sim-card
/
qemu
Archived
10
0
Fork 0
This repository has been archived on 2022-03-30. You can view files and clone it, but cannot push or open issues or pull requests.
qemu/target-sparc/op_helper.c

1857 lines
50 KiB
C

#include "exec.h"
#include "host-utils.h"
//#define DEBUG_PCALL
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, args...) \
do { printf("MMU: " fmt , ##args); } while (0)
#else
#define DPRINTF_MMU(fmt, args...)
#endif
#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, args...) \
do { printf("MXCC: " fmt , ##args); } while (0)
#else
#define DPRINTF_MXCC(fmt, args...)
#endif
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
void check_ieee_exceptions()
{
T0 = get_float_exception_flags(&env->fp_status);
if (T0)
{
/* Copy IEEE 754 flags into FSR */
if (T0 & float_flag_invalid)
env->fsr |= FSR_NVC;
if (T0 & float_flag_overflow)
env->fsr |= FSR_OFC;
if (T0 & float_flag_underflow)
env->fsr |= FSR_UFC;
if (T0 & float_flag_divbyzero)
env->fsr |= FSR_DZC;
if (T0 & float_flag_inexact)
env->fsr |= FSR_NXC;
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
{
/* Unmasked exception, generate a trap */
env->fsr |= FSR_FTT_IEEE_EXCP;
raise_exception(TT_FP_EXCP);
}
else
{
/* Accumulate exceptions */
env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
}
}
}
#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
set_float_exception_flags(0, &env->fp_status);
FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
check_ieee_exceptions();
}
void do_fitod(void)
{
DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
#ifdef TARGET_SPARC64
void do_fxtos(void)
{
set_float_exception_flags(0, &env->fp_status);
FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
check_ieee_exceptions();
}
void do_fxtod(void)
{
set_float_exception_flags(0, &env->fp_status);
DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
check_ieee_exceptions();
}
#endif
#endif
void do_fabss(void)
{
FT0 = float32_abs(FT1);
}
#ifdef TARGET_SPARC64
void do_fabsd(void)
{
DT0 = float64_abs(DT1);
}
#if defined(CONFIG_USER_ONLY)
void do_fabsq(void)
{
QT0 = float128_abs(QT1);
}
#endif
#endif
void do_fsqrts(void)
{
set_float_exception_flags(0, &env->fp_status);
FT0 = float32_sqrt(FT1, &env->fp_status);
check_ieee_exceptions();
}
void do_fsqrtd(void)
{
set_float_exception_flags(0, &env->fp_status);
DT0 = float64_sqrt(DT1, &env->fp_status);
check_ieee_exceptions();
}
#if defined(CONFIG_USER_ONLY)
void do_fsqrtq(void)
{
set_float_exception_flags(0, &env->fp_status);
QT0 = float128_sqrt(QT1, &env->fp_status);
check_ieee_exceptions();
}
#endif
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
void glue(do_, name) (void) \
{ \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
case float_relation_unordered: \
T0 = (FSR_FCC1 | FSR_FCC0) << FS; \
if ((env->fsr & FSR_NVM) || TRAP) { \
env->fsr |= T0; \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
T0 = FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
T0 = FSR_FCC1 << FS; \
break; \
default: \
T0 = 0; \
break; \
} \
env->fsr |= T0; \
}
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
#ifdef CONFIG_USER_ONLY
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
#endif
#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
#ifdef CONFIG_USER_ONLY
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#endif
#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
#ifdef DEBUG_MXCC
static void dump_mxcc(CPUState *env)
{
printf("mxccdata: %016llx %016llx %016llx %016llx\n",
env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
printf("mxccregs: %016llx %016llx %016llx %016llx\n"
" %016llx %016llx %016llx %016llx\n",
env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
}
#endif
void helper_ld_asi(int asi, int size, int sign)
{
uint32_t ret = 0;
uint64_t tmp;
#ifdef DEBUG_MXCC
uint32_t last_T0 = T0;
#endif
switch (asi) {
case 2: /* SuperSparc MXCC registers */
switch (T0) {
case 0x01c00a00: /* MXCC control register */
if (size == 8) {
ret = env->mxccregs[3] >> 32;
T0 = env->mxccregs[3];
} else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
ret = env->mxccregs[3];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00c00: /* Module reset register */
if (size == 8) {
ret = env->mxccregs[5] >> 32;
T0 = env->mxccregs[5];
// should we do something here?
