblock_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
var NS_RecvFrom ns_rf;
[] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0,
decmatch t_BVC_UNBLOCK(bvci))))
-> value ns_rf {
var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU);
var PDU_BSSGP bssgp_tx := valueof(t_BVC_UNBLOCK_ACK(bvci));
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx))));
if (not oneshot) { repeat; }
}
}
/* Receive a BSSGP FLOW-CONTROL-BVC and ACK it */
altstep as_rx_bvc_fc_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
var NS_RecvFrom ns_rf;
[] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, bvci,
decmatch tr_BVC_FC_BVC)))
-> value ns_rf {
var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU);
var OCT1 tag := bssgp_rx.pDU_BSSGP_FLOW_CONTROL_BVC.tag.unstructured_Value;
var PDU_BSSGP bssgp_tx := valueof(t_BVC_FC_BVC_ACK(tag));
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, bvci, enc_PDU_BSSGP(bssgp_tx))));
if (not oneshot) { repeat; }
}
}
/**********************************************************************************
* Classic Gb/IP bring-up test cases using NS-{RESET,BLOCK,UNBLOCK} and no IP-SNS *
**********************************************************************************/
/* Receive a NS-RESET and ACK it */
private altstep as_rx_ns_reset_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
var NS_RecvFrom ns_rf;
[] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_RESET(NS_CAUSE_OM_INTERVENTION, g_nsconfig[idx].nsvci,
g_nsconfig[idx].nsei))) -> value ns_rf {
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_RESET_ACK(g_nsconfig[idx].nsvci,
g_nsconfig[idx].nsei)));
if (not oneshot) { repeat; }
}
}
/* Receive a NS-UNBLOCK and ACK it */
private altstep as_rx_ns_unblock_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT {
var NS_RecvFrom ns_rf;
[] NSCP[idx].receive(t_NS_RecvFrom(t_NS_UNBLOCK)) -> value ns_rf {
NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_UNBLOCK_ACK));
if (not oneshot) { repeat; }
}
}
/* test the NS-RESET procedure */
testcase TC_ns_reset() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
setverdict(pass);
}
/* ensure NS-RESET are re-transmitted */
testcase TC_ns_reset_retrans() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
var integer i;
for (i := 0; i < 3; i := i+1) {
NSCP[0].receive(t_NS_RecvFrom(tr_NS_RESET(NS_CAUSE_OM_INTERVENTION,
g_nsconfig[0].nsvci, g_nsconfig[0].nsei)));
}
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
setverdict(pass);
}
/* test the inbound NS-ALIVE procedure after NS-RESET */
testcase TC_ns_alive() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for one ALIVE cycle, then ACK any further ALIVE in the background */
as_rx_alive_tx_ack(oneshot := true);
setverdict(pass);
}
/* Test for NS-RESET after NS-ALIVE timeout */
testcase TC_ns_alive_timeout_reset() runs on RAW_Test_CT {
f_init_ns_codec(guard_secs := 100.0);
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for at least one NS-ALIVE */
NSCP[0].receive(t_NS_RecvFrom(t_NS_ALIVE));
/* wait for NS-RESET to re-appear, ignoring any NS-ALIVE until then */
alt {
[] as_rx_ns_reset_ack(oneshot := true) { setverdict(pass); }
[] NSCP[0].receive(t_NS_RecvFrom(t_NS_ALIVE)) { repeat; }
}
}
/* test for NS-RESET/NS-ALIVE/NS-UNBLOCK */
testcase TC_ns_unblock() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for one ALIVE cycle, then ACK any further ALIVE in the background */
as_rx_alive_tx_ack(oneshot := true);
activate(as_rx_alive_tx_ack());
as_rx_ns_unblock_ack(oneshot := true);
setverdict(pass);
}
/* test for NS-UNBLOCK re-transmissions */
testcase TC_ns_unblock_retrans() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for one ALIVE cycle, then ACK any further ALIVE in the background */
as_rx_alive_tx_ack(oneshot := true);
activate(as_rx_alive_tx_ack());
/* wait for first NS-UNBLOCK, don't respond */
NSCP[0].receive(t_NS_RecvFrom(t_NS_UNBLOCK));
/* wait for re-transmission of NS-UNBLOCK */
as_rx_ns_unblock_ack(oneshot := true);
setverdict(pass);
}
/* full bring-up of the Gb link for NS and BSSGP layer up to BVC-FC */
testcase TC_ns_full_bringup() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for one ALIVE cycle, then ACK any further ALIVE in the background */
as_rx_alive_tx_ack(oneshot := true);
activate(as_rx_alive_tx_ack());
as_rx_ns_unblock_ack(oneshot := true);
f_outgoing_ns_alive();
/* Expect BVC-RESET for signaling (0) and ptp BVCI */
as_rx_bvc_reset_tx_ack(0, oneshot := true);
as_rx_bvc_reset_tx_ack(mp_gb_cfg.bvci, oneshot := true);
as_rx_bvc_unblock_tx_ack(mp_gb_cfg.bvci, oneshot := true);
/* wait for one FLOW-CONTROL BVC and then ACK any further in the future */
as_rx_bvc_fc_tx_ack(mp_gb_cfg.bvci, oneshot := true);
activate(as_rx_bvc_fc_tx_ack(mp_gb_cfg.bvci));
setverdict(pass);
}
/* test outbound (SGSN-originated) NS-BLOCK procedure */
testcase TC_ns_so_block() runs on RAW_Test_CT {
f_init_ns_codec();
f_init_pcuif();
/* Expect inbound NS-RESET procedure */
as_rx_ns_reset_ack(oneshot := true);
/* wait for one ALIVE cycle, then ACK any further ALIVE in the background */
as_rx_alive_tx_ack(oneshot := true);
activate(as_rx_alive_tx_ack());
as_rx_ns_unblock_ack(oneshot := true);
f_outgoing_ns_alive();
f_outgoing_ns_block(NS_CAUSE_EQUIPMENT_FAILURE);
setverdict(pass);
}
type record lqual_range {
/* component reference to the IPA_Client component used for RSL */
uint8_t low,
uint8_t high
}
type component RAW_PCU_Test_CT extends bssgp_CT {
/* Connection to the BTS component (one for now) */
port RAW_PCU_MSG_PT BTS;
/* Connection to the PCUIF component */
port RAW_PCU_MSG_PT PCUIF;
/* VTY connection to the PCU */
port TELNETasp_PT PCUVTY;
/* Uplink CS/MCS thresholds, default from pcu_main.c: */
