module PCU_Tests_RAW { /* "RAW" PCU tests: Talk directly to the PCU socket of OsmoPCU on the one hand side (emulating the BTS/BSC side PCU socket server) and the Gb interface on the other hand side. No NS/BSSGP Emulation is used; rather, we simply use the NS_CodecPort to implement both standard and non- standard procedures on the NS and BSSGP level. The goal of these tests is to test exactly those NS and BSSGP implementations on the BSS (PCU) side. */ /* (C) 2018-2019 Harald Welte * (C) 2019 Vadim Yanitskiy * All rights reserved. * * Released under the terms of GNU General Public License, Version 2 or * (at your option) any later version. * * SPDX-License-Identifier: GPL-2.0-or-later */ import from General_Types all; import from Osmocom_Types all; import from GSM_Types all; import from GSM_RR_Types all; import from RLCMAC_CSN1_Types all; import from RLCMAC_Types all; import from NS_Types all; import from BSSGP_Types all; import from Osmocom_Gb_Types all; import from BSSGP_Emulation all; /* BssgpConfig */ import from NS_Emulation all; /* NSConfiguration */ import from UD_Types all; import from PCUIF_Types all; import from PCUIF_CodecPort all; import from PCUIF_RAW_Components all; import from IPL4asp_Types all; import from NS_CodecPort all; import from NS_CodecPort_CtrlFunct all; import from Native_Functions all; import from PCU_Tests all; modulepar { charstring mp_pcu_sock_path := PCU_SOCK_DEFAULT; } type component RAW_NS_CT { /* UDP port towards the bottom (IUT) */ port NS_CODEC_PT NSCP[4]; var ConnectionId g_ns_conn_id[4] := {-1, -1, -1, -1}; var NSConfiguration g_nsconfig[4]; timer g_T_guard; } type component RAW_PCU_CT { /* PCUIF (we emulate the BTS part) */ port PCUIF_CODEC_PT PCU; var ConnectionId g_pcu_conn_id := -1; } type component RAW_Test_CT extends RAW_NS_CT, RAW_PCU_CT { } private altstep as_Tguard() runs on RAW_NS_CT { [] g_T_guard.timeout { setverdict(fail, "Timeout of T_guard"); mtc.stop; } } function f_init_pcuif() runs on RAW_PCU_CT { map(self:PCU, system:PCU); /* Connect the Unix Domain Socket */ g_pcu_conn_id := f_pcuif_listen(PCU, mp_pcu_sock_path); PCU.receive(UD_connected:?); /* Wait for PCU_VERSION and return INFO_IND */ PCU.receive(t_SD_PCUIF(g_pcu_conn_id, tr_PCUIF_TXT_IND(0, PCU_VERSION, ?))); /* FIXME: make sure to use parameters from mp_gb_cfg.cell_id in the PCU INFO IND */ var template PCUIF_Message info_ind := ts_PCUIF_INFO_IND(bts_nr := 0, nsei := mp_nsconfig.nsei, nsvci := mp_nsconfig.nsvci, bvci := mp_gb_cfg.bvci, local_port := mp_nsconfig.remote_udp_port, remote_port := mp_nsconfig.local_udp_port, remote_ip := f_inet_haddr(mp_nsconfig.local_ip) ); PCU.send(t_SD_PCUIF(g_pcu_conn_id, info_ind)); } function f_pcuif_tx(template (value) PCUIF_Message msg) runs on RAW_PCU_CT { PCU.send(t_SD_PCUIF(g_pcu_conn_id, msg)); } function f_init_ns_codec(integer idx := 0, float guard_secs := 60.0) runs on RAW_NS_CT { var Result res; if (not g_T_guard.running) { g_T_guard.start(guard_secs); activate(as_Tguard()); } if (not isbound(g_nsconfig) or not isbound(g_nsconfig[idx])) { /* copy most parts from mp_nsconfig */ g_nsconfig[idx] := mp_nsconfig; /* adjust those parts different for each NS-VC */ g_nsconfig[idx].nsvci := mp_nsconfig.nsvci + idx; g_nsconfig[idx].local_udp_port := mp_nsconfig.local_udp_port + idx; } map(self:NSCP[idx], system:NSCP); /* Connect the UDP socket */ log("connecting NSCP[", idx, "] to ", g_nsconfig[idx]); res := f_IPL4_connect(NSCP[idx], g_nsconfig[idx].remote_ip, g_nsconfig[idx].remote_udp_port, g_nsconfig[idx].local_ip, g_nsconfig[idx].local_udp_port, 0, { udp := {}}); if (not ispresent(res.connId)) { setverdict(fail, "Could not connect