sim-card
/
qemu
Archived
10
0
Fork 0
This repository has been archived on 2022-03-30. You can view files and clone it, but cannot push or open issues or pull requests.
qemu/hw/ppc_prep.c

986 lines
29 KiB
C

/*
* QEMU PPC PREP hardware System Emulator
*
* Copyright (c) 2003-2004 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include "m48t59.h"
//#define HARD_DEBUG_PPC_IO
//#define DEBUG_PPC_IO
extern int loglevel;
extern FILE *logfile;
#if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO)
#define DEBUG_PPC_IO
#endif
#if defined (HARD_DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, args...) \
do { \
if (loglevel > 0) { \
fprintf(logfile, "%s: " fmt, __func__ , ##args); \
} else { \
printf("%s : " fmt, __func__ , ##args); \
} \
} while (0)
#elif defined (DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, args...) \
do { \
if (loglevel > 0) { \
fprintf(logfile, "%s: " fmt, __func__ , ##args); \
} \
} while (0)
#else
#define PPC_IO_DPRINTF(fmt, args...) do { } while (0)
#endif
#define BIOS_FILENAME "ppc_rom.bin"
#define LINUX_BOOT_FILENAME "linux_boot.bin"
#define KERNEL_LOAD_ADDR 0x00000000
#define KERNEL_STACK_ADDR 0x00400000
#define INITRD_LOAD_ADDR 0x00800000
int load_kernel(const char *filename, uint8_t *addr,
uint8_t *real_addr)
{
int fd, size;
int setup_sects;
fd = open(filename, O_RDONLY);
if (fd < 0)
return -1;
/* load 16 bit code */
if (read(fd, real_addr, 512) != 512)
goto fail;
setup_sects = real_addr[0x1F1];
if (!setup_sects)
setup_sects = 4;
if (read(fd, real_addr + 512, setup_sects * 512) !=
setup_sects * 512)
goto fail;
/* load 32 bit code */
size = read(fd, addr, 16 * 1024 * 1024);
if (size < 0)
goto fail;
close(fd);
return size;
fail:
close(fd);
return -1;
}
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 13, 13 };
#define NE2000_NB_MAX 6
static uint32_t ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
/* IO ports emulation */
#define PPC_IO_BASE 0x80000000
static void PPC_io_writeb (target_phys_addr_t addr, uint32_t value)
{
/* Don't polute serial port output */
#if 0
if ((addr < 0x800003F0 || addr > 0x80000400) &&
(addr < 0x80000074 || addr > 0x80000077) &&
(addr < 0x80000020 || addr > 0x80000021) &&
(addr < 0x800000a0 || addr > 0x800000a1) &&
(addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177))
#endif
{
PPC_IO_DPRINTF("0x%08x => 0x%02x\n", addr - PPC_IO_BASE, value);
}
cpu_outb(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readb (target_phys_addr_t addr)
{
uint32_t ret = cpu_inb(NULL, addr - PPC_IO_BASE);
#if 0
if ((addr < 0x800003F0 || addr > 0x80000400) &&
(addr < 0x80000074 || addr > 0x80000077) &&
(addr < 0x80000020 || addr > 0x80000021) &&
(addr < 0x800000a0 || addr > 0x800000a1) &&
(addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177) &&
(addr < 0x8000060 || addr > 0x8000064))
#endif
{
PPC_IO_DPRINTF("0x%08x <= 0x%02x\n", addr - PPC_IO_BASE, ret);
}
return ret;
}