var lqual_range g_cs_lqual_ranges[4] := {{low := 0, high := 6},
{low := 5, high := 8},
{low := 7, high := 13},
{low := 12,high := 35}};
var lqual_range g_mcs_lqual_ranges[9] := {{low := 0, high := 6},
{low := 5, high := 8},
{low := 7, high := 13},
{low := 12,high := 15},
{low := 14, high := 17},
{low := 16, high := 18},
{low := 17,high := 20},
{low := 19, high := 24},
{low := 23,high := 35}};
var uint8_t g_cs_initial_dl := 1;
var uint8_t g_cs_initial_ul := 1;
var uint8_t g_mcs_initial_dl := 1;
var uint8_t g_mcs_initial_ul := 1;
var uint8_t g_cs_max_dl := 4;
var uint8_t g_cs_max_ul := 4;
var uint8_t g_mcs_max_dl := 9;
var uint8_t g_mcs_max_ul := 9;
/* Guard timeout */
timer g_T_guard := 60.0;
};
private altstep as_Tguard_RAW() runs on RAW_PCU_Test_CT {
[] g_T_guard.timeout {
setverdict(fail, "Timeout of T_guard");
mtc.stop;
}
}
private function f_pcuvty_set_allowed_cs_mcs() runs on RAW_PCU_Test_CT {
f_vty_config2(PCUVTY, {"pcu"}, "cs " & int2str(g_cs_initial_dl) & " " & int2str(g_cs_initial_ul));
f_vty_config2(PCUVTY, {"pcu"}, "cs max " & int2str(g_cs_max_dl) & " " & int2str(g_cs_max_ul));
f_vty_config2(PCUVTY, {"pcu"}, "mcs " & int2str(g_mcs_initial_dl) & " " & int2str(g_mcs_initial_ul));
f_vty_config2(PCUVTY, {"pcu"}, "mcs max " & int2str(g_mcs_max_dl) & " " & int2str(g_mcs_max_ul));
}
private function f_pcuvty_set_link_quality_ranges() runs on RAW_PCU_Test_CT {
var charstring cmd;
cmd := "cs link-quality-ranges" &
" cs1 " & int2str(g_cs_lqual_ranges[0].high) &
" cs2 " & int2str(g_cs_lqual_ranges[1].low) & " " & int2str(g_cs_lqual_ranges[1].high) &
" cs3 " & int2str(g_cs_lqual_ranges[2].low) & " " & int2str(g_cs_lqual_ranges[2].high) &
" cs4 " & int2str(g_cs_lqual_ranges[3].low);
f_vty_config2(PCUVTY, {"pcu"}, cmd);
cmd := "mcs link-quality-ranges" &
" mcs1 " & int2str(g_mcs_lqual_ranges[0].high) &
" mcs2 " & int2str(g_mcs_lqual_ranges[1].low) & " " & int2str(g_mcs_lqual_ranges[1].high) &
" mcs3 " & int2str(g_mcs_lqual_ranges[2].low) & " " & int2str(g_mcs_lqual_ranges[2].high) &
" mcs4 " & int2str(g_mcs_lqual_ranges[3].low) & " " & int2str(g_mcs_lqual_ranges[3].high) &
" mcs5 " & int2str(g_mcs_lqual_ranges[4].low) & " " & int2str(g_mcs_lqual_ranges[4].high) &
" mcs6 " & int2str(g_mcs_lqual_ranges[5].low) & " " & int2str(g_mcs_lqual_ranges[5].high) &
" mcs7 " & int2str(g_mcs_lqual_ranges[6].low) & " " & int2str(g_mcs_lqual_ranges[6].high) &
" mcs8 " & int2str(g_mcs_lqual_ranges[7].low) & " " & int2str(g_mcs_lqual_ranges[7].high) &
" mcs9 " & int2str(g_mcs_lqual_ranges[8].low);
f_vty_config2(PCUVTY, {"pcu"}, cmd);
}
private function f_init_vty(charstring id) runs on RAW_PCU_Test_CT {
map(self:PCUVTY, system:PCUVTY);
f_vty_set_prompts(PCUVTY);
f_vty_transceive(PCUVTY, "enable");
}
private function f_init_raw(charstring id, template (value) PCUIF_info_ind info_ind := ts_PCUIF_INFO_default)
runs on RAW_PCU_Test_CT {
var RAW_PCUIF_CT vc_PCUIF;
var RAW_PCU_BTS_CT vc_BTS;
/* Start the guard timer */
g_T_guard.start;
activate(as_Tguard_RAW());
/* Init PCU interface component */
vc_PCUIF := RAW_PCUIF_CT.create("PCUIF-" & id);
connect(vc_PCUIF:MTC, self:PCUIF);
map(vc_PCUIF:PCU, system:PCU);
/* Create one BTS component (we may want more some day) */
vc_BTS := RAW_PCU_BTS_CT.create("BTS-" & id);
connect(vc_BTS:PCUIF, vc_PCUIF:BTS);
connect(vc_BTS:TC, self:BTS);
f_init_vty(id);
vc_PCUIF.start(f_PCUIF_CT_handler(mp_pcu_sock_path));
vc_BTS.start(f_BTS_CT_handler(0, valueof(info_ind)));
/* Wait until the BTS is ready (SI13 negotiated) */
BTS.receive(tr_RAW_PCU_EV(BTS_EV_SI13_NEGO));
}
template AckNackDescription t_AckNackDescription_init := {
final_ack := '0'B,
starting_seq_nr := 0,
receive_block_bitmap := '0000000000000000000000000000000000000000000000000000000000000000'B
}
/* TS 44.060 sec 12.3 Ack/Nack Description */
private function f_acknackdesc_ack_block(inout AckNackDescription desc, uint7_t bsn, BIT1 final_ack := '0'B)
{
var integer i;
var integer inc := bsn - desc.starting_seq_nr + 1;
/* Filling hole? */
if (bsn < desc.starting_seq_nr) {
desc.receive_block_bitmap[lengthof(desc.receive_block_bitmap) - (desc.starting_seq_nr - bsn)] := int2bit(1, 1);
return;
}
/* SSN is increased, and so RBB values need to be moved */
for (i := 0; i < lengthof(desc.receive_block_bitmap) - inc; i := i+1) {
desc.receive_block_bitmap[i] := desc.receive_block_bitmap[i + inc];
}
for (i := lengthof(desc.receive_block_bitmap) - inc; i < lengthof(desc.receive_block_bitmap) - 1; i := i+1) {
desc.receive_block_bitmap[i] := int2bit(0, 1);
}
/* Now we can set current bit and update SSN */
desc.starting_seq_nr := bsn + 1;
desc.receive_block_bitmap[lengthof(desc.receive_block_bitmap) - 1] := int2bit(1, 1);
/* Finally update the final_ack bit as requested: */
desc.final_ack := final_ack;
}
/* FIXME: properly encode RA (see TS 24.060, table 11.2.5.2) */
private function f_establish_tbf(out GsmRrMessage rr_imm_ass, uint8_t bts_nr := 0,
uint16_t ra := oct2int('3A'O), uint8_t is_11bit := 0,
PCUIF_BurstType burst_type := BURST_TYPE_0,
TimingAdvance ta := 0)
runs on RAW_PCU_Test_CT return boolean {
var PCUIF_Message pcu_msg;
var GsmRrMessage rr_msg;
var uint32_t fn;
timer T;
/* FIXME: ask the BTS component to give us the current TDMA fn */
fn := 1337 + ta;
/* Send RACH.ind */
log("Sending RACH.ind on fn=", fn, " with RA=", ra, ", TA=", ta);
BTS.send(ts_PCUIF_RACH_IND(bts_nr := bts_nr, trx_nr := 0, ts_nr := 0,
ra := ra, is_11bit := is_11bit,
burst_type := burst_type,
fn := fn, arfcn := 871,
qta := ta * 4));
/* Expect Immediate (TBF) Assignment on TS0/AGCH */
T.start(2.0);
alt {
[] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := bts_nr, trx_nr := 0, ts_nr := 0,
sapi := PCU_IF_SAPI_AGCH, data := ?))