} else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8) {
ret = env->mxccregs[7] >> 32;
T0 = env->mxccregs[7];
} else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
"T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU probe */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
if (mmulev > 4)
ret = 0;
else {
ret = mmu_probe(env, T0, mmulev);
//bswap32s(&ret);
}
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
}
break;
case 4: /* read MMU regs */
{
int reg = (T0 >> 8) & 0x1f;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[3] = 0;
else if (reg == 0x13) /* Fault status read */
ret = env->mmuregs[3];
else if (reg == 0x14) /* Fault address read */
ret = env->mmuregs[4];
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
}
break;
case 9: /* Supervisor code access */
switch(size) {
case 1:
ret = ldub_code(T0);
break;
case 2:
ret = lduw_code(T0 & ~1);
break;
default:
case 4:
ret = ldl_code(T0 & ~3);
break;
case 8:
tmp = ldq_code(T0 & ~7);
ret = tmp >> 32;
T0 = tmp;
break;
}
break;
case 0xa: /* User data access */
switch(size) {
case 1:
ret = ldub_user(T0);
break;
case 2:
ret = lduw_user(T0 & ~1);
break;
default:
case 4:
ret = ldl_user(T0 & ~3);
break;
case 8:
tmp = ldq_user(T0 & ~7);
ret = tmp >> 32;
T0 = tmp;
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
ret = ldub_kernel(T0);
break;
case 2:
ret = lduw_kernel(T0 & ~1);
break;
default:
case 4:
ret = ldl_kernel(T0 & ~3);
break;
case 8:
tmp = ldq_kernel(T0 & ~7);
ret = tmp >> 32;
T0 = tmp;
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
break;
case 0x20: /* MMU passthrough */
switch(size) {
case 1:
ret = ldub_phys(T0);
break;
case 2:
ret = lduw_phys(T0 & ~1);
break;
default:
case 4:
ret = ldl_phys(T0 & ~3);
break;
case 8:
tmp = ldq_phys(T0 & ~7);
ret = tmp >> 32;
T0 = tmp;
break;
}
break;
case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
switch(size) {
case 1:
ret = ldub_phys((target_phys_addr_t)T0
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 2:
ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
default:
case 4:
ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 8:
tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
| ((target_phys_addr_t)(asi & 0xf) << 32));
ret = tmp >> 32;
T0 = tmp;
break;
}
break;
case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
default:
do_unassigned_access(T0, 0, 0, 1);
ret = 0;
break;
}
if (sign) {
switch(size) {
case 1:
T1 = (int8_t) ret;
break;
case 2:
T1 = (int16_t) ret;
break;
default:
T1 = ret;
break;
}
}
else
T1 = ret;
}
void helper_st_asi(int asi, int size)
{
switch(asi) {
case 2: /* SuperSparc MXCC registers */
switch (T0) {
case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8)
env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8)
env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8)
env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8)
env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00100: /* MXCC stream source */
if (size == 8)
env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0);
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8);
env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
break;
case 0x01c00200: /* MXCC stream destination */
if (size == 8)
env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00e00: /* MXCC error register */
// writing a 1 bit clears the error
if (size == 8)
env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2);
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU flush */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, T0 & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 4: /* write MMU regs */
{
int reg = (T0 >> 8) & 0x1f;
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0:
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(T1 & 0x00ffffff);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
tlb_flush(env, 1);
break;
case 2:
env->mmuregs[reg] = T1;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3:
case 4:
break;
case 0x13:
env->mmuregs[3] = T1;
break;
case 0x14:
env->mmuregs[4] = T1;
break;
default:
env->mmuregs[reg] = T1;
break;
}
if (oldreg != env->mmuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 0xa: /* User data access */
switch(size) {
case 1:
stb_user(T0, T1);
break;
case 2:
stw_user(T0 & ~1, T1);
break;
default:
case 4:
stl_user(T0 & ~3, T1);
break;
case 8:
stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
stb_kernel(T0, T1);
break;
case 2:
stw_kernel(T0 & ~1, T1);
break;
default:
case 4:
stl_kernel(T0 & ~3, T1);
break;
case 8:
stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
case 0x10: /* I/D-cache flush page */
case 0x11: /* I/D-cache flush segment */
case 0x12: /* I/D-cache flush region */
case 0x13: /* I/D-cache flush context */
case 0x14: /* I/D-cache flush user */
break;
case 0x17: /* Block copy, sta access */
{
// value (T1) = src
// address (T0) = dst
// copy 32 bytes
unsigned int i;
uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
temp = ldl_kernel(src);
stl_kernel(dst, temp);
}
}
return;
case 0x1f: /* Block fill, stda access */
{
// value (T1, T2)
// address (T0) = dst
// fill 32 bytes
unsigned int i;
uint32_t dst = T0 & 7;
uint64_t val;
val = (((uint64_t)T1) << 32) | T2;
for (i = 0; i < 32; i += 8, dst += 8)
stq_kernel(dst, val);
}
return;
case 0x20: /* MMU passthrough */
{
switch(size) {
case 1:
stb_phys(T0, T1);
break;
case 2:
stw_phys(T0 & ~1, T1);
break;
case 4:
default:
stl_phys(T0 & ~3, T1);
break;
case 8:
stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
break;
}
}
return;
case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
{
switch(size) {
case 1:
stb_phys((target_phys_addr_t)T0
| ((target_phys_addr_t)(asi & 0xf) << 32), T1);
break;
case 2:
stw_phys((target_phys_addr_t)(T0 & ~1)
| ((target_phys_addr_t)(asi & 0xf) << 32), T1);
break;
case 4:
default:
stl_phys((target_phys_addr_t)(T0 & ~3)
| ((target_phys_addr_t)(asi & 0xf) << 32), T1);
break;
case 8:
stq_phys((target_phys_addr_t)(T0 & ~7)
| ((target_phys_addr_t)(asi & 0xf) << 32),
((uint64_t)T1 << 32) | T2);
break;
}
}
return;
case 0x31: /* Ross RT620 I-cache flush */
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
break;
case 9: /* Supervisor code access, XXX */
case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
default:
do_unassigned_access(T0, 1, 0, 1);
return;
}
}
#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */
#ifdef CONFIG_USER_ONLY
void helper_ld_asi(int asi, int size, int sign)
{
uint64_t ret = 0;
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
switch (asi) {
case 0x80: // Primary
case 0x82: // Primary no-fault
case 0x88: // Primary LE
case 0x8a: // Primary no-fault LE
{
switch(size) {
case 1:
ret = ldub_raw(T0);
break;
case 2:
ret = lduw_raw(T0 & ~1);
break;
case 4:
ret = ldl_raw(T0 & ~3);
break;
default:
case 8:
ret = ldq_raw(T0 & ~7);
break;
}
}
break;
case 0x81: // Secondary
case 0x83: // Secondary no-fault
case 0x89: // Secondary LE
case 0x8b: // Secondary no-fault LE
// XXX
break;
default:
break;
}
/* Convert from little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
T1 = ret;
}
void helper_st_asi(int asi, int size)
{
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
/* Convert to little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
T0 = bswap16(T0);
break;
case 4:
T0 = bswap32(T0);
break;
case 8:
T0 = bswap64(T0);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x80: // Primary
case 0x88: // Primary LE
{
switch(size) {
case 1:
stb_raw(T0, T1);
break;
case 2:
stw_raw(T0 & ~1, T1);
break;
case 4:
stl_raw(T0 & ~3, T1);
break;
case 8:
default:
stq_raw(T0 & ~7, T1);
break;
}
}
break;
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
return;
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(T0, 1, 0, 1);
return;
}
}
#else /* CONFIG_USER_ONLY */
void helper_ld_asi(int asi, int size, int sign)
{
uint64_t ret = 0;
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
switch (asi) {
case 0x10: // As if user primary
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x82: // Primary no-fault
case 0x88: // Primary LE
case 0x8a: // Primary no-fault LE
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (env->hpstate & HS_PRIV) {