NS UDP socket, check your configuration ", g_nsconfig[idx]); mtc.stop; } g_ns_conn_id[idx] := res.connId; } function f_ns_exp(template PDU_NS exp_rx, integer idx := 0) runs on RAW_NS_CT return PDU_NS { var NS_RecvFrom nrf; log("f_ns_exp() expecting ", exp_rx); alt { [] NSCP[idx].receive(t_NS_RecvFrom(exp_rx)) -> value nrf { } [] NSCP[idx].receive { setverdict(fail, "Received unexpected NS: ", nrf); mtc.stop; } } return nrf.msg; } /* perform outbound NS-ALIVE procedure */ function f_outgoing_ns_alive(integer idx := 0) runs on RAW_NS_CT { NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE)); alt { [] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE_ACK)); [] NSCP[idx].receive { repeat; } } } /* perform outbound NS-ALIVE procedure */ function f_outgoing_ns_alive_no_ack(integer idx := 0, float tout := 10.0) runs on RAW_NS_CT { timer T := tout; NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE)); T.start; alt { [] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE_ACK)) { setverdict(fail, "Received unexpected NS-ALIVE ACK"); } [] NSCP[idx].receive { repeat; } [] T.timeout { setverdict(pass); } } } /* ensure no matching message is received within 'tout' */ function f_ensure_no_ns(template PDU_NS ns := ?, integer idx := 0, float tout := 3.0) runs on RAW_Test_CT { timer T := tout; T.start; alt { [] NSCP[idx].receive(t_NS_RecvFrom(ns)) { setverdict(fail, "NS-ALIVE from unconfigured (possibly initial) endpoint"); } [] T.timeout { setverdict(pass); } } } /* perform outbound NS-BLOCK procedure */ function f_outgoing_ns_block(NsCause cause, integer idx := 0) runs on RAW_NS_CT { NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_BLOCK(cause, g_nsconfig[idx].nsvci))); alt { [] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_BLOCK_ACK(g_nsconfig[idx].nsvci))); [] NSCP[idx].receive { repeat; } } } /* receive NS-ALIVE and ACK it */ altstep as_rx_alive_tx_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { [] NSCP[idx].receive(t_NS_RecvFrom(t_NS_ALIVE)) { NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_ALIVE_ACK)); if (not oneshot) { repeat; } } } /* Transmit BSSGP RESET for given BVCI and expect ACK */ function f_tx_bvc_reset_rx_ack(BssgpBvci bvci, integer idx := 0, boolean exp_ack := true) runs on RAW_NS_CT { var PDU_BSSGP bssgp_tx := valueof(ts_BVC_RESET(BSSGP_CAUSE_NET_SV_CAP_MOD_GT_ZERO_KBPS, bvci, mp_gb_cfg.cell_id)); timer T := 5.0; NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx)))); T.start; alt { [exp_ack] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0, decmatch tr_BVC_RESET_ACK(bvci, ?)))) { setverdict(pass); } [exp_ack] T.timeout { setverdict(fail, "No response to BVC-RESET"); } [not exp_ack] T.timeout { setverdict(pass); } [] NSCP[idx].receive { repeat; } } } /* Receive a BSSGP RESET for given BVCI and ACK it */ altstep as_rx_bvc_reset_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { var NS_RecvFrom ns_rf; /* FIXME: nail down received cell_id in match */ [] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0, decmatch tr_BVC_RESET(?, bvci, ?)))) -> value ns_rf { var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU); var PDU_BSSGP bssgp_tx := valueof(ts_BVC_RESET_ACK(bvci, mp_gb_cfg.cell_id)); NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx)))); if (not oneshot) { repeat; } } } /* Receive a BSSGP UNBLOCK for given BVCI and ACK it */ altstep as_rx_bvc_unblock_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { var NS_RecvFrom ns_rf; [] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, 0, decmatch t_BVC_UNBLOCK(bvci)))) -> value ns_rf { var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU); var