-
ERICSSON 2

Ericssonwide Internal

USER GUIDE

Prepared (also subject responsible if other)

ETH/RZX Krisztian Pandi

No.

198 17-CNL 113 426 Uen

Approved

ETH/RZXC Elemér Lelik

| Checked Date

| Rev Reference

ETHLEL 2009-04-02 C GASK2

ROHC Protocol Modules for TTCN-3 Toolset with TITAN,
User Guide

Contents

N = = d
w P oo =
aArwND =

Introduction
Revision history
About this Document....

How to Read this DOCUMENTuiieiieeee e

Presumed Knowledge ..
References...................
Abbreviations................
Terminology.......c.cucee...
System Requirements ..
Protocol Modules..........
Overviewcceeeeeeenen...
Installation....................
Configuration................
Useful constants...........
Usage.....ccooomeereenennnnnne

Encoding of ROHC MeSSages....couviiiiiiiiiiiiieeeeeeiiieee e
Decoding of ROHC MESSAQES. .. uteiiaaiiiiiriiieaae e eiiieiee e rieeeee e
Encoding of ROHC feedbacksc..eviiiiiiieiiiiee e
Decoding of ROHC feedbacks.........c..ouviiiiiieiiiiie e
Calculating the CRC ValUS.......ueeviiiiieeiiee e

Examplesccccoeeunnee

ROHC packet encoding and decoding........c.cooceeeeeriieeenniieeeeiieeens
ROHC feedback encoding and decoding........ccovecuvieeeeeeeeiiiciiieeeeenn.

ROHC CRC calculation

ERICSSON 2

Ericssonwide Internal

USER GUIDE 2(7)
Prepared (also subject responsible if other) No.
ETH/RZX Krisztian Pandi 198 17-CNL 113 426 Uen
Approved | Checked Date | Rev Reference
ETH/RZXC Elemér Lelik ETHLEL 2009-04-02 C GASK2
1 Introduction
1.1 Revision history
Date Rev Characteristics Prepared
2006-09-22 | PA1 First draft version ETHESI
2006-11-14 | A Approved after review ETHESI
2007-01-09 | PB1 Updated for TITAN R7 ETHBAAT
2009-03-31 | PC1 Updated for TITAN R8 EKRIPND
1.2 About this Document
1.2.1 How to Read this Document
This is the User Guide for the ROHC protocol module. The ROHC protocol
module is developed for the TTCN-3 Toolset with TITAN. This document
should be read together with Product Revision Information [3] and Function
Specification [4].
1.2.2 Presumed Knowledge
To use this protocol module the knowledge of the TTCN-3 language [1] is
essential.
To use this protocol module the deep knowledge of the ROHC protocol [5]
and [6] is essential.
1.23 References

[1] ETSIES 201 873-1v.3.1.1 (2005-06)
The Testing and Test Control Notation version 3. Part 1: Core
Language

[2] 1/1553-CRL 113 200 Uen
User Documentation for the TITAN TTCN-3 Test Executor

[3] 109 21-CNL113 426-1
ROHC Protocol Modules for TTCN-3 Toolset with TITAN, Product
Revision Information

[4] 15517-CNL113 426
ROHC Protocol Modules for TTCN-3 Toolset with TITAN, Function
Specification

[5] RFC 3095:
RObust Header Compression (ROHC): Framework and four profiles:
RTP, UDP, ESP, and uncompressed

-
ERICSSON 2

Ericssonwide Internal

Prepared (also subject responsible if other)

ETH/RZX Krisztian Pandi

Approved

ETH/RZXC Elemér Lelik

USER GUIDE 3(7)
No.
198 17-CNL 113 426 Uen
| Checked Date | Rev Reference
ETHLEL 2009-04-02 C GASK2

1.2.4

1.2.5

1.3

[6] RFC 3843:
RObust Header Compression (ROHC): A Compression Profile for IP

Abbreviations

AH Authentication header

CRC Cyclic Redundancy Check

ESP Encapsulating Security Payload
GRE Generic Routing Encapsulation
IP Internet Protocol

IR-DYN IR-DYN ROHC packet

LSB Least Significant Byte

RFC Request For Comments

RND RaNDom bit

ROHC RObust Header Compression
RTP Real-time Transport Protocol

TTCN-3 Testing and Test Control Notation version 3
UDP User Datagram Protocol

Terminology

No specific terminology is used.