-> value pcu_msg {
rr_imm_ass := dec_GsmRrMessage(pcu_msg.u.data_req.data);
log("Rx Immediate Assignment: ", rr_imm_ass);
/* Make sure this assignment is for us
* TODO: Uplink or Downlink TBF? */
if (match(rr_imm_ass, tr_IMM_TBF_ASS(?, ra, fn))) {
setverdict(pass);
return true;
}
/* Not for us? Wait for more. */
repeat;
}
[] BTS.receive { repeat; }
[] T.timeout {
setverdict(fail, "Timeout waiting for Immediate Assignment");
}
}
return false;
}
private function f_imm_ass_verify_ul_tbf_ass(GsmRrMessage rr_imm_ass, out PacketUlAssign ul_tbf_ass)
runs on RAW_PCU_Test_CT return boolean {
/* Make sure we received an UL TBF Assignment */
if (match(rr_imm_ass, tr_IMM_TBF_ASS(dl := false, rest := tr_IaRestOctets_ULAss(?)))) {
ul_tbf_ass := rr_imm_ass.payload.imm_ass.rest_octets.hh.pa.uldl.ass.ul;
log("Rx Uplink TBF assignment: ", ul_tbf_ass);
setverdict(pass);
} else {
setverdict(fail, "Failed to match UL TBF Assignment");
return false;
}
/* Make sure we have got a TBF with Dynamic Block Allocation */
if (ul_tbf_ass.dynamic == omit) {
setverdict(fail, "Single Block Allocation is not handled by ", testcasename());
return false;
}
return true;
}
private function f_imm_ass_verify_dl_tbf_ass(GsmRrMessage rr_imm_ass, out PacketDlAssign dl_tbf_ass)
runs on RAW_PCU_Test_CT return boolean {
/* Make sure we received a DL TBF Assignment */
if (match(rr_imm_ass, tr_IMM_TBF_ASS(dl := true, rest := tr_IaRestOctets_DLAss(?)))) {
dl_tbf_ass := rr_imm_ass.payload.imm_ass.rest_octets.hh.pa.uldl.ass.dl;
log("Rx Downlink TBF assignment: ", dl_tbf_ass);
setverdict(pass);
} else {
setverdict(fail, "Failed to match DL TBF Assignment");
return false;
}
return true;
}
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
private function f_pcuif_tx_data_ind(octetstring data, int16_t lqual_cb := 0, uint32_t fn := 0)
runs on RAW_PCU_Test_CT {
var template RAW_PCU_EventParam ev_param := {tdma_fn := ? };
BTS.send(ts_PCUIF_DATA_IND(bts_nr := 0, trx_nr := 0, ts_nr := 7, block_nr := 0,
sapi := PCU_IF_SAPI_PDTCH, data := data,
fn := fn, arfcn := 871, lqual_cb := lqual_cb));
if (fn != 0) {
ev_param := {tdma_fn := fn };
}
BTS.receive(tr_RAW_PCU_EV(TDMA_EV_PDTCH_BLOCK_SENT, ev_param));
}
/* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */
private function f_pcuif_rx_data_req(out PCUIF_Message pcu_msg)
runs on RAW_PCU_Test_CT {
BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PDTCH, fn := 0,
arfcn := 871, block_nr := 0));
BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PDTCH)) -> value pcu_msg;
}
/* Expect an Immediate Assignment (paging) from PCU on PCUIF on specified sapi. */
private function f_pcuif_rx_pch_imm_tbf_ass(out GsmRrMessage rr_imm_ass)
runs on RAW_PCU_Test_CT {
var PCUIF_Message pcu_msg;
var octetstring macblock;
BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 0,
sapi := PCU_IF_SAPI_PCH)) -> value pcu_msg;
/* First 3 bytes contain paging group: */
macblock := substr(pcu_msg.u.data_req.data, 3, pcu_msg.u.data_req.len - 3);
rr_imm_ass := dec_GsmRrMessage(macblock);
if (not match(rr_imm_ass, tr_IMM_TBF_ASS())) {
setverdict(fail, "Failed to match Immediate Assignment: ", rr_imm_ass);
mtc.stop;
}
BTS.send(ts_PCUIF_DATA_CNF(bts_nr := 0, trx_nr := 0, ts_nr := 0, block_nr := 0,
fn := pcu_msg.u.data_req.fn, arfcn := 871, sapi := PCU_IF_SAPI_PCH, data := macblock));
}
/* Expect a Paging Request Type 1 from PCU on PCUIF on specified sapi. */
private function f_pcuif_rx_pch_pag_req1(out GsmRrMessage rr_pag_req1)
runs on RAW_PCU_Test_CT {
var PCUIF_Message pcu_msg;
var octetstring macblock;
BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 0,
sapi := PCU_IF_SAPI_PCH)) -> value pcu_msg;
/* First 3 bytes contain paging group: */
macblock := substr(pcu_msg.u.data_req.data, 3, pcu_msg.u.data_req.len - 3);
rr_pag_req1 := dec_GsmRrMessage(macblock);
if (not match(rr_pag_req1, tr_PAG_REQ1())) {
setverdict(fail, "Failed to match Paging Request Type 1: ", rr_pag_req1);
mtc.stop;
}
BTS.send(ts_PCUIF_DATA_CNF(bts_nr := 0, trx_nr := 0, ts_nr := 0, block_nr := 0,
fn := pcu_msg.u.data_req.fn, arfcn := 871, sapi := PCU_IF_SAPI_PCH, data := macblock));
}
private function f_tx_rlcmac_ul_block(template (value) RlcmacUlBlock ul_data, int16_t lqual_cb := 0, uint32_t fn := 0)
runs on RAW_PCU_Test_CT {
var octetstring data;
/* Encode the payload of DATA.ind */
data := enc_RlcmacUlBlock(valueof(ul_data));
data := f_pad_oct(data, 23, '00'O); /* CS-1 */
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
f_pcuif_tx_data_ind(data, lqual_cb, fn);
}
private function f_tx_rlcmac_ul_n_blocks(PacketUlAssign ul_tbf_ass, integer num_blocks := 1)
runs on RAW_PCU_Test_CT {
var template (value) RlcmacUlBlock ul_data := t_RLCMAC_UL_DATA(
tfi := ul_tbf_ass.dynamic.tfi_assignment,
cv := num_blocks - 1, /* num UL blocks to be sent (to be overridden in loop) */
bsn := 0, /* TODO: what should be here? */
blocks := { /* To be generated in loop */ });
/* HACK: patch missing TLLI; otherwise OsmoPCU rejects DATA.req */
ul_data.data.tlli := '00000001'O;
for (var integer i := 0; i < num_blocks; i := i + 1) {
/* Prepare a new UL block (CV, random payload) */
ul_data.data.mac_hdr.countdown := (num_blocks - i - 1);
ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) };
f_tx_rlcmac_ul_block(ul_data);
}
}
private function f_rx_rlcmac_dl_block(out RlcmacDlBlock dl_block, out uint32_t dl_fn)
runs on RAW_PCU_Test_CT {
var PCUIF_Message pcu_msg;
f_pcuif_rx_data_req(pcu_msg);
