/* * Xtensa ISA: * http://www.tensilica.com/products/literature-docs/documentation/xtensa-isa-databook.htm * * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "cpu.h" #include "exec-all.h" #include "disas.h" #include "tcg-op.h" #include "qemu-log.h" #include "helpers.h" #define GEN_HELPER 1 #include "helpers.h" typedef struct DisasContext { const XtensaConfig *config; TranslationBlock *tb; uint32_t pc; uint32_t next_pc; int is_jmp; int singlestep_enabled; bool sar_5bit; bool sar_m32_5bit; bool sar_m32_allocated; TCGv_i32 sar_m32; } DisasContext; static TCGv_ptr cpu_env; static TCGv_i32 cpu_pc; static TCGv_i32 cpu_R[16]; static TCGv_i32 cpu_SR[256]; static TCGv_i32 cpu_UR[256]; #include "gen-icount.h" static const char * const sregnames[256] = { [SAR] = "SAR", [SCOMPARE1] = "SCOMPARE1", }; static const char * const uregnames[256] = { [THREADPTR] = "THREADPTR", [FCR] = "FCR", [FSR] = "FSR", }; void xtensa_translate_init(void) { static const char * const regnames[] = { "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15", }; int i; cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env"); cpu_pc = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUState, pc), "pc"); for (i = 0; i < 16; i++) { cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUState, regs[i]), regnames[i]); } for (i = 0; i < 256; ++i) { if (sregnames[i]) { cpu_SR[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUState, sregs[i]), sregnames[i]); } } for (i = 0; i < 256; ++i) { if (uregnames[i]) { cpu_UR[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUState, uregs[i]), uregnames[i]); } } #define GEN_HELPER 2 #include "helpers.h" } static inline bool option_enabled(DisasContext *dc, int opt) { return xtensa_option_enabled(dc->config, opt); } static void init_sar_tracker(DisasContext *dc) { dc->sar_5bit = false; dc->sar_m32_5bit = false; dc->sar_m32_allocated = false; } static void reset_sar_tracker(DisasContext *dc) { if (dc->sar_m32_allocated) { tcg_temp_free(dc->sar_m32); } } static void gen_right_shift_sar(DisasContext *dc, TCGv_i32 sa) { tcg_gen_andi_i32(cpu_SR[SAR], sa, 0x1f); if (dc->sar_m32_5bit) { tcg_gen_discard_i32(dc->sar_m32); } dc->sar_5bit = true; dc->sar_m32_5bit = false; } static void gen_left_shift_sar(DisasContext *dc, TCGv_i32 sa) { TCGv_i32 tmp = tcg_const_i32(32); if (!dc->sar_m32_allocated) { dc->sar_m32 = tcg_temp_local_new_i32(); dc->sar_m32_allocated = true; } tcg_gen_andi_i32(dc->sar_m32, sa, 0x1f); tcg_gen_sub_i32(cpu_SR[SAR], tmp, dc->sar_m32); dc->sar_5bit = false; dc->sar_m32_5bit = true; tcg_temp_free(tmp); } static void gen_exception(int excp) { TCGv_i32 tmp = tcg_const_i32(excp); gen_helper_exception(tmp); tcg_temp_free(tmp); } static void gen_jump_slot(DisasContext *dc, TCGv dest, int slot) { tcg_gen_mov_i32(cpu_pc, dest); if (dc->singlestep_enabled) { gen_exception(EXCP_DEBUG); } else { if (slot >= 0) { tcg_gen_goto_tb(slot); tcg_gen_exit_tb((tcg_target_long)dc->tb + slot); } else { tcg_gen_exit_tb(0); } } dc->is_jmp = DISAS_UPDATE; } static void gen_jump(DisasContext *dc, TCGv dest) { gen_jump_slot(dc, dest, -1); } static void gen_jumpi(DisasContext *dc, uint32_t dest, int slot) { TCGv_i32 tmp = tcg_const_i32(dest); if (((dc->pc ^ dest) & TARGET_PAGE_MASK) != 0) { slot = -1; } gen_jump_slot(dc, tmp, slot); tcg_temp_free(tmp); } static void gen_brcond(DisasContext *dc, TCGCond cond, TCGv_i32 t0, TCGv_i32 t1, uint32_t offset) { int label = gen_new_label(); tcg_gen_brcond_i32(cond, t0, t1, label); gen_jumpi(dc, dc->next_pc, 0); gen_set_label(label); gen_jumpi(dc, dc->pc + offset, 1); } static void gen_brcondi(DisasContext *dc, TCGCond cond, TCGv_i32 t0, uint32_t t1, uint32_t offset) { TCGv_i32 tmp = tcg_const_i32(t1); gen_brcond(dc, cond, t0, tmp, offset); tcg_temp_free(tmp); } static