PDU_BSSGP bssgp_tx := valueof(t_BVC_UNBLOCK_ACK(bvci)); NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, 0, enc_PDU_BSSGP(bssgp_tx)))); if (not oneshot) { repeat; } } } /* Receive a BSSGP FLOW-CONTROL-BVC and ACK it */ altstep as_rx_bvc_fc_tx_ack(BssgpBvci bvci, boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { var NS_RecvFrom ns_rf; [] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_UNITDATA(t_SduCtrlB, bvci, decmatch tr_BVC_FC_BVC))) -> value ns_rf { var PDU_BSSGP bssgp_rx := dec_PDU_BSSGP(ns_rf.msg.pDU_NS_Unitdata.nS_SDU); var OCT1 tag := bssgp_rx.pDU_BSSGP_FLOW_CONTROL_BVC.tag.unstructured_Value; var PDU_BSSGP bssgp_tx := valueof(t_BVC_FC_BVC_ACK(tag)); NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_UNITDATA(t_SduCtrlB, bvci, enc_PDU_BSSGP(bssgp_tx)))); if (not oneshot) { repeat; } } } /********************************************************************************** * Classic Gb/IP bring-up test cases using NS-{RESET,BLOCK,UNBLOCK} and no IP-SNS * **********************************************************************************/ /* Receive a NS-RESET and ACK it */ private altstep as_rx_ns_reset_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { var NS_RecvFrom ns_rf; [] NSCP[idx].receive(t_NS_RecvFrom(tr_NS_RESET(NS_CAUSE_OM_INTERVENTION, g_nsconfig[idx].nsvci, g_nsconfig[idx].nsei))) -> value ns_rf { NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], ts_NS_RESET_ACK(g_nsconfig[idx].nsvci, g_nsconfig[idx].nsei))); if (not oneshot) { repeat; } } } /* Receive a NS-UNBLOCK and ACK it */ private altstep as_rx_ns_unblock_ack(boolean oneshot := false, integer idx := 0) runs on RAW_NS_CT { var NS_RecvFrom ns_rf; [] NSCP[idx].receive(t_NS_RecvFrom(t_NS_UNBLOCK)) -> value ns_rf { NSCP[idx].send(t_NS_Send(g_ns_conn_id[idx], t_NS_UNBLOCK_ACK)); if (not oneshot) { repeat; } } } /* test the NS-RESET procedure */ testcase TC_ns_reset() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); setverdict(pass); } /* ensure NS-RESET are re-transmitted */ testcase TC_ns_reset_retrans() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); var integer i; for (i := 0; i < 3; i := i+1) { NSCP[0].receive(t_NS_RecvFrom(tr_NS_RESET(NS_CAUSE_OM_INTERVENTION, g_nsconfig[0].nsvci, g_nsconfig[0].nsei))); } /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); setverdict(pass); } /* test the inbound NS-ALIVE procedure after NS-RESET */ testcase TC_ns_alive() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for one ALIVE cycle, then ACK any further ALIVE in the background */ as_rx_alive_tx_ack(oneshot := true); setverdict(pass); } /* Test for NS-RESET after NS-ALIVE timeout */ testcase TC_ns_alive_timeout_reset() runs on RAW_Test_CT { f_init_ns_codec(guard_secs := 100.0); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for at least one NS-ALIVE */ NSCP[0].receive(t_NS_RecvFrom(t_NS_ALIVE)); /* wait for NS-RESET to re-appear, ignoring any NS-ALIVE until then */ alt { [] as_rx_ns_reset_ack(oneshot := true) { setverdict(pass); } [] NSCP[0].receive(t_NS_RecvFrom(t_NS_ALIVE)) { repeat; } } } /* test for NS-RESET/NS-ALIVE/NS-UNBLOCK */ testcase TC_ns_unblock() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for one ALIVE cycle, then ACK any further ALIVE in the background */ as_rx_alive_tx_ack(oneshot := true); activate(as_rx_alive_tx_ack()); as_rx_ns_unblock_ack(oneshot := true); setverdict(pass); } /* test for NS-UNBLOCK re-transmissions */ testcase TC_ns_unblock_retrans() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for one ALIVE cycle, then ACK any further ALIVE in the background */ as_rx_alive_tx_ack(oneshot := true); activate(as_rx_alive_tx_ack()); /* wait