System Requirements

Protocol modules are a set of TTCN-3 source code files that can be used as
part of TTCN-3 test suites only. Hence, protocol modules alone do not put
specific requirements on the system used. However in order to compile and
execute a TTCN-3 test suite using the set of protocol modules the following
system requirements must be satisfied:

e TITAN TTCN-3 Test Executor R8A (1.8.pl0) or higher installed. For
installation guide see [2]. Please note: This version of the protocol
module is not compatible with TITAN releases earlier than R38A.
Using the test port with TITAN version earlier than R7E can cause
dynamic testcase error due to the different integer number handling.

ERICSSON 2

Ericssonwide Internal
USER GUIDE 4 (7)

Prepared (also subject responsible if other)

ETH/RZX Krisztian Pandi

No.

198 17-CNL 113 426 Uen

Approved

ETH/RZXC Elemér Lelik

| Checked Date | Rev Reference

ETHLEL 2009-04-02 C GASK2

2
2.1

2.2

2.3

2.4

2.5

2.5.1

Protocol Modules
Overview

Protocol modules implement the messages structure of the related protocol in
a formalized way, using the standard specification language TTCN-3. This
allows defining of test data (templates) in the TTCN-3 language [1] and
correctly encoding/decoding messages when executing test suites using the
TITAN TTCN-3 test environment.

Protocol modules are using TITAN’s RAW encoding attributes [2] and hence
are usable with the TITAN test toolset only.

Installation

The set of protocol modules can be used in developing TTCN-3 test suites
using any text editor. However to make the work more efficient a TTCN-3-
enabled text editor is recommended (e.g. nedit, xemacs). Since the ROHC
protocol is used as a part of a TTCN-3 test suite, this requires TTCN-3 Test
Executor be installed before the module can be compiled and executed
together with other parts of the test suite. For more details on the installation
of TTCN-3 Test Executor see the relevant section of [2].

Configuration

None.

Useful constants

The protocol module provides some constants that can be used in templates.

ROHC operation modes:

e cg_ROHC_mode_C : mode cancellation
e cg_ROHC_mode_U : U mode

e cg_ROHC_mode_O : O mode

e cg ROHC mode R : R mode

ROHC feedback types:

e cg ROHC fbck_type ACK

e cg ROHC fbck type NACK

e cg_ROHC_fbck_type SNACK
e cg ROHC fbck_type reserved

Usage

Encoding of ROHC messages

The encoding of the ROHC messages depends on the negotiated channel
parameters and the current state of the compressor’s context. The protocol

module does not maintain the context of the compressor by itself, all data
must be provided by the user.

-
ERICSSON 2

Ericssonwide Internal

Prepared (also subject responsible if other)

ETH/RZX Krisztian Pandi

Approved

ETH/RZXC Elemér Lelik

USER GUIDE 5 (7)
No.
198 17-CNL 113 426 Uen
| Checked Date | Rev Reference
ETHLEL 2009-04-02 C GASK2

2.5.2

The encoding function has a parameter, that holds all the necessary channel
parameters and context data needed for encoding (only relevant data is
listed):
e LARGE_CID (negotiated parameter)
e the list of the UDP ports, that are handled as RTP flows
e one context descriptor for each active contexts with the following data:
e ROHC operation mode (U/O/R mode), if applicable
e LSB of the profile identifier (currently supported: 0, 1, 2, 4)
e |P chain of the context:
e version of the IP (4 or 6)
e RND bit
e UDP data: a flag whether the UDP checksum is present in the packet

Decoding of ROHC messages

The decoding of the ROHC messages depends on the negotiated channel
parameters and the current state of the decompressor’s context. The protocol
module does not maintain the context of the decompressor by itself, all data
must be provided by the user.