static void PPC_io_writew (target_phys_addr_t addr, uint32_t value)
{
if ((addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177)) {
PPC_IO_DPRINTF("0x%08x => 0x%04x\n", addr - PPC_IO_BASE, value);
}
cpu_outw(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readw (target_phys_addr_t addr)
{
uint32_t ret = cpu_inw(NULL, addr - PPC_IO_BASE);
if ((addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177)) {
PPC_IO_DPRINTF("0x%08x <= 0x%04x\n", addr - PPC_IO_BASE, ret);
}
return ret;
}
static void PPC_io_writel (target_phys_addr_t addr, uint32_t value)
{
PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, value);
cpu_outl(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readl (target_phys_addr_t addr)
{
uint32_t ret = cpu_inl(NULL, addr - PPC_IO_BASE);
PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, ret);
return ret;
}
static CPUWriteMemoryFunc *PPC_io_write[] = {
&PPC_io_writeb,
&PPC_io_writew,
&PPC_io_writel,
};
static CPUReadMemoryFunc *PPC_io_read[] = {
&PPC_io_readb,
&PPC_io_readw,
&PPC_io_readl,
};
/* Read-only register (?) */
static void _PPC_ioB_write (target_phys_addr_t addr, uint32_t value)
{
// printf("%s: 0x%08x => 0x%08x\n", __func__, addr, value);
}
static uint32_t _PPC_ioB_read (target_phys_addr_t addr)
{
uint32_t retval = 0;
if (addr == 0xBFFFFFF0)
retval = pic_intack_read(NULL);
// printf("%s: 0x%08x <= %d\n", __func__, addr, retval);
return retval;
}
static CPUWriteMemoryFunc *PPC_ioB_write[] = {
&_PPC_ioB_write,
&_PPC_ioB_write,
&_PPC_ioB_write,
};
static CPUReadMemoryFunc *PPC_ioB_read[] = {
&_PPC_ioB_read,
&_PPC_ioB_read,
&_PPC_ioB_read,
};
#if 0
static CPUWriteMemoryFunc *PPC_io3_write[] = {
&PPC_io3_writeb,
&PPC_io3_writew,
&PPC_io3_writel,
};
static CPUReadMemoryFunc *PPC_io3_read[] = {
&PPC_io3_readb,
&PPC_io3_readw,
&PPC_io3_readl,
};
#endif
/* Fake super-io ports for PREP platform (Intel 82378ZB) */
static uint8_t PREP_fake_io[2];
static uint8_t NVRAM_lock;
static void PREP_io_write (void *opaque, uint32_t addr, uint32_t val)
{
PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, val);
PREP_fake_io[addr - 0x0398] = val;
}
static uint32_t PREP_io_read (void *opaque, uint32_t addr)
{
PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, PREP_fake_io[addr - 0x0398]);
return PREP_fake_io[addr - 0x0398];
}
static uint8_t syscontrol;
static void PREP_io_800_writeb (void *opaque, uint32_t addr, uint32_t val)
{
PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, val);
switch (addr) {
case 0x0092:
/* Special port 92 */
/* Check soft reset asked */
if (val & 0x80) {
printf("Soft reset asked... Stop emulation\n");
abort();
}
/* Check LE mode */
if (val & 0x40) {
printf("Little Endian mode isn't supported (yet ?)\n");
abort();
}
break;
case 0x0808:
/* Hardfile light register: don't care */
break;
case 0x0810:
/* Password protect 1 register */
NVRAM_lock ^= 0x01;
break;
case 0x0812:
/* Password protect 2 register */
NVRAM_lock ^= 0x02;