switch(size) {
case 1:
ret = ldub_hypv(T0);
break;
case 2:
ret = lduw_hypv(T0 & ~1);
break;
case 4:
ret = ldl_hypv(T0 & ~3);
break;
default:
case 8:
ret = ldq_hypv(T0 & ~7);
break;
}
} else {
switch(size) {
case 1:
ret = ldub_kernel(T0);
break;
case 2:
ret = lduw_kernel(T0 & ~1);
break;
case 4:
ret = ldl_kernel(T0 & ~3);
break;
default:
case 8:
ret = ldq_kernel(T0 & ~7);
break;
}
}
} else {
switch(size) {
case 1:
ret = ldub_user(T0);
break;
case 2:
ret = lduw_user(T0 & ~1);
break;
case 4:
ret = ldl_user(T0 & ~3);
break;
default:
case 8:
ret = ldq_user(T0 & ~7);
break;
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
ret = ldub_phys(T0);
break;
case 2:
ret = lduw_phys(T0 & ~1);
break;
case 4:
ret = ldl_phys(T0 & ~3);
break;
default:
case 8:
ret = ldq_phys(T0 & ~7);
break;
}
break;
}
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x11: // As if user secondary
case 0x19: // As if user secondary LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
case 0x81: // Secondary
case 0x83: // Secondary no-fault
case 0x89: // Secondary LE
case 0x8b: // Secondary no-fault LE
// XXX
break;
case 0x45: // LSU
ret = env->lsu;
break;
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->immuregs[reg];
break;
}
case 0x51: // I-MMU 8k TSB pointer
case 0x52: // I-MMU 64k TSB pointer
case 0x55: // I-MMU data access
// XXX
break;
case 0x56: // I-MMU tag read
{
unsigned int i;
for (i = 0; i < 64; i++) {
// Valid, ctx match, vaddr match
if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
env->itlb_tag[i] == T0) {
ret = env->itlb_tag[i];
break;
}
}
break;
}
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->dmmuregs[reg];
break;
}
case 0x5e: // D-MMU tag read
{
unsigned int i;
for (i = 0; i < 64; i++) {
// Valid, ctx match, vaddr match
if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
env->dtlb_tag[i] == T0) {
ret = env->dtlb_tag[i];
break;
}
}
break;
}
case 0x59: // D-MMU 8k TSB pointer
case 0x5a: // D-MMU 64k TSB pointer
case 0x5b: // D-MMU data pointer
case 0x5d: // D-MMU data access
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
// XXX
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
do_unassigned_access(T0, 0, 0, 1);
ret = 0;
break;
}
/* Convert from little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
T1 = ret;
}
void helper_st_asi(int asi, int size)
{
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
/* Convert to little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
T0 = bswap16(T0);
break;
case 4:
T0 = bswap32(T0);
break;
case 8:
T0 = bswap64(T0);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x10: // As if user primary
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x88: // Primary LE
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (env->hpstate & HS_PRIV) {
switch(size) {
case 1:
stb_hypv(T0, T1);
break;
case 2:
stw_hypv(T0 & ~1, T1);
break;
case 4:
stl_hypv(T0 & ~3, T1);
break;
case 8:
default:
stq_hypv(T0 & ~7, T1);
break;
}
} else {
switch(size) {
case 1:
stb_kernel(T0, T1);
break;
case 2:
stw_kernel(T0 & ~1, T1);
break;
case 4:
stl_kernel(T0 & ~3, T1);
break;
case 8:
default:
stq_kernel(T0 & ~7, T1);
break;
}
}
} else {
switch(size) {
case 1:
stb_user(T0, T1);
break;
case 2:
stw_user(T0 & ~1, T1);
break;
case 4:
stl_user(T0 & ~3, T1);
break;
case 8:
default:
stq_user(T0 & ~7, T1);
break;
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
stb_phys(T0, T1);
break;
case 2:
stw_phys(T0 & ~1, T1);
break;
case 4:
stl_phys(T0 & ~3, T1);
break;
case 8:
default:
stq_phys(T0 & ~7, T1);
break;
}
}
return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x11: // As if user secondary
case 0x19: // As if user secondary LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
return;
case 0x45: // LSU
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = T1 & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
tlb_flush(env, 1);
}
return;
}
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 1: // Not in I-MMU
case 2:
case 7:
case 8:
return;
case 3: // SFSR
if ((T1 & 1) == 0)
T1 = 0; // Clear SFSR