for first NS-UNBLOCK, don't respond */ NSCP[0].receive(t_NS_RecvFrom(t_NS_UNBLOCK)); /* wait for re-transmission of NS-UNBLOCK */ as_rx_ns_unblock_ack(oneshot := true); setverdict(pass); } /* full bring-up of the Gb link for NS and BSSGP layer up to BVC-FC */ testcase TC_ns_full_bringup() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for one ALIVE cycle, then ACK any further ALIVE in the background */ as_rx_alive_tx_ack(oneshot := true); activate(as_rx_alive_tx_ack()); as_rx_ns_unblock_ack(oneshot := true); f_outgoing_ns_alive(); /* Expect BVC-RESET for signaling (0) and ptp BVCI */ as_rx_bvc_reset_tx_ack(0, oneshot := true); as_rx_bvc_reset_tx_ack(mp_gb_cfg.bvci, oneshot := true); as_rx_bvc_unblock_tx_ack(mp_gb_cfg.bvci, oneshot := true); /* wait for one FLOW-CONTROL BVC and then ACK any further in the future */ as_rx_bvc_fc_tx_ack(mp_gb_cfg.bvci, oneshot := true); activate(as_rx_bvc_fc_tx_ack(mp_gb_cfg.bvci)); setverdict(pass); } /* test outbound (SGSN-originated) NS-BLOCK procedure */ testcase TC_ns_so_block() runs on RAW_Test_CT { f_init_ns_codec(); f_init_pcuif(); /* Expect inbound NS-RESET procedure */ as_rx_ns_reset_ack(oneshot := true); /* wait for one ALIVE cycle, then ACK any further ALIVE in the background */ as_rx_alive_tx_ack(oneshot := true); activate(as_rx_alive_tx_ack()); as_rx_ns_unblock_ack(oneshot := true); f_outgoing_ns_alive(); f_outgoing_ns_block(NS_CAUSE_EQUIPMENT_FAILURE); setverdict(pass); } type component RAW_PCU_Test_CT extends bssgp_CT { /* Connection to the BTS component (one for now) */ port RAW_PCU_MSG_PT BTS; /* Connection to the PCUIF component */ port RAW_PCU_MSG_PT PCUIF; /* Guard timeout */ timer g_T_guard := 60.0; }; private altstep as_Tguard_RAW() runs on RAW_PCU_Test_CT { [] g_T_guard.timeout { setverdict(fail, "Timeout of T_guard"); mtc.stop; } } private function f_init_raw(charstring id) runs on RAW_PCU_Test_CT { var PCUIF_info_ind info_ind; var RAW_PCUIF_CT vc_PCUIF; var RAW_PCU_BTS_CT vc_BTS; /* Start the guard timer */ g_T_guard.start; activate(as_Tguard_RAW()); /* Init PCU interface component */ vc_PCUIF := RAW_PCUIF_CT.create("PCUIF-" & id); connect(vc_PCUIF:MTC, self:PCUIF); map(vc_PCUIF:PCU, system:PCU); /* Create one BTS component (we may want more some day) */ vc_BTS := RAW_PCU_BTS_CT.create("BTS-" & id); connect(vc_BTS:PCUIF, vc_PCUIF:BTS); connect(vc_BTS:TC, self:BTS); /* FIXME: make sure to use parameters from mp_gb_cfg.cell_id in the PCU INFO IND */ info_ind := { version := PCU_IF_VERSION, flags := c_PCUIF_Flags_default, trx := valueof(ts_PCUIF_InfoTrxs_def), /* TODO: make this configurable */ bsic := 7, mcc := 262, mnc := 42, mnc_3_digits := 0, /* TODO: make this configurable */ lac := 13135, rac := 0, nsei := mp_nsconfig.nsei, nse_timer := { 3, 3, 3, 3, 30, 3, 10 }, cell_timer := { 3, 3, 3, 3, 3, 10, 3, 10, 3, 10, 3 }, cell_id := 20960, repeat_time := 5 * 50, repeat_count := 3, bvci := mp_gb_cfg.bvci, t3142 := 20, t3169 := 5, t3191 := 5, t3193_10ms := 160, t3195 := 5, t3101 := 10, t3103 := 4, t3105 := 8, cv_countdown := 15, dl_tbf_ext := 250 * 10, /* ms */ ul_tbf_ext := 250 * 10, /* ms */ initial_cs := 2, initial_mcs := 6, nsvci := { mp_nsconfig.nsvci, 0 }, local_pprt := { mp_nsconfig.remote_udp_port, 0 }, remote_port := { mp_nsconfig.local_udp_port, 0 }, remote_ip := { f_inet_haddr(mp_nsconfig.local_ip), '00000000'O } }; vc_PCUIF.start(f_PCUIF_CT_handler(mp_pcu_sock_path)); vc_BTS.start(f_BTS_CT_handler(0, info_ind)); /* Wait until the BTS is ready (SI13 negotiated) */ BTS.receive(tr_RAW_PCU_EV(BTS_EV_SI13_NEGO)); } /* FIXME: properly encode RA (see TS 24.060, table 11.2.5.2) */ private function