dl_block := dec_RlcmacDlBlock(pcu_msg.u.data_req.data);
dl_fn := pcu_msg.u.data_req.fn;
}
private function f_rx_rlcmac_dl_block_exp_ack_nack(out RlcmacDlBlock dl_block, out uint32_t poll_fn)
runs on RAW_PCU_Test_CT {
var uint32_t dl_fn;
f_rx_rlcmac_dl_block(dl_block, dl_fn);
if (not match(dl_block, tr_RLCMAC_UL_ACK_NACK(ul_tfi := ?, tlli := ?))) {
setverdict(fail, "Failed to match Packet Uplink ACK / NACK");
mtc.stop;
}
poll_fn := dl_fn + f_rrbp_fn_delay(dl_block.ctrl.mac_hdr.rrbp);
}
private function f_rx_rlcmac_dl_block_exp_dummy(out RlcmacDlBlock dl_block)
runs on RAW_PCU_Test_CT {
var uint32_t dl_fn;
f_rx_rlcmac_dl_block(dl_block, dl_fn);
if (not match(dl_block, tr_RLCMAC_DUMMY_CTRL())) {
setverdict(fail, "Failed to match Packet DUMMY DL");
mtc.stop;
}
}
private function f_rx_rlcmac_dl_block_exp_pkt_ass(out RlcmacDlBlock dl_block, out uint32_t poll_fn)
runs on RAW_PCU_Test_CT {
var uint32_t dl_fn;
f_rx_rlcmac_dl_block(dl_block, dl_fn);
if (not match(dl_block, tr_RLCMAC_DL_PACKET_ASS())) {
setverdict(fail, "Failed to match Packet Downlink Assignment");
mtc.stop;
}
poll_fn := dl_fn + f_rrbp_fn_delay(dl_block.ctrl.mac_hdr.rrbp);
}
private function f_rx_rlcmac_dl_block_exp_pkt_pag_req(out RlcmacDlBlock dl_block)
runs on RAW_PCU_Test_CT {
var uint32_t dl_fn;
f_rx_rlcmac_dl_block(dl_block, dl_fn);
if (not match(dl_block, tr_RLCMAC_PACKET_PAG_REQ())) {
setverdict(fail, "Failed to match Packet Paging Request: ", dl_block, " vs ", tr_RLCMAC_PACKET_PAG_REQ());
mtc.stop;
}
}
private function f_rx_rlcmac_dl_block_exp_data(out RlcmacDlBlock dl_block, out uint32_t ack_fn, octetstring data, template (present) uint7_t exp_bsn := ?)
runs on RAW_PCU_Test_CT {
var PCUIF_Message pcu_msg;
var uint32_t dl_fn;
var template RlcmacDlBlock dl_template := tr_RLCMAC_DATA_RRBP;
dl_template.data.blocks := ?;
f_rx_rlcmac_dl_block(dl_block, dl_fn);
if (not match(dl_block, dl_template)) {
setverdict(fail, "Failed to match Packet data: ", dl_block, " vs ", dl_template);
mtc.stop;
}
ack_fn := dl_fn + f_rrbp_fn_delay(dl_block.data.mac_hdr.mac_hdr.rrbp);
if (not match(dl_block.data.mac_hdr.hdr_ext.bsn, exp_bsn)) {
setverdict(fail, "DL block BSN doesn't match: ",
dl_block.data.blocks[0].hdr.length_ind, " vs exp ", exp_bsn);
}
if (lengthof(dl_block.data.blocks) < 1) {
setverdict(fail, "DL block has no LLC payload: ", dl_block);
mtc.stop;
}
if (ispresent(dl_block.data.blocks[0].hdr) and dl_block.data.blocks[0].hdr.length_ind != lengthof(data)) {
setverdict(fail, "DL block has LLC header with wrong expected size: ",
dl_block.data.blocks[0].hdr.length_ind, " vs ", lengthof(data));
mtc.stop;
}
if (dl_block.data.blocks[0].payload != data) {
setverdict(fail, "Failed to match content of LLC payload in DL Block: ", dl_block, " vs ", data);
mtc.stop;
}
/* Check next data blocks contain dummy frames */
if (lengthof(dl_block.data.blocks) > 1 and substr(dl_block.data.blocks[1].payload, 0, 3) != '43C001'O) {
setverdict(fail, "Second data payload is not a dummy frame: ", dl_block.data.blocks[1].payload);
mtc.stop;
}
}
testcase TC_pcuif_suspend() runs on RAW_PCU_Test_CT {
var octetstring ra_id := enc_RoutingAreaIdentification(mp_gb_cfg.cell_id.ra_id);
var GprsTlli tlli := 'FFFFFFFF'O;
timer T;
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
BTS.send(ts_PCUIF_SUSP_REQ(0, tlli, ra_id, 0));
T.start(2.0);
alt {
[] BSSGP_SIG[0].receive(tr_BSSGP_SUSPEND(tlli, mp_gb_cfg.cell_id.ra_id)) {
setverdict(pass);
}
[] T.timeout {
setverdict(fail, "Timeout waiting for BSSGP SUSPEND");
}
}
}
/* Test of correct Timing Advance at the time of TBF establishment
* (derived from timing offset of the Access Burst). */
testcase TC_ta_rach_imm_ass() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_msg;
var boolean ok;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* We cannot send too many TBF requests in a short time because
* at some point the PCU will fail to allocate a new TBF. */
for (var TimingAdvance ta := 0; ta < 64; ta := ta + 16) {
/* Establish an Uplink TBF (send RACH.ind with current TA) */
ok := f_establish_tbf(rr_msg, bts_nr := 0, ta := ta);
if (not ok) {
setverdict(fail, "Failed to establish an Uplink TBF");
mtc.stop;
}
/* Make sure Timing Advance IE matches out expectations */
if (match(rr_msg, tr_IMM_TBF_ASS(dl := false, ta := ta))) {
setverdict(pass);
}
}
}
/* Verify that the PCU generates valid PTCCH/D messages
* while neither Uplink nor Downlink TBF is established. */
testcase TC_ta_ptcch_idle() runs on RAW_PCU_Test_CT {
var PTCCHDownlinkMsg ptcch_msg;
var PCUIF_Message pcu_msg;
timer T;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Sent an RTS.req for PTCCH/D */
BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PTCCH, fn := 0,
arfcn := 871, block_nr := 0));
T.start(5.0);
alt {
[] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PTCCH)) -> value pcu_msg {
log("Rx DATA.req message: ", pcu_msg);
setverdict(pass);
}
[] BTS.receive(PCUIF_Message:?) { repeat; }
[] T.timeout {
setverdict(fail, "Timeout waiting for a PTCCH/D block");
mtc.stop;
}
}
ptcch_msg := dec_PTCCHDownlinkMsg(pcu_msg.u.data_req.data);
log("Decoded PTCCH/D message: ", ptcch_msg);
/* Make sure the message is encoded correctly
* TODO: do we expect all TA values to be equal '1111111'B? */
if (not match(ptcch_msg, tr_PTCCHDownlinkMsg)) {
setverdict(fail, "Malformed PTCCH/D message");
mtc.stop;
}
}
/* Test of correct Timing Advance during an active Uplink TBF.
