Osmocom test suites in TTCN-3 (Eclipse Titan) https://osmocom.org/projects/core-testing-infra
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
osmo-ttcn3-hacks/mme/snow-3g.c

589 lines
15 KiB

/*------------------------------------------------------------------------
* SNOW_3G.c
*------------------------------------------------------------------------*/
#include "snow-3g.h"
/* LFSR */
static u32 LFSR_S0 = 0x00;
static u32 LFSR_S1 = 0x00;
static u32 LFSR_S2 = 0x00;
static u32 LFSR_S3 = 0x00;
static u32 LFSR_S4 = 0x00;
static u32 LFSR_S5 = 0x00;
static u32 LFSR_S6 = 0x00;
static u32 LFSR_S7 = 0x00;
static u32 LFSR_S8 = 0x00;
static u32 LFSR_S9 = 0x00;
static u32 LFSR_S10 = 0x00;
static u32 LFSR_S11 = 0x00;
static u32 LFSR_S12 = 0x00;
static u32 LFSR_S13 = 0x00;
static u32 LFSR_S14 = 0x00;
static u32 LFSR_S15 = 0x00;
/* FSM */
static u32 FSM_R1 = 0x00;
static u32 FSM_R2 = 0x00;
static u32 FSM_R3 = 0x00;
/* Rijndael S-box SR */
static const u8 SR[256] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};
/* S-box SQ */
static const u8 SQ[256] = {
0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
};
/* MULx.
* Input V: an 8-bit input.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* See section 3.1.1 for details.
*/
static u8 MULx(u8 V, u8 c)
{
if ( V & 0x80 )
return ( (V << 1) ^ c);
else
return ( V << 1);
}
/* MULxPOW.
* Input V: an 8-bit input.
* Input i: a positive integer.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* See section 3.1.2 for details.
*/
static u8 MULxPOW(u8 V, u8 i, u8 c)
{
if ( i == 0)
return V;
else
return MULx( MULxPOW( V, i-1, c ), c);
}
/* The function MUL alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* See section 3.4.2 for details.
*/
static u32 MULalpha(u8 c)
{
return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) |
( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) |
( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) |
( ((u32)MULxPOW(c, 239, 0xa9)) ) ) ;
}
/* The function DIV alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* See section 3.4.3 for details.
*/
static u32 DIValpha(u8 c)
{
return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) |
( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) |
( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) |
( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ;
}
/* The 32x32-bit S-Box S1
* Input: a 32-bit input.
* Output: a 32-bit output of S1 box.
* See section 3.3.1.
*/
static u32 S1(u32 w)
{
u8 r0=0, r1=0, r2=0, r3=0;
u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ];
u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ];
u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ];
u8 srw3 = SR[ (u8)((w) & 0xff) ];
r0 = ( ( MULx( srw0 , 0x1b) ) ^
( srw1 ) ^
( srw2 ) ^
( (MULx( srw3, 0x1b)) ^ srw3 )
);
r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^
( MULx(srw1, 0x1b) ) ^
( srw2 ) ^
( srw3 )
);
r2 = ( ( srw0 ) ^
( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^
( MULx(srw2, 0x1b) ) ^
( srw3 )
);
r3 = ( ( srw0 ) ^
( srw1 ) ^
( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^
( MULx( srw3, 0x1b) )
);
return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
( ((u32)r3) ) );
}
/* The 32x32-bit S-Box S2
* Input: a 32-bit input.
* Output: a 32-bit output of S2 box.
* See section 3.3.2.
*/
static u32 S2(u32 w)
{
u8 r0=0, r1=0, r2=0, r3=0;
u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ];
u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ];
u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ];
u8 sqw3 = SQ[ (u8)((w) & 0xff) ];
r0 = ( ( MULx( sqw0 , 0x69) ) ^
( sqw1 ) ^
( sqw2 ) ^
( (MULx( sqw3, 0x69)) ^ sqw3 )
);
r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
( MULx(sqw1, 0x69) ) ^
( sqw2 ) ^
( sqw3 )
);
r2 = ( ( sqw0 ) ^
( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
( MULx(sqw2, 0x69) ) ^
( sqw3 )
);
r3 = ( ( sqw0 ) ^
( sqw1 ) ^
( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
( MULx( sqw3, 0x69) )
);
return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
( ((u32)r3) ) );
}
/* Clocking LFSR in initialization mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* Input F: a 32-bit word comes from output of FSM.
* See section 3.4.4.