f_establish_tbf(out GsmRrMessage rr_imm_ass, uint8_t bts_nr := 0, uint16_t ra := oct2int('3A'O), uint8_t is_11bit := 0, PCUIF_BurstType burst_type := BURST_TYPE_0, TimingAdvance ta := 0) runs on RAW_PCU_Test_CT return boolean { var PCUIF_Message pcu_msg; var GsmRrMessage rr_msg; var uint32_t fn; timer T; /* FIXME: ask the BTS component to give us the current TDMA fn */ fn := 1337 + ta; /* Send RACH.ind */ log("Sending RACH.ind on fn=", fn, " with RA=", ra, ", TA=", ta); BTS.send(ts_PCUIF_RACH_IND(bts_nr := bts_nr, ra := ra, is_11bit := is_11bit, burst_type := burst_type, fn := fn, arfcn := 871, qta := ta * 4)); /* Expect Immediate (TBF) Assignment on TS0/AGCH */ T.start(2.0); alt { [] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := bts_nr, trx_nr := ?, ts_nr := 0, sapi := PCU_IF_SAPI_AGCH, data := ?)) -> value pcu_msg { rr_imm_ass := dec_GsmRrMessage(pcu_msg.u.data_req.data); log("Rx Immediate Assignment: ", rr_imm_ass); /* Make sure this assignment is for us * TODO: Uplink or Downlink TBF? */ if (match(rr_imm_ass, tr_IMM_TBF_ASS(?, ra, fn))) { setverdict(pass); return true; } /* Not for us? Wait for more. */ repeat; } [] BTS.receive { repeat; } [] T.timeout { setverdict(fail, "Timeout waiting for Immediate Assignment"); } } return false; } /* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */ private function f_pcuif_tx_data_ind(octetstring data, int16_t lqual_cb := 0) runs on RAW_PCU_Test_CT { BTS.send(ts_PCUIF_DATA_IND(bts_nr := 0, trx_nr := 0, ts_nr := 7, block_nr := 0, sapi := PCU_IF_SAPI_PDTCH, data := data, fn := 0, arfcn := 871, lqual_cb := lqual_cb)); BTS.receive(tr_RAW_PCU_EV(TDMA_EV_PDTCH_BLOCK_SENT)); } /* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */ private function f_pcuif_rx_data_req(out PCUIF_Message pcu_msg) runs on RAW_PCU_Test_CT { BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PDTCH, fn := 0, arfcn := 871, block_nr := 0)); BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PDTCH)) -> value pcu_msg; } private function f_tx_rlcmac_ul_block(template (value) RlcmacUlBlock ul_data, int16_t lqual_cb := 0) runs on RAW_PCU_Test_CT { var octetstring data; /* Encode the payload of DATA.ind */ data := enc_RlcmacUlBlock(valueof(ul_data)); data := f_pad_oct(data, 23, '00'O); /* CS-1 */ /* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */ f_pcuif_tx_data_ind(data, lqual_cb); } private function f_rx_rlcmac_dl_block(out RlcmacDlBlock dl_block) runs on RAW_PCU_Test_CT { var PCUIF_Message pcu_msg; f_pcuif_rx_data_req(pcu_msg); dl_block := dec_RlcmacDlBlock(pcu_msg.u.data_req.data); } private function f_rx_rlcmac_dl_block_exp_ack_nack(out RlcmacDlBlock dl_block) runs on RAW_PCU_Test_CT { f_rx_rlcmac_dl_block(dl_block); if (not match(dl_block, tr_RLCMAC_ACK_NACK(ul_tfi := ?, tlli := ?))) { setverdict(fail, "Failed to match Packet Uplink ACK / NACK"); mtc.stop; } } testcase TC_pcuif_suspend() runs on RAW_PCU_Test_CT { var octetstring ra_id := enc_RoutingAreaIdentification(mp_gb_cfg.cell_id.ra_id); var GprsTlli tlli := 'FFFFFFFF'O; timer T; /* Initialize NS/BSSGP side */ f_init_bssgp(); /* Initialize the PCU interface abstraction */ f_init_raw(testcasename()); /* Establish BSSGP connection to the PCU */ f_bssgp_establish(); BTS.send(ts_PCUIF_SUSP_REQ(0, tlli, ra_id, 0)); T.start(2.0); alt { [] BSSGP_SIG[0].receive(tr_BSSGP_SUSPEND(tlli, mp_gb_cfg.cell_id.ra_id)) { setverdict(pass); } [] T.timeout { setverdict(fail, "Timeout waiting for BSSGP SUSPEND"); } } } /* Test of correct Timing Advance at the time of TBF establishment * (derived from timing offset of the Access Burst). */ testcase TC_ta_rach_imm_ass() runs on RAW_PCU_Test_CT { var GsmRrMessage