*
* Unlike the circuit-switched domain, Uplink transmissions on PDCH time-slots
* are not continuous and there can be long time gaps between them. This happens
* due to a bursty nature of packet data. The actual Timing Advance of a MS may
* significantly change between such rare Uplink transmissions, so GPRS introduces
* additional mechanisms to control Timing Advance, and thus reduce interference
* between neighboring TDMA time-slots.
*
* At the moment of Uplink TBF establishment, initial Timing Advance is measured
* from ToA (Timing of Arrival) of an Access Burst. This is covered by another
* test case - TC_ta_rach_imm_ass. In response to that Access Burst the network
* sends Immediate Assignment on AGCH, which _may_ contain Timing Advance Index
* among with the initial Timing Advance value. And here PTCCH comes to play.
*
* PTCCH is a unidirectional channel on which the network can instruct a sub-set
* of 16 MS (whether TBFs are active or not) to adjust their Timing Advance
* continuously. To ensure continuous measurements of the signal propagation
* delay, the MSs shall transmit Access Bursts on Uplink (PTCCH/U) on sub-slots
* defined by an assigned Timing Advance Index (see 3GPP TS 45.002).
*
* The purpose of this test case is to verify the assignment of Timing Advance
* Index, and the process of Timing Advance notification on PTCCH/D. The MTC
* first establishes several Uplink TBFs, but does not transmit any Uplink
* blocks on them. During 4 TDMA multi-frame periods the MTC is sending RACH
* indications to the PCU, checking the correctness of two received PTCCH/D
* messages (period of PTCCH/D is two multi-frames).
*/
/* List of ToA values for Access Bursts to be sent on PTCCH/U,
* each ToA (Timing of Arrival) value is in units of 1/4 of
* a symbol (i.e. 1 symbol is 4 QTA units). */
type record length(16) of int16_t PTCCH_TAI_ToA_MAP;
const PTCCH_TAI_ToA_MAP ptcch_toa_map_def := {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0
};
private altstep as_ta_ptcch(uint8_t bts_nr := 0, uint8_t trx_nr := 0, uint8_t ts_nr := 7,
in PTCCH_TAI_ToA_MAP toa_map := ptcch_toa_map_def)
runs on RAW_PCU_Test_CT {
var RAW_PCU_Event event;
var integer ss;
/* Send Access Bursts on PTCCH/U for every TA Index */
[] BTS.receive(tr_RAW_PCU_EV(TDMA_EV_PTCCH_UL_BURST)) -> value event {
ss := f_tdma_ptcch_fn2ss(event.data.tdma_fn);
if (ss < 0) { mtc.stop; } /* Shall not happen */
log("Sending an Access Burst on PTCCH/U",
", sub-slot=", ss, " (TAI)",
", fn=", event.data.tdma_fn,
", ToA=", toa_map[ss], " (QTA)");
/* TODO: do we care about RA and burst format? */
BTS.send(ts_PCUIF_RACH_IND(bts_nr, trx_nr, ts_nr,
ra := oct2int('3A'O),
is_11bit := 0,
burst_type := BURST_TYPE_0,
fn := event.data.tdma_fn,
arfcn := 871,
qta := toa_map[ss],
sapi := PCU_IF_SAPI_PTCCH));
repeat;
}
}
private function f_TC_ta_ptcch_ul_multi_tbf(in PTCCH_TAI_ToA_MAP ptcch_toa_map,
template PTCCHDownlinkMsg t_ta_msg)
runs on RAW_PCU_Test_CT {
var PTCCHDownlinkMsg ta_msg;
var PCUIF_Message pcu_msg;
timer T;
/* First, send an RTS.req for the upcoming PTCCH/D block */
BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PTCCH, fn := 0,
arfcn := 871, block_nr := 0));
T.start(2.0);
alt {
/* Keep sending of Access Bursts during two multi-frames (period of PTCCH/D)
* with increasing ToA (Timing of Arrival) values: 0, 7, 14, 28, 35... */
[] as_ta_ptcch(bts_nr := 0, trx_nr := 0, ts_nr := 7, toa_map := ptcch_toa_map);
/* In the end of 2nd multi-frame we should receive a PTCCH/D block */
[] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7,
sapi := PCU_IF_SAPI_PTCCH)) -> value pcu_msg {
ta_msg := dec_PTCCHDownlinkMsg(pcu_msg.u.data_req.data);
log("Rx PTCCH/D message: ", ta_msg);
/* Make sure Timing Advance values match our expectations */
if (match(ta_msg, t_ta_msg)) {
setverdict(pass);
} else {
setverdict(fail, "PTCCH/D message does not match: ", t_ta_msg);
}
}
[] BTS.receive { repeat; }
[] T.timeout {
setverdict(fail, "Timeout waiting for a PTCCH/D block");
mtc.stop;
}
}
}
testcase TC_ta_ptcch_ul_multi_tbf() runs on RAW_PCU_Test_CT {
var template PacketUlAssign t_ul_tbf_ass;
var PacketUlAssign ul_tbf_ass[7];
var GsmRrMessage rr_msg[7];
var boolean ok;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Enable forwarding of PTCCH/U TDMA events to us */
BTS.send(ts_RAW_PCU_CMD(TDMA_CMD_ENABLE_PTCCH_UL_FWD));
/* Establish 7 Uplink TBFs (USF flag is 3 bits long, '111'B is reserved) */
for (var integer i := 0; i < 7; i := i + 1) {
ok := f_establish_tbf(rr_msg[i], ta := 0);
if (not ok) {
setverdict(fail, "Failed to establish an Uplink TBF #", i);
mtc.stop;
}
/* Make sure we received an UL TBF Assignment */
if (match(rr_msg[i], tr_IMM_TBF_ASS(dl := false, rest := tr_IaRestOctets_ULAss(?)))) {
ul_tbf_ass[i] := rr_msg[i].payload.imm_ass.rest_octets.hh.pa.uldl.ass.ul;
log("Rx Uplink TBF assignment for #", i, ": ", ul_tbf_ass[i]);
} else {
setverdict(fail, "Failed to match UL TBF Assignment for #", i);
mtc.stop;
}
/* We expect incremental TFI/USF assignment (dynamic allocation) */
t_ul_tbf_ass := tr_PacketUlDynAssign(tfi := i, usf := i);
if (not match(ul_tbf_ass[i], t_ul_tbf_ass)) {
setverdict(fail, "Failed to match Packet Uplink Assignment for #", i);
mtc.stop;
}
/* We also expect Timing Advance Index to be a part of the assignment */
if (ul_tbf_ass[i].dynamic.ta_index != i) {
setverdict(fail, "Failed to match Timing Advance Index for #", i);
/* Keep going, the current OsmoPCU does not assign TA Index */
}
}
/* Prepare a list of ToA values for Access Bursts to be sent on PTCCH/U */
var PTCCH_TAI_ToA_MAP toa_map := ptcch_toa_map_def;
for (var integer i := 0; i < 7; i := i + 1) {
/* ToA in units of 1/4 of a symbol */
toa_map[i] := (i + 1) * 7 * 4;
}
/* Now we have all 7 TBFs established in one-phase access mode,
* however we will not be sending any data on them. Instead, we
* will be sending RACH.ind on PTCCH/U during 4 multi-frame
* periods (TAI 0..8), and then will check two PTCCH/D blocks.