*/
static void ClockLFSRInitializationMode(u32 F)
{
u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
( LFSR_S2 ) ^
( (LFSR_S11 >> 8) & 0x00ffffff ) ^
( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^
( F )
);
LFSR_S0 = LFSR_S1;
LFSR_S1 = LFSR_S2;
LFSR_S2 = LFSR_S3;
LFSR_S3 = LFSR_S4;
LFSR_S4 = LFSR_S5;
LFSR_S5 = LFSR_S6;
LFSR_S6 = LFSR_S7;
LFSR_S7 = LFSR_S8;
LFSR_S8 = LFSR_S9;
LFSR_S9 = LFSR_S10;
LFSR_S10 = LFSR_S11;
LFSR_S11 = LFSR_S12;
LFSR_S12 = LFSR_S13;
LFSR_S13 = LFSR_S14;
LFSR_S14 = LFSR_S15;
LFSR_S15 = v;
}
/* Clocking LFSR in keystream mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* See section 3.4.5.
*/
static void ClockLFSRKeyStreamMode()
{
u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
( LFSR_S2 ) ^
( (LFSR_S11 >> 8) & 0x00ffffff ) ^
( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) )
);
LFSR_S0 = LFSR_S1;
LFSR_S1 = LFSR_S2;
LFSR_S2 = LFSR_S3;
LFSR_S3 = LFSR_S4;
LFSR_S4 = LFSR_S5;
LFSR_S5 = LFSR_S6;
LFSR_S6 = LFSR_S7;
LFSR_S7 = LFSR_S8;
LFSR_S8 = LFSR_S9;
LFSR_S9 = LFSR_S10;
LFSR_S10 = LFSR_S11;
LFSR_S11 = LFSR_S12;
LFSR_S12 = LFSR_S13;
LFSR_S13 = LFSR_S14;
LFSR_S14 = LFSR_S15;
LFSR_S15 = v;
}
/* Clocking FSM.
* Produces a 32-bit word F.
* Updates FSM registers R1, R2, R3.
* See Section 3.4.6.
*/
static u32 ClockFSM()
{
u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ;
u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ;
FSM_R3 = S2(FSM_R2);
FSM_R2 = S1(FSM_R1);
FSM_R1 = r;
return F;
}
/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
* See Section 4.1.
*/
void snow_3g_initialize(u32 k[4], u32 IV[4])
{
u8 i=0;
u32 F = 0x0;
LFSR_S15 = k[3] ^ IV[0];
LFSR_S14 = k[2];
LFSR_S13 = k[1];
LFSR_S12 = k[0] ^ IV[1];
LFSR_S11 = k[3] ^ 0xffffffff;
LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
LFSR_S8 = k[0] ^ 0xffffffff;
LFSR_S7 = k[3];
LFSR_S6 = k[2];
LFSR_S5 = k[1];
LFSR_S4 = k[0];
LFSR_S3 = k[3] ^ 0xffffffff;
LFSR_S2 = k[2] ^ 0xffffffff;
LFSR_S1 = k[1] ^ 0xffffffff;
LFSR_S0 = k[0] ^ 0xffffffff;
FSM_R1 = 0x0;
FSM_R2 = 0x0;
FSM_R3 = 0x0;
for(i=0;i<32;i++)
{
F = ClockFSM();
ClockLFSRInitializationMode(F);
}
}
/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
* See section 4.2.
*/
void snow_3g_generate_key_stream(u32 n, u32 *ks)
{
u32 t = 0;
u32 F = 0x0;
ClockFSM(); /* Clock FSM once. Discard the output. */
ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */
for ( t=0; t<n; t++)
{
F = ClockFSM(); /* STEP 1 */
ks[t] = F ^ LFSR_S0; /* STEP 2 */
/* Note that ks[t] corresponds to z_{t+1} in section 4.2
*/
ClockLFSRKeyStreamMode(); /* STEP 3 */
}
}
/*-----------------------------------------------------------------------
* end of SNOW_3G.c
*-----------------------------------------------------------------------*/
/*---------------------------------------------------------
* f8.c
*---------------------------------------------------------*/
/*
#include "f8.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
*/
/* f8.
* Input key: 128 bit Confidentiality Key.
* Input count:32-bit Count, Frame dependent input.
* Input bearer: 5-bit Bearer identity (in the LSB side).
* Input dir:1 bit, direction of transmission.
* Input data: length number of bits, input bit stream.
* Input length: 32 bit Length, i.e., the number of bits to be encrypted or
* decrypted.
* Output data: Output bit stream. Assumes data is suitably memory
* allocated.
* Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as
* defined in Section 3.