break;
case 0x0814:
/* L2 invalidate register: don't care */
break;
case 0x081C:
/* system control register */
syscontrol = val;
break;
case 0x0850:
/* I/O map type register */
if (val & 0x80) {
printf("No support for non-continuous I/O map mode\n");
abort();
}
break;
default:
break;
}
}
static uint32_t PREP_io_800_readb (void *opaque, uint32_t addr)
{
uint32_t retval = 0xFF;
switch (addr) {
case 0x0092:
/* Special port 92 */
retval = 0x40;
break;
case 0x080C:
/* Equipment present register:
* no L2 cache
* no upgrade processor
* no cards in PCI slots
* SCSI fuse is bad
*/
retval = 0xFC;
break;
case 0x0818:
/* Keylock */
retval = 0x00;
break;
case 0x081C:
/* system control register
* 7 - 6 / 1 - 0: L2 cache enable
*/
retval = syscontrol;
break;
case 0x0823:
/* */
retval = 0x03; /* no L2 cache */
break;
case 0x0850:
/* I/O map type register */
retval = 0x00;
break;
default:
break;
}
PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, retval);
return retval;
}
#define NVRAM_SIZE 0x2000
#define NVRAM_END 0x1FF0
#define NVRAM_OSAREA_SIZE 512
#define NVRAM_CONFSIZE 1024
static inline void NVRAM_set_byte (m48t59_t *nvram, uint32_t addr, uint8_t value)
{
m48t59_set_addr(nvram, addr);
m48t59_write(nvram, value);
}
static inline uint8_t NVRAM_get_byte (m48t59_t *nvram, uint32_t addr)
{
m48t59_set_addr(nvram, addr);
return m48t59_read(nvram);
}
static inline void NVRAM_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
{
m48t59_set_addr(nvram, addr);
m48t59_write(nvram, value >> 8);
m48t59_set_addr(nvram, addr + 1);
m48t59_write(nvram, value & 0xFF);
}
static inline uint16_t NVRAM_get_word (m48t59_t *nvram, uint32_t addr)
{
uint16_t tmp;
m48t59_set_addr(nvram, addr);
tmp = m48t59_read(nvram) << 8;
m48t59_set_addr(nvram, addr + 1);
tmp |= m48t59_read(nvram);
return tmp;
}
static inline void NVRAM_set_lword (m48t59_t *nvram, uint32_t addr,
uint32_t value)
{
m48t59_set_addr(nvram, addr);
m48t59_write(nvram, value >> 24);
m48t59_set_addr(nvram, addr + 1);
m48t59_write(nvram, (value >> 16) & 0xFF);
m48t59_set_addr(nvram, addr + 2);
m48t59_write(nvram, (value >> 8) & 0xFF);
m48t59_set_addr(nvram, addr + 3);
m48t59_write(nvram, value & 0xFF);
}
static inline uint32_t NVRAM_get_lword (m48t59_t *nvram, uint32_t addr)
{
uint32_t tmp;
m48t59_set_addr(nvram, addr);
tmp = m48t59_read(nvram) << 24;
m48t59_set_addr(nvram, addr + 1);
tmp |= m48t59_read(nvram) << 16;
m48t59_set_addr(nvram, addr + 2);
tmp |= m48t59_read(nvram) << 8;
m48t59_set_addr(nvram, addr + 3);
tmp |= m48t59_read(nvram);
return tmp;
}
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
{
uint16_t tmp;
uint16_t pd, pd1, pd2;
tmp = prev >> 8;
pd = prev ^ value;
pd1 = pd & 0x000F;
pd2 = ((pd >> 4) & 0x000F) ^ pd1;
tmp ^= (pd1 << 3) | (pd1 << 8);
tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
return tmp;
}
static void NVRAM_set_crc (m48t59_t *nvram, uint32_t addr,
uint32_t start, uint32_t count)
{
uint32_t i;