*
* Why not 4 TBFs at once? Because Uplink is delayed by 3 TDMA
* time-slots, so at the moment of scheduling a PTCCH/D block
* the PCU has odd number of PTCCH/U Access Bursts received. */
f_TC_ta_ptcch_ul_multi_tbf(toa_map, tr_PTCCHDownlinkMsg(
tai0_ta := 7, tai1_ta := 14, tai2_ta := 21,
/* Other values are not known (yet) */
tai3_ta := ?));
f_TC_ta_ptcch_ul_multi_tbf(toa_map, tr_PTCCHDownlinkMsg(
tai0_ta := 7, tai1_ta := 14, tai2_ta := 21,
tai3_ta := 28, tai4_ta := 35, tai5_ta := 42,
/* Other values are out of our interest */
tai6_ta := ?));
}
/* Default link quality adaptation (Coding Scheme) ranges (inclusive).
* OsmoPCU (VTY): cs link-quality-ranges cs1 6 cs2 5 8 cs3 7 13 cs4 12
*
* NOTE: the ranges are intentionally overlapping because OsmoPCU
* does not change CS/MCS on the range borders (5-6, 7-8, 12-13). */
private template integer CS1_lqual_dB_range := (-infinity .. 6);
private template integer CS2_lqual_dB_range := (5 .. 8);
private template integer CS3_lqual_dB_range := (7 .. 13);
private template integer CS4_lqual_dB_range := (12 .. infinity);
testcase TC_cs_lqual_ul_tbf() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var PCUIF_Message pcu_msg;
var octetstring data;
var boolean ok;
var uint32_t unused_fn;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
f_pcuvty_set_allowed_cs_mcs();
f_pcuvty_set_link_quality_ranges();
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
var template (value) RlcmacUlBlock ul_data := t_RLCMAC_UL_DATA(
tfi := ul_tbf_ass.dynamic.tfi_assignment,
cv := 15, /* 16 UL blocks to be sent (to be overridden in loop) */
bsn := 0, /* TODO: what should be here? */
blocks := { /* To be generated in loop */ });
/* HACK: patch missing TLLI; otherwise OsmoPCU rejects DATA.req */
ul_data.data.tlli := '00000001'O;
/* The actual / old link quality values. We need to keep track of the old
* (basically previous) link quality value, because OsmoPCU actually
* changes the coding scheme if not only the actual, but also the old
* value leaves the current link quality range (window). */
var integer lqual := 0;
var integer lqual_old;
/* 16 UL blocks (0 .. 15 dB, step = 1 dB) */
for (var integer i := 0; i < 16; i := i + 1) {
/* Prepare a new UL block (CV, random payload) */
ul_data.data.mac_hdr.countdown := (15 - i);
ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) };
/* Update the old / actual link quality */
lqual_old := lqual;
lqual := i;
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
log("Sending DATA.ind with link quality (dB): ", lqual);
f_tx_rlcmac_ul_block(ul_data, lqual * 10);
/* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, unused_fn);
log("Rx Packet Uplink ACK / NACK with Channel Coding Command: ",
dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd);
/* Match the received Channel Coding Command. Since we are increasing
* the link quality value on each iteration and not decreasing, there
* is no need to check the both old and current link quality values. */
var template ChCodingCommand ch_coding;
select (lqual_old) {
case (CS1_lqual_dB_range) { ch_coding := CH_CODING_CS1; }
case (CS2_lqual_dB_range) { ch_coding := CH_CODING_CS2; }
case (CS3_lqual_dB_range) { ch_coding := CH_CODING_CS3; }
case (CS4_lqual_dB_range) { ch_coding := CH_CODING_CS4; }
}
if (not match(dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd, ch_coding)) {
setverdict(fail, "Channel Coding does not match our expectations: ", ch_coding);
} else {
setverdict(pass);
}
}
}
/* Test the max UL CS set by VTY works fine */
testcase TC_cs_initial_ul() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var boolean ok;
var integer lqual_cb;
var ChCodingCommand last_ch_coding;
var uint32_t unused_fn;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Set initial UL CS to 3 */
g_cs_initial_ul := 3;
f_pcuvty_set_allowed_cs_mcs();
f_pcuvty_set_link_quality_ranges();
/* Take lqual (dB->cB) so that we stay in that CS */
lqual_cb := g_cs_lqual_ranges[2].low * 10;
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
var template (value) RlcmacUlBlock ul_data := t_RLCMAC_UL_DATA(
tfi := ul_tbf_ass.dynamic.tfi_assignment,
cv := 3, /* 8 UL blocks to be sent (to be overridden in loop) */
bsn := 0, /* TODO: what should be here? */
blocks := { /* To be generated in loop */ });
/* HACK: patch missing TLLI; otherwise OsmoPCU rejects DATA.req */
ul_data.data.tlli := '00000001'O;
/* 3 UL blocks, check we are in same initial CS: */
for (var integer i := 0; i < 3; i := i + 1) {
/* Prepare a new UL block (CV, random payload) */
ul_data.data.mac_hdr.countdown := (7 - i);
ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) };
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
f_tx_rlcmac_ul_block(ul_data, lqual_cb);
/* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, unused_fn);
last_ch_coding := dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd;
}
if (last_ch_coding != CH_CODING_CS3) {
setverdict(fail, "Channel Coding does not match our expectations (CS-3): ", last_ch_coding);
mtc.stop;
}
setverdict(pass);
/* Remaining UL blocks are used to make sure regardless of initial
/* lqual, we can go lower at any time */
/* 5 UL blocks, check we are in same initial CS: */
for (var integer i := 3; i < 8; i := i + 1) {
/* Prepare a new UL block (CV, random payload) */
ul_data.data.mac_hdr.countdown := (7 - i);
ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) };
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
f_tx_rlcmac_ul_block(ul_data, 0); /* 0 dB, make sure we downgrade CS */
/* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, unused_fn);
last_ch_coding := dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd;
}
if (last_ch_coding != CH_CODING_CS1) {
setverdict(fail, "Channel Coding does not match our expectations (CS-1): ", last_ch_coding);
} else {
setverdict(pass);
}
}
/* Test the max UL CS set by VTY works fine */
testcase TC_cs_max_ul() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var boolean ok;
var ChCodingCommand last_ch_coding;
var uint32_t unused_fn;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Set maximum allowed UL CS to 3 */
g_cs_max_ul := 3;
f_pcuvty_set_allowed_cs_mcs();
f_pcuvty_set_link_quality_ranges();
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
var template (value) RlcmacUlBlock ul_data := t_RLCMAC_UL_DATA(
tfi := ul_tbf_ass.dynamic.tfi_assignment,
cv := 15, /* 16 UL blocks to be sent (to be overridden in loop) */
bsn := 0, /* TODO: what should be here? */
blocks := { /* To be generated in loop */ });
/* HACK: patch missing TLLI; otherwise OsmoPCU rejects DATA.req */
ul_data.data.tlli := '00000001'O;
/* 16 UL blocks */
for (var integer i := 0; i < 16; i := i + 1) {
/* Prepare a new UL block (CV, random payload) */
ul_data.data.mac_hdr.countdown := (15 - i);
ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) };
/* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */
f_tx_rlcmac_ul_block(ul_data, 40*10); /* 40 dB */
/* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, unused_fn);
last_ch_coding := dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd;
}
if (last_ch_coding != CH_CODING_CS3) {
setverdict(fail, "Channel Coding does not match our expectations (CS-3): ", last_ch_coding);
} else {
setverdict(pass);
}
}
/* Verify PCU drops TBF after some time of inactivity. */
testcase TC_t3169() runs on RAW_PCU_Test_CT {
var PCUIF_info_ind info_ind;
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var PCUIF_Message pcu_msg;
var octetstring data;
var boolean ok;
var uint32_t unused_fn;
var OCT4 tlli := '00000001'O;
/* Initialize NS/BSSGP side */
f_init_bssgp();
info_ind := valueof(ts_PCUIF_INFO_default);
/* Set timer to 1 sec (default 5) to speedup test: */
info_ind.t3169 := 1;
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename(), info_ind);
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
/* Send one UL block and make sure it is ACKED fine */
f_tx_rlcmac_ul_n_blocks(ul_tbf_ass, 1);
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, unused_fn);
/* UL block should be received in SGSN */
BSSGP[0].receive(tr_BSSGP_UL_UD(tlli, mp_gb_cfg.cell_id));
/* Wait until T3169 fires (plus 1 extra sec to make sure) */
f_sleep(int2float(info_ind.t3169) + 1.0);
/* Send an UL block once again, the TBF should be gone by now so no ACK */
f_tx_rlcmac_ul_n_blocks(ul_tbf_ass, 1);
f_rx_rlcmac_dl_block_exp_dummy(dl_block);
}
/* Verify that a Downlink TBF can be assigned using PACCH shortly after the
* release of prev DL TBF due to MS staying in PDCH for a while (T3192, in PCU
* T3193) after DL TBF release */
testcase TC_t3193() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketDlAssign dl_tbf_ass;
var RlcmacDlBlock dl_block;
var octetstring data := f_rnd_octstring(10);
var boolean ok;
var uint32_t sched_fn;
var OCT4 tlli := '00000001'O;
var AckNackDescription ack_nack_desc := valueof(t_AckNackDescription_init);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* SGSN sends some DL data, PCU will page on CCCH (PCH) */
BSSGP[0].send(ts_BSSGP_DL_UD(tlli, data));
f_pcuif_rx_pch_imm_tbf_ass(rr_imm_ass);
ok := f_imm_ass_verify_dl_tbf_ass(rr_imm_ass, dl_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not a Downlink TBF");
mtc.stop;
}
/* Wait timer X2002 and DL block is available after CCCH IMM ASS: */
f_sleep(X2002);
f_rx_rlcmac_dl_block_exp_data(dl_block, sched_fn, data, 0);
/* ACK the DL block */
f_acknackdesc_ack_block(ack_nack_desc, dl_block.data.mac_hdr.hdr_ext.bsn, '1'B);
f_tx_rlcmac_ul_block(ts_RLCMAC_DL_ACK_NACK(dl_block.data.mac_hdr.hdr_ext.tfi, ack_nack_desc), 0, sched_fn);
/* we are done with the DL-TBF here so far, let's clean up our local state: */
ack_nack_desc := valueof(t_AckNackDescription_init)
/* Now that final DL block is ACKED and TBF is released, T3193 in PCU
(T3192 in MS) was started and until it fires the MS will be abailable
on PDCH in case new data arrives from SGSN. Let's verify it: */
BSSGP[0].send(ts_BSSGP_DL_UD(tlli, data));
f_rx_rlcmac_dl_block_exp_pkt_ass(dl_block, sched_fn);
f_tx_rlcmac_ul_block(ts_RLCMAC_CTRL_ACK(tlli), 0, sched_fn);
/* Now that we confirmed the new assignment in the dl-tbf, lets receive the data and ack it */
f_rx_rlcmac_dl_block_exp_data(dl_block, sched_fn, data, 0);
f_acknackdesc_ack_block(ack_nack_desc, dl_block.data.mac_hdr.hdr_ext.bsn, '1'B);
f_tx_rlcmac_ul_block(ts_RLCMAC_DL_ACK_NACK(dl_block.data.mac_hdr.hdr_ext.tfi, ack_nack_desc), 0, sched_fn);
}
/* Test scenario where MS wants to send some data on PDCH against SGSN and it is
* answered, so TBFs for uplink and later for downlink are created.
*/
testcase TC_mo_ping_pong() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var PacketDlAssign dl_tbf_ass;
var RlcmacDlBlock dl_block;
var PCUIF_Message pcu_msg;
var octetstring data := f_rnd_octstring(10);
var boolean ok;
var uint32_t sched_fn;
var OCT4 tlli := '00000001'O;
var AckNackDescription ack_nack_desc := valueof(t_AckNackDescription_init);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
/* Send one UL block and make sure it is ACKED fine */
f_tx_rlcmac_ul_n_blocks(ul_tbf_ass, 1);
f_rx_rlcmac_dl_block_exp_ack_nack(dl_block, sched_fn);
/* DL ACK/NACK sets poll+rrbp requesting PACKET CONTROL ACK */
f_tx_rlcmac_ul_block(ts_RLCMAC_CTRL_ACK(tlli), 0, sched_fn);
/* UL block should be received in SGSN */
BSSGP[0].receive(tr_BSSGP_UL_UD(tlli, mp_gb_cfg.cell_id));
/* Now SGSN sends some DL data, PCU will page on CCCH (PCH) */
BSSGP[0].send(ts_BSSGP_DL_UD(tlli, data));
f_pcuif_rx_pch_imm_tbf_ass(rr_imm_ass);
ok := f_imm_ass_verify_dl_tbf_ass(rr_imm_ass, dl_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not a Downlink TBF");
mtc.stop;
}
/* Wait timer X2002 and DL block is available after CCCH IMM ASS: */
f_sleep(X2002);
f_rx_rlcmac_dl_block_exp_data(dl_block, sched_fn, data, 0);
/* ACK the DL block */
f_acknackdesc_ack_block(ack_nack_desc, dl_block.data.mac_hdr.hdr_ext.bsn, '1'B);
f_tx_rlcmac_ul_block(ts_RLCMAC_DL_ACK_NACK(dl_block.data.mac_hdr.hdr_ext.tfi, ack_nack_desc), 0, sched_fn);
}
/* Verify that if PCU doesn't get an ACK for first DL block after IMM ASS, it
* will retry by retransmitting both the IMM ASS + DL block after poll (ack)
* timeout occurs (specified by sent RRBP on DL block). */
testcase TC_imm_ass_dl_block_retrans() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketDlAssign dl_tbf_ass;
var RlcmacDlBlock dl_block;
var octetstring data := f_rnd_octstring(10);
var boolean ok;
var uint32_t sched_fn;
var OCT4 tlli := '00000001'O;
var AckNackDescription ack_nack_desc := valueof(t_AckNackDescription_init);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* SGSN sends some DL data, PCU will page on CCCH (PCH) */
BSSGP[0].send(ts_BSSGP_DL_UD(tlli, data));
f_pcuif_rx_pch_imm_tbf_ass(rr_imm_ass);
ok := f_imm_ass_verify_dl_tbf_ass(rr_imm_ass, dl_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not a Downlink TBF");
mtc.stop;
}
/* Wait timer X2002 and DL block is available after CCCH IMM ASS: */
f_sleep(X2002);
f_rx_rlcmac_dl_block_exp_data(dl_block, sched_fn, data, 0);
/* Now we don't ack the dl block (emulate MS failed receiveing IMM ASS
* or GPRS DL, or DL ACK was lost for some reason). As a result, PCU
* should retrigger IMM ASS + GPRS DL procedure after poll timeout. */
f_pcuif_rx_pch_imm_tbf_ass(rr_imm_ass);
ok := f_imm_ass_verify_dl_tbf_ass(rr_imm_ass, dl_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not a Downlink TBF");
mtc.stop;
}
/* Wait timer X2002 and DL block is available after CCCH IMM ASS: */
f_sleep(X2002);
f_rx_rlcmac_dl_block_exp_data(dl_block, sched_fn, data, 0);
/* ACK the DL block */
f_acknackdesc_ack_block(ack_nack_desc, dl_block.data.mac_hdr.hdr_ext.bsn, '1'B);
f_tx_rlcmac_ul_block(ts_RLCMAC_DL_ACK_NACK(dl_block.data.mac_hdr.hdr_ext.tfi, ack_nack_desc), 0, sched_fn);
}
/* Test CS paging over the BTS<->PCU socket.