*/
void snow_3g_f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length)
{
u32 K[4],IV[4];
int n = ( length + 31 ) / 32;
int i=0;
int lastbits = (8-(length%8)) % 8;
u32 KS[n];
/*Initialisation*/
/* Load the confidentiality key for SNOW 3G initialization as in section
3.4. */
for (i=0; i<4; i++)
K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16)
^ (key[4*i+2] << 8) ^ (key[4*i+3]);
/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
section 3.4. */
IV[3] = count;
IV[2] = (bearer << 27) | ((dir & 0x1) << 26);
IV[1] = IV[3];
IV[0] = IV[2];
/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
snow_3g_initialize(K,IV);
snow_3g_generate_key_stream(n,(u32*)KS);
/* Exclusive-OR the input data with keystream to generate the output bit
stream */
for (i=0; i<n; i++)
{
data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;
data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;
data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff;
data[4*i+3] ^= (u8) (KS[i] ) & 0xff;
}
/* zero last bits of data in case its length is not byte-aligned
this is an addition to the C reference code, which did not handle it */
if (lastbits)
data[length/8] &= 256 - (1<<lastbits);
}
/* End of f8.c */
/*---------------------------------------------------------
* f9.c
*---------------------------------------------------------*/
/* MUL64x.
* Input V: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.2 for details.
*/
static u64 MUL64x(u64 V, u64 c)
{
if ( V & 0x8000000000000000 )
return (V << 1) ^ c;
else
return V << 1;
}
/* MUL64xPOW.
* Input V: a 64-bit input.
* Input i: a positive integer.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling function.
* See section 4.3.3 for details.
*/
static u64 MUL64xPOW(u64 V, u8 i, u64 c)
{
if ( i == 0)
return V;
else
return MUL64x( MUL64xPOW(V,i-1,c) , c);
}
/* MUL64.
* Input V: a 64-bit input.
* Input P: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.4 for details.
*/
static u64 MUL64(u64 V, u64 P, u64 c)
{
u64 result = 0;
int i = 0;
for ( i=0; i<64; i++)
{
if( ( P>>i ) & 0x1 )
result ^= MUL64xPOW(V,i,c);
}
return result;
}
/* mask8bit.
* Input n: an integer in 1-7.
* Output : an 8 bit mask.
* Prepares an 8 bit mask with required number of 1 bits on the MSB side.
*/
static u8 mask8bit(int n)
{
return 0xFF ^ ((1<<(8-n)) - 1);
}
/* f9.
* Input key: 128 bit Integrity Key.
* Input count:32-bit Count, Frame dependent input.
* Input fresh: 32-bit Random number.
* Input dir:1 bit, direction of transmission (in the LSB).
* Input data: length number of bits, input bit stream.
* Input length: 64 bit Length, i.e., the number of bits to be MAC'd.
* Output : 32 bit block used as MAC
* Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.
*/
void snow_3g_f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length,
u8 *out)
{
u32 K[4],IV[4], z[5];
u32 i=0, D;
u64 EVAL;
u64 V;
u64 P;
u64 Q;
u64 c;
u64 M_D_2;
int rem_bits = 0;
/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
for (i=0; i<4; i++)
{
K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^
(key[4*i+2] << 8) ^ (key[4*i+3]);
}
/* Prepare the Initialization Vector (IV) for SNOW3G initialization as
in section 4.4. */
IV[3] = count;
IV[2] = fresh;
IV[1] = count ^ ( dir << 31 ) ;
IV[0] = fresh ^ (dir << 15);
z[0] = z[1] = z[2] = z[3] = z[4] = 0;
/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
snow_3g_initialize(K, IV);
snow_3g_generate_key_stream(5, z);
P = (u64)z[0] << 32 | (u64)z[1];
Q = (u64)z[2] << 32 | (u64)z[3];
/* Calculation */
if ((length % 64) == 0)
D = (length>>6) + 1;
else
D = (length>>6) + 2;
EVAL = 0;
c = 0x1b;
/* for 0 <= i <= D-3 */
for (i=0; i<D-2; i++)
{
V = EVAL ^ ( (u64)data[8*i ]<<56 | (u64)data[8*i+1]<<48 |
(u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 |
(u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 |
(u64)data[8*i+6]<< 8 | (u64)data[8*i+7] ) ;
EVAL = MUL64(V,P,c);
}
/* for D-2 */
rem_bits = length % 64;
if (rem_bits == 0)
rem_bits = 64;
M_D_2 = 0;
i = 0;
while (rem_bits > 7)
{
M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));
rem_bits -= 8;
i++;
}
if (rem_bits > 0)
M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
V = EVAL ^ M_D_2;
EVAL = MUL64(V,P,c);
/* for D-1 */
EVAL ^= length;
/* Multiply by Q */
EVAL = MUL64(EVAL,Q,c);
/* XOR with z_5: this is a modification to the reference C code,
which forgot to XOR z[5] */
for (i=0; i<4; i++)
/*
MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;
*/
out[i] = ((EVAL >> (56-(i*8))) ^ (z[4] >> (24-(i*8)))) & 0xff;
}
/* End of f9.c */
/*------------------------------------------------------------------------*/