uint16_t crc = 0xFFFF;
int odd = 0;
if (count & 1)
odd = 1;
count &= ~1;
for (i = 0; i != count; i++) {
crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
}
if (odd) {
crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
}
NVRAM_set_word(nvram, addr, crc);
}
static void prep_NVRAM_init (void)
{
m48t59_t *nvram;
nvram = m48t59_init(8, 0x0074, NVRAM_SIZE);
/* NVRAM header */
/* 0x00: NVRAM size in kB */
NVRAM_set_word(nvram, 0x00, NVRAM_SIZE >> 10);
/* 0x02: NVRAM version */
NVRAM_set_byte(nvram, 0x02, 0x01);
/* 0x03: NVRAM revision */
NVRAM_set_byte(nvram, 0x03, 0x01);
/* 0x08: last OS */
NVRAM_set_byte(nvram, 0x08, 0x00); /* Unknown */
/* 0x09: endian */
NVRAM_set_byte(nvram, 0x09, 'B'); /* Big-endian */
/* 0x0A: OSArea usage */
NVRAM_set_byte(nvram, 0x0A, 0x00); /* Empty */
/* 0x0B: PM mode */
NVRAM_set_byte(nvram, 0x0B, 0x00); /* Normal */
/* Restart block description record */
/* 0x0C: restart block version */
NVRAM_set_word(nvram, 0x0C, 0x01);
/* 0x0E: restart block revision */
NVRAM_set_word(nvram, 0x0E, 0x01);
/* 0x20: restart address */
NVRAM_set_lword(nvram, 0x20, 0x00);
/* 0x24: save area address */
NVRAM_set_lword(nvram, 0x24, 0x00);
/* 0x28: save area length */
NVRAM_set_lword(nvram, 0x28, 0x00);
/* 0x1C: checksum of restart block */
NVRAM_set_crc(nvram, 0x1C, 0x0C, 32);
/* Security section */
/* Set all to zero */
/* 0xC4: pointer to global environment area */
NVRAM_set_lword(nvram, 0xC4, 0x0100);
/* 0xC8: size of global environment area */
NVRAM_set_lword(nvram, 0xC8,
NVRAM_END - NVRAM_OSAREA_SIZE - NVRAM_CONFSIZE - 0x0100);
/* 0xD4: pointer to configuration area */
NVRAM_set_lword(nvram, 0xD4, NVRAM_END - NVRAM_CONFSIZE);
/* 0xD8: size of configuration area */
NVRAM_set_lword(nvram, 0xD8, NVRAM_CONFSIZE);
/* 0xE8: pointer to OS specific area */
NVRAM_set_lword(nvram, 0xE8,
NVRAM_END - NVRAM_CONFSIZE - NVRAM_OSAREA_SIZE);
/* 0xD8: size of OS specific area */
NVRAM_set_lword(nvram, 0xEC, NVRAM_OSAREA_SIZE);
/* Configuration area */
/* RTC init */
// NVRAM_set_lword(nvram, 0x1FFC, 0x50);
/* 0x04: checksum 0 => OS area */
NVRAM_set_crc(nvram, 0x04, 0x00,
NVRAM_END - NVRAM_CONFSIZE - NVRAM_OSAREA_SIZE);
/* 0x06: checksum of config area */
NVRAM_set_crc(nvram, 0x06, NVRAM_END - NVRAM_CONFSIZE, NVRAM_CONFSIZE);
}
int load_initrd (const char *filename, uint8_t *addr)
{
int fd, size;
printf("Load initrd\n");
fd = open(filename, O_RDONLY);
if (fd < 0)
return -1;
size = read(fd, addr, 16 * 1024 * 1024);
if (size < 0)
goto fail;
close(fd);
printf("Load initrd: %d\n", size);
return size;
fail:
close(fd);
printf("Load initrd failed\n");
return -1;
}
/* Quick hack for PPC memory infos... */
static void put_long (void *addr, uint32_t l)
{
char *pos = addr;
pos[0] = (l >> 24) & 0xFF;
pos[1] = (l >> 16) & 0xFF;
pos[2] = (l >> 8) & 0xFF;
pos[3] = l & 0xFF;
}
/* bootloader infos are in the form:
* uint32_t TAG
* uint32_t TAG_size (from TAG to next TAG).
* data
* ....