* When a (class B or C, not A) MS has an active TBF (or is on the PDCH), the MS can not react on CS paging over CCCH.
* Paging should be send on the PACCH.
*
* 1. Send a Paging Request over PCU socket.
* 2. Send a Ready-To-Send message over PCU socket
* 3. Expect a Paging Frame
*/
testcase TC_paging_cs_from_bts() runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var boolean ok;
var OCT4 tlli := '00000001'O;
var MobileL3_CommonIE_Types.MobileIdentityLV mi;
var octetstring mi_enc_lv;
var MobileIdentityLV_Paging mi_res;
var hexstring imsi := f_gen_imsi(42);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
/* build mobile Identity */
mi := valueof(ts_MI_IMSI_LV(imsi));
mi_enc_lv := enc_MobileIdentityLV(mi);
/* Send paging request */
BTS.send(ts_PCUIF_PAG_REQ(bts_nr := 0, id_lv := mi_enc_lv, chan_needed := 0,
sapi :=PCU_IF_SAPI_PDTCH));
/* Receive it on BTS side towards MS */
f_rx_rlcmac_dl_block_exp_pkt_pag_req(dl_block);
/* FIXME: we must use .ps. here instead of .cs. (the one actually sent)
because TTCN3 counts length up to octet boundary and thinks it's a
PageInfoPs: */
mi_res := dl_block.ctrl.payload.u.paging.repeated_pageinfo.ps.mobile_identity;
if (oct2int(substr(mi_enc_lv, 0, 1)) != mi_res.len) {
/* TODO: Verify MI contents encoded match */
setverdict(fail, "Mobile Identity not matching (imsi=", imsi, ")");
mtc.stop;
}
setverdict(pass);
}
/* Test CS paging over Gb (SGSN->PCU->BTS[PDCH]).
*/
private function f_tc_paging_cs_from_sgsn(Nsvci bvci) runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_imm_ass;
var PacketUlAssign ul_tbf_ass;
var RlcmacDlBlock dl_block;
var boolean ok;
var OCT4 tlli := '00000001'O;
var MobileIdentityLV_Paging mi_res;
var hexstring imsi := f_gen_imsi(42);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* Establish an Uplink TBF */
ok := f_establish_tbf(rr_imm_ass);
if (not ok) {
setverdict(fail, "Failed to establish TBF");
mtc.stop;
}
ok := f_imm_ass_verify_ul_tbf_ass(rr_imm_ass, ul_tbf_ass);
if (not ok) {
setverdict(fail, "Immediate Assignment not an Uplink TBF");
mtc.stop;
}
/* Send paging request */
BSSGP[0].send(ts_BSSGP_CS_PAGING_IMSI(bvci, imsi));
/* Receive it on BTS side towards MS */
f_rx_rlcmac_dl_block_exp_pkt_pag_req(dl_block);
/* FIXME: we must use .ps. here instead of .cs. (the one actually sent)
because TTCN3 counts length up to octet boundary and thinks it's a
PageInfoPs: */
mi_res := dl_block.ctrl.payload.u.paging.repeated_pageinfo.ps.mobile_identity;
setverdict(pass);
}
testcase TC_paging_cs_from_sgsn_sign() runs on RAW_PCU_Test_CT {
f_tc_paging_cs_from_sgsn(0);
}
testcase TC_paging_cs_from_sgsn_ptp() runs on RAW_PCU_Test_CT {
f_tc_paging_cs_from_sgsn(mp_gb_cfg.bvci);
}
/* Test PS paging over Gb (SGSN->PCU->BTS[CCCH]).
*/
private function f_tc_paging_ps_from_sgsn(Nsvci bvci) runs on RAW_PCU_Test_CT {
var GsmRrMessage rr_pag_req1;
var OCT4 tlli := '00000001'O;
var hexstring imsi := f_gen_imsi(42);
/* Initialize NS/BSSGP side */
f_init_bssgp();
/* Initialize the PCU interface abstraction */
f_init_raw(testcasename());
/* Establish BSSGP connection to the PCU */
f_bssgp_establish();
f_bssgp_client_llgmm_assign('FFFFFFFF'O, tlli);
/* Send paging request */
BSSGP[0].send(ts_BSSGP_PS_PAGING_IMSI(bvci, imsi));
/* Receive it on BTS side towards MS */
f_pcuif_rx_pch_pag_req1(rr_pag_req1);
setverdict(pass);
}
testcase TC_paging_ps_from_sgsn_sign() runs on RAW_PCU_Test_CT {
f_tc_paging_ps_from_sgsn(0);
}
testcase TC_paging_ps_from_sgsn_ptp() runs on RAW_PCU_Test_CT {
f_tc_paging_ps_from_sgsn(mp_gb_cfg.bvci);
}
control {
execute( TC_ns_reset() );
execute( TC_ns_reset_retrans() );
execute( TC_ns_alive() );
execute( TC_ns_alive_timeout_reset() );
execute( TC_ns_unblock() );
execute( TC_ns_unblock_retrans() );
execute( TC_ns_full_bringup() );
execute( TC_ns_so_block() );
execute( TC_pcuif_suspend() );
execute( TC_ta_ptcch_idle() );
execute( TC_ta_rach_imm_ass() );
execute( TC_ta_ptcch_ul_multi_tbf() );
execute( TC_cs_lqual_ul_tbf() );
execute( TC_cs_initial_ul() );
execute( TC_cs_max_ul() );
execute( TC_t3169() );
execute( TC_t3193() );
execute( TC_mo_ping_pong() );
execute( TC_imm_ass_dl_block_retrans() );
execute( TC_paging_cs_from_bts() );
execute (TC_paging_cs_from_sgsn_sign() );
execute (TC_paging_cs_from_sgsn_ptp() );
execute (TC_paging_ps_from_sgsn_sign() );
execute (TC_paging_ps_from_sgsn_ptp() );
}
}