rr_msg; var boolean ok; /* Initialize the PCU interface abstraction */ f_init_raw(testcasename()); /* We cannot send too many TBF requests in a short time because * at some point the PCU will fail to allocate a new TBF. */ for (var TimingAdvance ta := 0; ta < 64; ta := ta + 16) { /* Establish an Uplink TBF (send RACH.ind with current TA) */ ok := f_establish_tbf(rr_msg, bts_nr := 0, ta := ta); if (not ok) { setverdict(fail, "Failed to establish an Uplink TBF"); mtc.stop; } /* Make sure Timing Advance IE matches out expectations */ if (match(rr_msg, tr_IMM_TBF_ASS(dl := false, ta := ta))) { setverdict(pass); } } } /* Verify that the PCU generates valid PTCCH/D messages * while neither Uplink nor Downlink TBF is established. */ testcase TC_ta_ptcch_idle() runs on RAW_PCU_Test_CT { var PTCCHDownlinkMsg ptcch_msg; var PCUIF_Message pcu_msg; timer T; /* Initialize the PCU interface abstraction */ f_init_raw(testcasename()); /* Sent an RTS.req for PTCCH/D */ BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PTCCH, fn := 0, arfcn := 871, block_nr := 0)); T.start(5.0); alt { [] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PTCCH)) -> value pcu_msg { log("Rx DATA.req message: ", pcu_msg); setverdict(pass); } [] BTS.receive(PCUIF_Message:?) { repeat; } [] T.timeout { setverdict(fail, "Timeout waiting for a PTCCH/D block"); mtc.stop; } } ptcch_msg := dec_PTCCHDownlinkMsg(pcu_msg.u.data_req.data); log("Decoded PTCCH/D message: ", ptcch_msg); /* Make sure the message is encoded correctly * TODO: do we expect all TA values to be equal '1111111'B? */ if (not match(ptcch_msg, tr_PTCCHDownlinkMsg)) { setverdict(fail, "Malformed PTCCH/D message"); mtc.stop; } } /* Test of correct Timing Advance during an active Uplink TBF. * * Unlike the circuit-switched domain, Uplink transmissions on PDCH time-slots * are not continuous and there can be long time gaps between them. This happens * due to a bursty nature of packet data. The actual Timing Advance of a MS may * significantly change between such rare Uplink transmissions, so GPRS introduces * additional mechanisms to control Timing Advance, and thus reduce interference * between neighboring TDMA time-slots. * * At the moment of Uplink TBF establishment, initial Timing Advance is measured * from ToA (Timing of Arrival) of an Access Burst. This is covered by another * test case - TC_ta_rach_imm_ass. In response to that Access Burst the network * sends Immediate Assignment on AGCH, which _may_ contain Timing Advance Index * among with the initial Timing Advance value. And here PTCCH comes to play. * * PTCCH is a unidirectional channel on which the network can instruct a sub-set * of 16 MS (whether TBFs are active or not) to adjust their Timing Advance * continuously. To ensure continuous measurements of the signal propagation * delay, the MSs shall transmit Access Bursts on Uplink (PTCCH/U) on sub-slots * defined by an assigned Timing Advance Index (see 3GPP TS 45.002). * * The purpose of this test case is to verify the assignment of Timing Advance * Index, and the process of Timing Advance notification on PTCCH/D. The MTC * first establishes several Uplink TBFs, but does not transmit any Uplink * blocks on them. During 4 TDMA multi-frame periods the MTC is sending RACH * indications to the PCU, checking the correctness of two received PTCCH/D * messages (period of PTCCH/D is two multi-frames). */ private altstep as_ta_ptcch(uint8_t bts_nr := 0, integer toa_factor := 0) runs on RAW_PCU_Test_CT { var integer counter := 0; var RAW_PCU_Event event; /* Send Access Bursts on PTCCH/U for every TA Index */ [] BTS.receive(tr_RAW_PCU_EV(TDMA_EV_PTCCH_UL_BURST)) -> value