*/
#if !defined (USE_OPEN_FIRMWARE)
static void *set_bootinfo_tag (void *addr, uint32_t tag, uint32_t size,
void *data)
{
char *pos = addr;
put_long(pos, tag);
pos += 4;
put_long(pos, size + 8);
pos += 4;
memcpy(pos, data, size);
pos += size;
return pos;
}
#endif
typedef struct boot_dev_t {
const unsigned char *name;
int major;
int minor;
} boot_dev_t;
static boot_dev_t boot_devs[] =
{
{ "/dev/fd0", 2, 0, },
{ "/dev/fd1", 2, 1, },
{ "/dev/hda", 3, 1, },
// { "/dev/ide/host0/bus0/target0/lun0/part1", 3, 1, },
// { "/dev/hdc", 22, 0, },
{ "/dev/hdc", 22, 1, },
{ "/dev/ram0 init=/linuxrc", 1, 0, },
};
/* BATU:
* BEPI : bloc virtual address
* BL : area size bits (128 kB is 0, 256 1, 512 3, ...
* Vs/Vp
* BATL:
* BPRN : bloc real address align on 4MB boundary
* WIMG : cache access mode : not used
* PP : protection bits
*/
static void setup_BAT (CPUPPCState *env, int BAT,
uint32_t virtual, uint32_t physical,
uint32_t size, int Vs, int Vp, int PP)
{
uint32_t sz_bits, tmp_sz, align, tmp;
sz_bits = 0;
align = 131072;
for (tmp_sz = size / 131072; tmp_sz != 1; tmp_sz = tmp_sz >> 1) {
sz_bits = (sz_bits << 1) + 1;
align = align << 1;
}
tmp = virtual & ~(align - 1); /* Align virtual area start */
tmp |= sz_bits << 2; /* Fix BAT size */
tmp |= Vs << 1; /* Supervisor access */
tmp |= Vp; /* User access */
env->DBAT[0][BAT] = tmp;
env->IBAT[0][BAT] = tmp;
tmp = physical & ~(align - 1); /* Align physical area start */
tmp |= 0; /* Don't care about WIMG */
tmp |= PP; /* Protection */
env->DBAT[1][BAT] = tmp;
env->IBAT[1][BAT] = tmp;
printf("Set BATU0 to 0x%08x BATL0 to 0x%08x\n",
env->DBAT[0][BAT], env->DBAT[1][BAT]);
}
static void VGA_printf (uint8_t *s)
{
uint16_t *arg_ptr;
unsigned int format_width, i;
int in_format;
uint16_t arg, digit, nibble;
uint8_t c;
arg_ptr = (uint16_t *)((void *)&s);
in_format = 0;
format_width = 0;
while ((c = *s) != '\0') {
if (c == '%') {
in_format = 1;
format_width = 0;
} else if (in_format) {
if ((c >= '0') && (c <= '9')) {
format_width = (format_width * 10) + (c - '0');
} else if (c == 'x') {
arg_ptr++; // increment to next arg
arg = *arg_ptr;
if (format_width == 0)
format_width = 4;
digit = format_width - 1;
for (i = 0; i < format_width; i++) {
nibble = (arg >> (4 * digit)) & 0x000f;
if (nibble <= 9)
PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + '0');
else
PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + 'A');
digit--;
}
in_format = 0;
}
//else if (c == 'd') {
// in_format = 0;
// }
} else {
PPC_io_writeb(PPC_IO_BASE + 0x500, c);
}
s++;
}
}
static void VGA_init (void)
{
/* Basic VGA init, inspired by plex86 VGAbios */
printf("Init VGA...\n");
#if 1
/* switch to color mode and enable CPU access 480 lines */
PPC_io_writeb(PPC_IO_BASE + 0x3C2, 0xC3);
/* more than 64k 3C4/04 */
PPC_io_writeb(PPC_IO_BASE + 0x3C4, 0x04);
PPC_io_writeb(PPC_IO_BASE + 0x3C5, 0x02);
#endif