break;
case 5: // TSB access
case 6: // Tag access
default:
break;
}
env->immuregs[reg] = T1;
if (oldreg != env->immuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 0x54: // I-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x40) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x55: // I-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
case 0x57: // I-MMU demap
// XXX
return;
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
if ((T1 & 1) == 0) {
T1 = 0; // Clear SFSR, Fault address
env->dmmuregs[4] = 0;
}
env->dmmuregs[reg] = T1;
break;
case 1: // Primary context
case 2: // Secondary context
case 5: // TSB access
case 6: // Tag access
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
default:
break;
}
env->dmmuregs[reg] = T1;
if (oldreg != env->dmmuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 0x5c: // D-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x40) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x5d: // D-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
case 0x5f: // D-MMU demap
case 0x49: // Interrupt data receive
// XXX
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
case 0x48: // Interrupt dispatch, RO
case 0x7f: // Incoming interrupt vector, RO
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(T0, 1, 0, 1);
return;
}
}
#endif /* CONFIG_USER_ONLY */
void helper_ldf_asi(int asi, int size, int rd)
{
target_ulong tmp_T0 = T0, tmp_T1 = T1;
unsigned int i;
switch (asi) {
case 0xf0: // Block load primary
case 0xf1: // Block load secondary
case 0xf8: // Block load primary LE
case 0xf9: // Block load secondary LE
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
if (T0 & 0x3f) {
raise_exception(TT_UNALIGNED);
return;
}
for (i = 0; i < 16; i++) {
helper_ld_asi(asi & 0x8f, 4, 0);
*(uint32_t *)&env->fpr[rd++] = T1;
T0 += 4;
}
T0 = tmp_T0;
T1 = tmp_T1;
return;
default:
break;
}
helper_ld_asi(asi, size, 0);
switch(size) {
default:
case 4:
*((uint32_t *)&FT0) = T1;
break;
case 8:
*((int64_t *)&DT0) = T1;
break;
#if defined(CONFIG_USER_ONLY)
case 16:
// XXX
break;
#endif
}
T1 = tmp_T1;
}
void helper_stf_asi(int asi, int size, int rd)
{
target_ulong tmp_T0 = T0, tmp_T1 = T1;
unsigned int i;
switch (asi) {
case 0xf0: // Block store primary
case 0xf1: // Block store secondary
case 0xf8: // Block store primary LE
case 0xf9: // Block store secondary LE
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
if (T0 & 0x3f) {
raise_exception(TT_UNALIGNED);
return;
}
for (i = 0; i < 16; i++) {
T1 = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(asi & 0x8f, 4);
T0 += 4;
}
T0 = tmp_T0;
T1 = tmp_T1;
return;
default:
break;
}
switch(size) {
default:
case 4:
T1 = *((uint32_t *)&FT0);
break;
case 8:
T1 = *((int64_t *)&DT0);
break;
#if defined(CONFIG_USER_ONLY)
case 16:
// XXX
break;
#endif
}
helper_st_asi(asi, size);
T1 = tmp_T1;
}
#endif /* TARGET_SPARC64 */
#ifndef TARGET_SPARC64
void helper_rett()
{
unsigned int cwp;
if (env->psret == 1)
raise_exception(TT_ILL_INSN);
env->psret = 1;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
#endif
void helper_ldfsr(void)
{
int rnd_mode;
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
void helper_debug()
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#ifndef TARGET_SPARC64
void do_wrpsr()
{
if ((T0 & PSR_CWP) >= NWINDOWS)
raise_exception(TT_ILL_INSN);
else
PUT_PSR(env, T0);
}
void do_rdpsr()
{
T0 = GET_PSR(env);
}
#else
void do_popc()
{
T0 = ctpop64(T1);
}
static inline uint64_t *get_gregset(uint64_t pstate)
{
switch (pstate) {
default:
case 0:
return env->bgregs;
case PS_AG:
return env->agregs;
case PS_MG:
return env->mgregs;
case PS_IG:
return env->igregs;
}
}
static inline void change_pstate(uint64_t new_pstate)
{
uint64_t pstate_regs, new_pstate_regs;
uint64_t *src, *dst;
pstate_regs = env->pstate & 0xc01;
new_pstate_regs = new_pstate & 0xc01;
if (new_pstate_regs != pstate_regs) {
// Switch global register bank
src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs);
memcpy32(env->gregs, src);
}
env->pstate = new_pstate;
}
void do_wrpstate(void)
{