event { log("Sending an Access Burst on PTCCH/U", ", fn=", event.data.tdma_fn, ", ToA=", counter * toa_factor); /* TODO: do we care about RA and burst format? */ BTS.send(ts_PCUIF_RACH_IND(bts_nr := bts_nr, ra := oct2int('3A'O), is_11bit := 0, burst_type := BURST_TYPE_0, fn := event.data.tdma_fn, arfcn := 871, qta := counter * toa_factor * 4, sapi := PCU_IF_SAPI_PTCCH)); counter := counter + 1; repeat; } } private function f_TC_ta_ptcch_ul_multi_tbf(template PTCCHDownlinkMsg t_ta_msg) runs on RAW_PCU_Test_CT { var PTCCHDownlinkMsg ta_msg; var PCUIF_Message pcu_msg; timer T; /* First, send an RTS.req for the upcoming PTCCH/D block */ BTS.send(ts_PCUIF_RTS_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PTCCH, fn := 0, arfcn := 871, block_nr := 0)); T.start(2.0); alt { /* Keep sending of Access Bursts during two multi-frames (period of PTCCH/D) * with increasing ToA (Timing of Arrival) values: 0, 7, 14, 28, 35... */ [] as_ta_ptcch(bts_nr := 0, toa_factor := 7); /* In the end of 2nd multi-frame we should receive a PTCCH/D block */ [] BTS.receive(tr_PCUIF_DATA_REQ(bts_nr := 0, trx_nr := 0, ts_nr := 7, sapi := PCU_IF_SAPI_PTCCH)) -> value pcu_msg { ta_msg := dec_PTCCHDownlinkMsg(pcu_msg.u.data_req.data); log("Rx PTCCH/D message: ", ta_msg); /* Make sure Timing Advance values match our expectations */ if (match(ta_msg, t_ta_msg)) { setverdict(pass); } else { setverdict(fail, "PTCCH/D message does not match: ", t_ta_msg); } } [] BTS.receive { repeat; } [] T.timeout { setverdict(fail, "Timeout waiting for a PTCCH/D block"); mtc.stop; } } } testcase TC_ta_ptcch_ul_multi_tbf() runs on RAW_PCU_Test_CT { var template PacketUlAssign t_ul_tbf_ass; var PacketUlAssign ul_tbf_ass[7]; var GsmRrMessage rr_msg[7]; var boolean ok; /* Initialize the PCU interface abstraction */ f_init_raw(testcasename()); /* Enable forwarding of PTCCH/U TDMA events to us */ BTS.send(ts_RAW_PCU_CMD(TDMA_CMD_ENABLE_PTCCH_UL_FWD)); /* Establish 7 Uplink TBFs (USF flag is 3 bits long, '111'B is reserved) */ for (var integer i := 0; i < 7; i := i + 1) { ok := f_establish_tbf(rr_msg[i], ta := 0); if (not ok) { setverdict(fail, "Failed to establish an Uplink TBF #", i); mtc.stop; } /* Make sure we received an UL TBF Assignment */ if (match(rr_msg[i], tr_IMM_TBF_ASS(dl := false, rest := tr_IaRestOctets_ULAss(?)))) { ul_tbf_ass[i] := rr_msg[i].payload.imm_ass.rest_octets.hh.pa.uldl.ass.ul; log("Rx Uplink TBF assignment for #", i, ": ", ul_tbf_ass[i]); } else { setverdict(fail, "Failed to match UL TBF Assignment for #", i); mtc.stop; } /* We expect incremental TFI/USF assignment (dynamic allocation) */ t_ul_tbf_ass := tr_PacketUlDynAssign(tfi := i, usf := i); if (not match(ul_tbf_ass[i], t_ul_tbf_ass)) { setverdict(fail, "Failed to match Packet Uplink Assignment for #", i); mtc.stop; } /* We also expect Timing Advance Index to be a part of the assignment */ if (ul_tbf_ass[i].dynamic.ta_index != i) { setverdict(fail, "Failed to match Timing Advance Index for #", i); /* Keep going, the current OsmoPCU does not assign TA Index */ } } /* Now we have all 7 TBFs established in one-phase access mode, * however we will not be sending any data on them. Instead, we * will be sending RACH.ind on PTCCH/U during 4 multi-frame * periods (TAI 0..8), and then will check two PTCCH/D blocks. * * Why not 4 TBFs at once? Because Uplink is delayed by 3 TDMA * time-slots, so at the moment of scheduling a PTCCH/D block * the PCU has odd number of PTCCH/U Access Bursts received. */ f_TC_ta_ptcch_ul_multi_tbf(tr_PTCCHDownlinkMsg( tai0_ta := 7, tai1_ta := 14, tai2_ta := 21, /* Other values are not known (yet) */ tai3_ta := ?)); f_TC_ta_ptcch_ul_multi_tbf(tr_PTCCHDownlinkMsg( /* Other values are out of our interest */ tai0_ta := 7, tai1_ta := 14, tai2_ta := 21, tai3_ta := 28, tai4_ta := 35, tai5_ta := 42, /* Other values are not known (yet) */ tai6_ta := ?)); } /* Default link quality adaptation (Coding Scheme) ranges: /* CS1: ... 