VGA_printf("PPC VGA BIOS...\n");
}
extern CPUPPCState *global_env;
void PPC_init_hw (/*CPUPPCState *env,*/ uint32_t mem_size,
uint32_t kernel_addr, uint32_t kernel_size,
uint32_t stack_addr, int boot_device,
const unsigned char *initrd_file)
{
CPUPPCState *env = global_env;
char *p;
#if !defined (USE_OPEN_FIRMWARE)
char *tmp;
uint32_t tmpi[2];
#endif
printf("RAM size: %u 0x%08x (%u)\n", mem_size, mem_size, mem_size >> 20);
#if defined (USE_OPEN_FIRMWARE)
setup_memory(env, mem_size);
#endif
/* Fake bootloader */
{
#if 1
uint32_t offset =
*((uint32_t *)(phys_ram_base + kernel_addr));
#else
uint32_t offset = 12;
#endif
env->nip = kernel_addr + offset;
printf("Start address: 0x%08x\n", env->nip);
}
/* Set up msr according to PREP specification */
msr_ee = 0;
msr_fp = 1;
msr_pr = 0; /* Start in supervisor mode */
msr_me = 1;
msr_fe0 = msr_fe1 = 0;
msr_ip = 0;
msr_ir = msr_dr = 1;
// msr_sf = 0;
msr_le = msr_ile = 0;
env->gpr[1] = stack_addr; /* Let's have a stack */
env->gpr[2] = 0;
env->gpr[8] = kernel_addr;
/* There is a bug in 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee,
* it's not ready to handle it...
*/
env->decr = 0xFFFFFFFF;
p = (void *)(phys_ram_base + kernel_addr);
#if !defined (USE_OPEN_FIRMWARE)
/* Let's register the whole memory available only in supervisor mode */
setup_BAT(env, 0, 0x00000000, 0x00000000, mem_size, 1, 0, 2);
/* Avoid open firmware init call (to get a console)
* This will make the kernel think we are a PREP machine...
*/
put_long(p, 0xdeadc0de);
/* Build a real stack room */
p = (void *)(phys_ram_base + stack_addr);
put_long(p, stack_addr);
p -= 32;
env->gpr[1] -= 32;
/* Pretend there are no residual data */
env->gpr[3] = 0;
if (initrd_file != NULL) {
int size;
env->gpr[4] = (kernel_addr + kernel_size + 4095) & ~4095;
size = load_initrd(initrd_file,
(void *)((uint32_t)phys_ram_base + env->gpr[4]));
if (size < 0) {
/* No initrd */
env->gpr[4] = env->gpr[5] = 0;
} else {
env->gpr[5] = size;
boot_device = 'e';
}
printf("Initrd loaded at 0x%08x (%d) (0x%08x 0x%08x)\n",
env->gpr[4], env->gpr[5], kernel_addr, kernel_size);
} else {
env->gpr[4] = env->gpr[5] = 0;
}
/* We have to put bootinfos after the BSS
* The BSS starts after the kernel end.
*/
#if 0
p = (void *)(((uint32_t)phys_ram_base + kernel_addr +
kernel_size + (1 << 20) - 1) & ~((1 << 20) - 1));
#else
p = (void *)((uint32_t)phys_ram_base + kernel_addr + 0x400000);
#endif
if (loglevel > 0) {
fprintf(logfile, "bootinfos: %p 0x%08x\n",
p, (uint32_t)p - (uint32_t)phys_ram_base);
} else {
printf("bootinfos: %p 0x%08x\n",
p, (uint32_t)p - (uint32_t)phys_ram_base);
}
/* Command line: let's put it after bootinfos */
#if 0
sprintf(p + 0x1000, "console=ttyS0,9600 root=%02x%02x mem=%dM",
boot_devs[boot_device - 'a'].major,
boot_devs[boot_device - 'a'].minor,
mem_size >> 20);
#else