change_pstate(T0 & 0xf3f);
}
void do_done(void)
{
env->tl--;
env->pc = env->tnpc[env->tl];
env->npc = env->tnpc[env->tl] + 4;
PUT_CCR(env, env->tstate[env->tl] >> 32);
env->asi = (env->tstate[env->tl] >> 24) & 0xff;
change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}
void do_retry(void)
{
env->tl--;
env->pc = env->tpc[env->tl];
env->npc = env->tnpc[env->tl];
PUT_CCR(env, env->tstate[env->tl] >> 32);
env->asi = (env->tstate[env->tl] >> 24) & 0xff;
change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}
#endif
void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == (NWINDOWS - 1))
memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == (NWINDOWS - 1))
memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
env->regwptr = env->regbase + (new_cwp * 16);
REGWPTR = env->regwptr;
}
void cpu_set_cwp(CPUState *env1, int new_cwp)
{
CPUState *saved_env;
#ifdef reg_REGWPTR
target_ulong *saved_regwptr;
#endif
saved_env = env;
#ifdef reg_REGWPTR
saved_regwptr = REGWPTR;
#endif
env = env1;
set_cwp(new_cwp);
env = saved_env;
#ifdef reg_REGWPTR
REGWPTR = saved_regwptr;
#endif
}
#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
static int count;
fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
count, intno,
env->pc,
env->npc, env->regwptr[6]);
cpu_dump_state(env, logfile, fprintf, 0);
#if 0
{
int i;
uint8_t *ptr;
fprintf(logfile, " code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i));
}
fprintf(logfile, "\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->tl == MAXTL) {
cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
return;
}
#endif
env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
env->tpc[env->tl] = env->pc;
env->tnpc[env->tl] = env->npc;
env->tt[env->tl] = intno;
change_pstate(PS_PEF | PS_PRIV | PS_AG);
if (intno == TT_CLRWIN)
set_cwp((env->cwp - 1) & (NWINDOWS - 1));
else if ((intno & 0x1c0) == TT_SPILL)
set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
else if ((intno & 0x1c0) == TT_FILL)
set_cwp((env->cwp + 1) & (NWINDOWS - 1));
env->tbr &= ~0x7fffULL;
env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
if (env->tl < MAXTL - 1) {
env->tl++;
} else {
env->pstate |= PS_RED;
if (env->tl != MAXTL)
env->tl++;
}
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
int cwp;
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
static int count;
fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
count, intno,
env->pc,
env->npc, env->regwptr[6]);
cpu_dump_state(env, logfile, fprintf, 0);
#if 0
{
int i;
uint8_t *ptr;
fprintf(logfile, " code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i));
}
fprintf(logfile, "\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->psret == 0) {
cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
return;
}
#endif
env->psret = 0;
cwp = (env->cwp - 1) & (NWINDOWS - 1);
set_cwp(cwp);
env->regwptr[9] = env->pc;
env->regwptr[10] = env->npc;
env->psrps = env->psrs;
env->psrs = 1;
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#endif
#if !defined(CONFIG_USER_ONLY)
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr)
{
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
#endif
raise_exception(TT_UNALIGNED);
}
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, (void *)T2);
}
}
cpu_loop_exit();
}
env = saved_env;
}
#endif
#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int is_asi)
{
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
if (is_asi)
env->mmuregs[3] |= 1 << 16;
if (env->psrs)
env->mmuregs[3] |= 1 << 5;
if (is_exec)
env->mmuregs[3] |= 1 << 6;
if (is_write)
env->mmuregs[3] |= 1 << 7;
env->mmuregs[3] |= (5 << 2) | 2;
env->mmuregs[4] = addr; /* Fault address register */
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
"\n", addr, env->pc);
#endif
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
}
env = saved_env;
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int is_asi)
{
#ifdef DEBUG_UNASSIGNED
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
addr, env->pc);
env = saved_env;
#endif
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
}
#endif