6 dB, CS2: 5 .. 8 dB, CS3: 7 .. 13 db, CS4: 12 ... dB */ private template integer CS1_lqual_dB_range := (-infinity .. 6); private template integer CS2_lqual_dB_range := (5 .. 8); private template integer CS3_lqual_dB_range := (7 .. 13); private template integer CS4_lqual_dB_range := (12 .. infinity); testcase TC_cs_lqual_ul_tbf() runs on RAW_PCU_Test_CT { var PacketUlAssign ul_tbf_ass; var RlcmacDlBlock dl_block; var PCUIF_Message pcu_msg; var GsmRrMessage rr_msg; var octetstring data; var boolean ok; /* Initialize the PCU interface abstraction */ f_init_raw(testcasename()); /* Establish an Uplink TBF */ ok := f_establish_tbf(rr_msg); if (not ok) { setverdict(fail, "Failed to establish an Uplink TBF"); mtc.stop; } /* Make sure we received an UL TBF Assignment */ if (match(rr_msg, tr_IMM_TBF_ASS(dl := false, rest := tr_IaRestOctets_ULAss(?)))) { ul_tbf_ass := rr_msg.payload.imm_ass.rest_octets.hh.pa.uldl.ass.ul; log("Rx Uplink TBF assignment: ", ul_tbf_ass); setverdict(pass); } else { setverdict(fail, "Failed to match UL TBF Assignment"); mtc.stop; } /* Make sure we have got a TBF with Dynamic Block Allocation */ if (ul_tbf_ass.dynamic == omit) { setverdict(fail, "Single Block Allocation is not handled by ", testcasename()); mtc.stop; } var template (value) RlcmacUlBlock ul_data := t_RLCMAC_UL_DATA( tfi := ul_tbf_ass.dynamic.tfi_assignment, cv := 15, /* 15 UL blocks to be sent (to be overridden in loop) */ bsn := 0, /* TODO: what should be here? */ blocks := { /* To be generated in loop */ }); /* HACK: patch missing TLLI; otherwise OsmoPCU rejects DATA.req */ ul_data.data.tlli := '00000001'O; /* 16 UL blocks (0 .. 32 dB, step = 2 dB) */ for (var integer i := 0; i < 16; i := i + 1) { /* Prepare a new UL block (CV, random payload) */ ul_data.data.mac_hdr.countdown := (15 - i); ul_data.data.blocks := { valueof(t_RLCMAC_LLCBLOCK(f_rnd_octstring(10))) }; /* Link quality in dB and our CS1-4 expectations */ var integer lqual := i * 2; /* Enqueue DATA.ind (both TDMA frame and block numbers to be patched) */ log("Sending DATA.ind with link quality (dB): ", lqual); f_tx_rlcmac_ul_block(ul_data, lqual * 10); /* Enqueue RTS.req, expect DATA.req with UL ACK from the PCU */ f_rx_rlcmac_dl_block_exp_ack_nack(dl_block); log("Rx Packet Uplink ACK / NACK with Channel Coding Command: ", dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd); /* Match the received Channel Coding Command */ var template ChCodingCommand ch_coding; select (lqual) { case (CS1_lqual_dB_range) { ch_coding := CH_CODING_CS1; } case (CS2_lqual_dB_range) { ch_coding := CH_CODING_CS2; } case (CS3_lqual_dB_range) { ch_coding := CH_CODING_CS3; } case (CS4_lqual_dB_range) { ch_coding := CH_CODING_CS4; } } if (not match(dl_block.ctrl.payload.u.ul_ack_nack.gprs.ch_coding_cmd, ch_coding)) { setverdict(fail, "Channel Coding does not match our expectations: ", ch_coding); } else { setverdict(pass); } } } control { execute( TC_ns_reset() ); execute( TC_ns_reset_retrans() ); execute( TC_ns_alive() ); execute( TC_ns_alive_timeout_reset() ); execute( TC_ns_unblock() ); execute( TC_ns_unblock_retrans() ); execute( TC_ns_full_bringup() ); execute( TC_ns_so_block() ); execute( TC_pcuif_suspend() ); execute( TC_ta_ptcch_idle() ); execute( TC_ta_rach_imm_ass() ); execute( TC_ta_ptcch_ul_multi_tbf() ); execute( TC_cs_lqual_ul_tbf() ); } }