sprintf(p + 0x1000, "console=ttyS0,9600 console=tty0 root=%s mem=%dM",
boot_devs[boot_device - 'a'].name,
mem_size >> 20);
#endif
env->gpr[6] = (uint32_t)p + 0x1000 - (uint32_t)phys_ram_base;
env->gpr[7] = env->gpr[6] + strlen(p + 0x1000);
if (loglevel > 0) {
fprintf(logfile, "cmdline: %p 0x%08x [%s]\n",
p + 0x1000, env->gpr[6], p + 0x1000);
} else {
printf("cmdline: %p 0x%08x [%s]\n",
p + 0x1000, env->gpr[6], p + 0x1000);
}
/* BI_FIRST */
p = set_bootinfo_tag(p, 0x1010, 0, 0);
/* BI_CMD_LINE */
p = set_bootinfo_tag(p, 0x1012, env->gpr[7] - env->gpr[6],
(void *)(env->gpr[6] + (uint32_t)phys_ram_base));
/* BI_MEM_SIZE */
tmp = (void *)tmpi;
tmp[0] = (mem_size >> 24) & 0xFF;
tmp[1] = (mem_size >> 16) & 0xFF;
tmp[2] = (mem_size >> 8) & 0xFF;
tmp[3] = mem_size & 0xFF;
p = set_bootinfo_tag(p, 0x1017, 4, tmpi);
/* BI_INITRD */
tmp[0] = (env->gpr[4] >> 24) & 0xFF;
tmp[1] = (env->gpr[4] >> 16) & 0xFF;
tmp[2] = (env->gpr[4] >> 8) & 0xFF;
tmp[3] = env->gpr[4] & 0xFF;
tmp[4] = (env->gpr[5] >> 24) & 0xFF;
tmp[5] = (env->gpr[5] >> 16) & 0xFF;
tmp[6] = (env->gpr[5] >> 8) & 0xFF;
tmp[7] = env->gpr[5] & 0xFF;
p = set_bootinfo_tag(p, 0x1014, 8, tmpi);
env->gpr[4] = env->gpr[5] = 0;
/* BI_LAST */
p = set_bootinfo_tag(p, 0x1011, 0, 0);
#else
/* Set up MMU:
* kernel is loaded at kernel_addr and wants to be seen at 0x01000000
*/
setup_BAT(env, 0, 0x01000000, kernel_addr, 0x00400000, 1, 0, 2);
{
#if 0
uint32_t offset =
*((uint32_t *)(phys_ram_base + kernel_addr));
#else
uint32_t offset = 12;
#endif
env->nip = 0x01000000 | (kernel_addr + offset);
printf("Start address: 0x%08x\n", env->nip);
}
env->gpr[1] = env->nip + (1 << 22);
p = (void *)(phys_ram_base + stack_addr);
put_long(p - 32, stack_addr);
env->gpr[1] -= 32;
printf("Kernel starts at 0x%08x stack 0x%08x\n", env->nip, env->gpr[1]);
/* We want all lower address not to be translated */
setup_BAT(env, 1, 0x00000000, 0x00000000, 0x010000000, 1, 1, 2);
/* We also need a BAT to access OF */
setup_BAT(env, 2, 0xFFFE0000, mem_size - 131072, 131072, 1, 0, 1);
/* Setup OF entry point */
{
char *p;
p = (char *)phys_ram_base + mem_size - 131072;
/* Special opcode to call OF */
*p++ = 0x18; *p++ = 0x00; *p++ = 0x00; *p++ = 0x02;
/* blr */
*p++ = 0x4E; *p++ = 0x80; *p++ = 0x00; *p++ = 0x20;
}
env->gpr[5] = 0xFFFE0000;
/* Register translations */
{
OF_transl_t translations[3] = {
{ 0x01000000, 0x00400000, kernel_addr, 0x00000002, },
{ 0x00000000, 0x01000000, 0x00000000, 0x00000002, },
{ 0xFFFE0000, 0x00020000, mem_size - (128 * 1024),
0x00000001, },
};
OF_register_translations(3, translations);
}
/* Quite artificial, for now */
OF_register_bus("isa", "isa");
OF_register_serial("isa", "serial", 4, 0x3f8);
OF_register_stdio("serial", "serial");
/* Set up RTAS service */
RTAS_init();
/* Command line: let's put it just over the stack */
#if 0
#if 0
p = (void *)(((uint32_t)phys_ram_base + kernel_addr +