The decoding function has a parameter, that holds all the necessary channel
parameters and context data needed for decoding (only relevant data is
listed):
e LARGE_CID (negotiated parameter)
e the list of the UDP ports, that are handled as RTP flows
e one context descriptor for each active contexts with the following data:

e ROHC operation mode (U/O/R mode), if applicable

e LSB of the profile identifier (currently supported: 0, 1, 2, 4)

e decoded packet type

e |P chain of the context:

e version of the IP (4 or 6)

e RND bit

e flag indicating whether AH header is present in the current index
list

e flag indicating whether ESP header is present in the current index
list

e flag indicating whether GRE header is present in the current index
list

e length of the AH header data field in case the AH header is
received in compressed form
e flag indicating whether the GRE checksum is present in the GRE
header (used only if the GRE header flag is true)
e UDP data: a flag whether the UDP checksum is present in the packet

The ROHC configuration data is an inout parameter in the decoding function.
The decoding function will modify the context data based on the information
received in the ROHC packet. The updated configuration can be stored and
passed to the decoding function again. This technique gives a basic context
management logic, which however has limitations (compared to a real ROHC
decompressor):

-
ERICSSON 2

Ericssonwide Internal

Prepared (also subject responsible if other)

ETH/RZX Krisztian Pandi

Approved

ETH/RZXC Elemér Lelik

USER GUIDE 6 (7)
No.
198 17-CNL 113 426 Uen
| Checked Date | Rev Reference
ETHLEL 2009-04-02 C GASK2

2.5.3

254

2.5.5

e there is no translation table management, i.e. list compression can not be
used.

Encoding of ROHC feedbacks

The encoding of the ROHC feedback messages depends on the negotiated
channel parameters.

The encoding function has a parameter, that holds all the necessary channel
parameters needed for encoding (only relevant data is listed):
e LARGE_CID (negotiated parameter)

Decoding of ROHC feedbacks

The decoding of the ROHC feedback messages depends on the negotiated
channel parameters.

The decoding function has a parameter, that holds all the necessary channel
parameters needed for decoding (only relevant data is listed):
e LARGE_CID (negotiated parameter)

Calculating the CRC values

The f_ROHC_CRC() supporting function can be used to calculate the CRC
values used in ROHC:

e CRC-3 or CRC-7 over an IP packet

e (CRC-32 over a ROHC segment packet

e CRC-8 over an IR or IR-DYN ROHC packet

The signature of the function is:
f ROHC_CRC (octetstring, integer) returns integer

The first parameter is the buffer, the CRC is calculated over, the second
parameter is the CRC type. The CRC type can be 3, 7, 8 or 32. The CRC is
calculated over the whole buffer.

If the CRC type has an invalid value, TTCN_error is thrown.

The function returns the calculated CRC value.
Examples

ROHC packet encoding and decoding

Example ROHC configuration:
template ROHC_config t_ROHC_config :=
{

large_cid :

rtp_ports :

context :=

{

{
mode := cg_ROHC_mode_U,

false,
{ 666, 667, 668 },

- : .
ERICSSON £ Ericssonwide Internal

USER GUIDE
Prepared (also subject responsible if other) No.
ETH/RZX Krisztian Pandi 198 17-CNL 113 426 Uen
Approved | Checked Date | Rev Reference
ETH/RZXC Elemér Lelik ETHLEL 2009-04-02 C GASK2
profile := 1,
pkt := NOPKT,
ip_ctx := {
{
version := 4,
rnd_bit := false,
ah_present := false,
gre_present := false,
esp_present := false,
ah_data_len := 0,
gre_cksum_present := false
}
) 4
udp_ctx := {
udp_cksum := true

}

}

// The configuration is inout

var template v_config := t_ROHC_config;
// Encoded data

var octetstring data;

// The ROHC packet

var v_ROHC_pkt;

// Encoding
data := f_ROHC_enc(v_ROHC_pkt, v_configqg);

// Decoding. The v_config is modified by the codec.
v_ROHC_pkt := f_ROHC_dec(data, v_config);

3.2 ROHC feedback encoding and decoding

The ROHC configuration is the same as in the first example.

// Encoded data

var octetstring data;

// the ROHC feedback

var Feedback_data v_ROHC_fbck;

// Encoding
data := f_FBCK_enc(v_ROHC_fbck, v_config);

// Decoding
v_ROHC_fbck := f_FBCK_dec(data, v_config);

3.3 ROHC CRC calculation

An example to calculate the CRC-8 over an IR packet.

var integer crc;

// Encoded data

var octetstring data;

// The ROHC packet. The CRC field must be zero according to RFC 3095.
var v_ROHC_pkt;

// Encoding
data := f_ROHC_enc(v_ROHC_pkt, v_config);

// Calculate the CRC-8
crc := f_ROHC_CRC(data, 8);

// Write the CRC-8 into the data buffer
datal[3] := crc;