kernel_size + (1 << 20) - 1) & ~((1 << 20) - 1));
#else
p = (void *)((uint32_t)phys_ram_base + kernel_addr + 0x400000);
#endif
#if 1
sprintf(p, "console=ttyS0,9600 root=%02x%02x mem=%dM",
boot_devs[boot_device - 'a'].major,
boot_devs[boot_device - 'a'].minor,
mem_size >> 20);
#else
sprintf(p, "console=ttyS0,9600 root=%s mem=%dM ne2000=0x300,9",
boot_devs[boot_device - 'a'].name,
mem_size >> 20);
#endif
OF_register_bootargs(p);
#endif
#endif
}
void PPC_end_init (void)
{
VGA_init();
}
/* PC hardware initialisation */
void ppc_prep_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
char buf[1024];
int PPC_io_memory;
int ret, linux_boot, initrd_size, i, nb_nics1, fd;
linux_boot = (kernel_filename != NULL);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0);
if (linux_boot) {
/* now we can load the kernel */
ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
#if 0
if (initrd_filename) {
initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
#endif
PPC_init_hw(/*env,*/ ram_size, KERNEL_LOAD_ADDR, ret,
KERNEL_STACK_ADDR, boot_device, initrd_filename);
} else {
/* allocate ROM */
// snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
snprintf(buf, sizeof(buf), "%s", BIOS_FILENAME);
printf("load BIOS at %p\n", phys_ram_base + 0x000f0000);
ret = load_image(buf, phys_ram_base + 0x000f0000);
if (ret != 0x10000) {
fprintf(stderr, "qemu: could not load PPC bios '%s' (%d)\n%m\n",
buf, ret);
exit(1);
}
}
/* init basic PC hardware */
vga_initialize(ds, phys_ram_base + ram_size, ram_size,
vga_ram_size);
rtc_init(0x70, 8);
pic_init();
// pit_init(0x40, 0);
fd = serial_open_device();
serial_init(0x3f8, 4, fd);
#if 1
nb_nics1 = nb_nics;
if (nb_nics1 > NE2000_NB_MAX)
nb_nics1 = NE2000_NB_MAX;
for(i = 0; i < nb_nics1; i++) {
ne2000_init(ne2000_io[i], ne2000_irq[i], &nd_table[i]);
}
#endif
for(i = 0; i < 2; i++) {
ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
bs_table[2 * i], bs_table[2 * i + 1]);
}
kbd_init();
AUD_init();
DMA_init();
// SB16_init();
fdctrl_init(6, 2, 0, 0x3f0, fd_table);
/* Register 64 kB of IO space */
PPC_io_memory = cpu_register_io_memory(0, PPC_io_read, PPC_io_write);
cpu_register_physical_memory(0x80000000, 0x10000, PPC_io_memory);
/* Register fake IO ports for PREP */
register_ioport_read(0x398, 2, 1, &PREP_io_read, NULL);
register_ioport_write(0x398, 2, 1, &PREP_io_write, NULL);
/* System control ports */
register_ioport_write(0x0092, 0x1, 1, &PREP_io_800_writeb, NULL);
register_ioport_read(0x0800, 0x52, 1, &PREP_io_800_readb, NULL);
register_ioport_write(0x0800, 0x52, 1, &PREP_io_800_writeb, NULL);
/* PCI intack location (0xfef00000 / 0xbffffff0) */
PPC_io_memory = cpu_register_io_memory(0, PPC_ioB_read, PPC_ioB_write);
cpu_register_physical_memory(0xBFFFFFF0, 0x4, PPC_io_memory);
// cpu_register_physical_memory(0xFEF00000, 0x4, PPC_io_memory);
prep_NVRAM_init();
PPC_end_init();
}