void gen_rsr(DisasContext *dc, TCGv_i32 d, uint32_t sr) { static void (* const rsr_handler[256])(DisasContext *dc, TCGv_i32 d, uint32_t sr) = { }; if (sregnames[sr]) { if (rsr_handler[sr]) { rsr_handler[sr](dc, d, sr); } else { tcg_gen_mov_i32(d, cpu_SR[sr]); } } else { qemu_log("RSR %d not implemented, ", sr); } } static void gen_wsr_sar(DisasContext *dc, uint32_t sr, TCGv_i32 s) { tcg_gen_andi_i32(cpu_SR[sr], s, 0x3f); if (dc->sar_m32_5bit) { tcg_gen_discard_i32(dc->sar_m32); } dc->sar_5bit = false; dc->sar_m32_5bit = false; } static void gen_wsr(DisasContext *dc, uint32_t sr, TCGv_i32 s) { static void (* const wsr_handler[256])(DisasContext *dc, uint32_t sr, TCGv_i32 v) = { [SAR] = gen_wsr_sar, }; if (sregnames[sr]) { if (wsr_handler[sr]) { wsr_handler[sr](dc, sr, s); } else { tcg_gen_mov_i32(cpu_SR[sr], s); } } else { qemu_log("WSR %d not implemented, ", sr); } } static void disas_xtensa_insn(DisasContext *dc) { #define HAS_OPTION(opt) do { \ if (!option_enabled(dc, opt)) { \ qemu_log("Option %d is not enabled %s:%d\n", \ (opt), __FILE__, __LINE__); \ goto invalid_opcode; \ } \ } while (0) #ifdef TARGET_WORDS_BIGENDIAN #define OP0 (((b0) & 0xf0) >> 4) #define OP1 (((b2) & 0xf0) >> 4) #define OP2 ((b2) & 0xf) #define RRR_R ((b1) & 0xf) #define RRR_S (((b1) & 0xf0) >> 4) #define RRR_T ((b0) & 0xf) #else #define OP0 (((b0) & 0xf)) #define OP1 (((b2) & 0xf)) #define OP2 (((b2) & 0xf0) >> 4) #define RRR_R (((b1) & 0xf0) >> 4) #define RRR_S (((b1) & 0xf)) #define RRR_T (((b0) & 0xf0) >> 4) #endif #define RRRN_R RRR_R #define RRRN_S RRR_S #define RRRN_T RRR_T #define RRI8_R RRR_R #define RRI8_S RRR_S #define RRI8_T RRR_T #define RRI8_IMM8 (b2) #define RRI8_IMM8_SE ((((b2) & 0x80) ? 0xffffff00 : 0) | RRI8_IMM8) #ifdef TARGET_WORDS_BIGENDIAN #define RI16_IMM16 (((b1) << 8) | (b2)) #else #define RI16_IMM16 (((b2) << 8) | (b1)) #endif #ifdef TARGET_WORDS_BIGENDIAN #define CALL_N (((b0) & 0xc) >> 2) #define CALL_OFFSET ((((b0) & 0x3) << 16) | ((b1) << 8) | (b2)) #else #define CALL_N (((b0) & 0x30) >> 4) #define CALL_OFFSET ((((b0) & 0xc0) >> 6) | ((b1) << 2) | ((b2) << 10)) #endif #define CALL_OFFSET_SE \ (((CALL_OFFSET & 0x20000) ? 0xfffc0000 : 0) | CALL_OFFSET) #define CALLX_N CALL_N #ifdef TARGET_WORDS_BIGENDIAN #define CALLX_M ((b0) & 0x3) #else #define CALLX_M (((b0) & 0xc0) >> 6) #endif #define CALLX_S RRR_S #define BRI12_M CALLX_M #define BRI12_S RRR_S #ifdef TARGET_WORDS_BIGENDIAN #define BRI12_IMM12 ((((b1) & 0xf) << 8) | (b2)) #else #define BRI12_IMM12 ((((b1) & 0xf0) >> 4) | ((b2) << 4)) #endif #define BRI12_IMM12_SE (((BRI12_IMM12 & 0x800) ? 0xfffff000 : 0) | BRI12_IMM12) #define BRI8_M BRI12_M #define BRI8_R RRI8_R #define BRI8_S RRI8_S #define BRI8_IMM8 RRI8_IMM8 #define BRI8_IMM8_SE RRI8_IMM8_SE #define RSR_SR (b1) uint8_t b0 = ldub_code(dc->pc); uint8_t b1 = ldub_code(dc->pc + 1); uint8_t b2 = ldub_code(dc->pc + 2); static const uint32_t B4CONST[] = { 0xffffffff, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 32, 64, 128, 256 }; static const uint32_t B4CONSTU[] = { 32768, 65536, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 32, 64, 128, 256 }; if (OP0 >= 8) { dc->next_pc = dc->pc + 2; HAS_OPTION(XTENSA_OPTION_CODE_DENSITY); } else { dc->next_pc = dc->pc + 3; } switch (OP0) { case 0: /*QRST*/ switch (OP1) { case 0: /*RST0*/ switch (OP2) { case 0: /*ST0*/ if ((RRR_R & 0xc) == 0x8) { HAS_OPTION(XTENSA_OPTION_BOOLEAN); } switch (RRR_R) { case 0: /*SNM0*/ switch (CALLX_M) { case 0: /*ILL*/ break; case 1: /*reserved*/ break; case 2: /*JR*/ switch (CALLX_N) { case 0: /*RET*/ case 2: /*JX*/ gen_jump(dc, cpu_R[CALLX_S]); break; case 1: /*RETWw*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; case 3: /*reserved*/ break; } break; case 3: /*CALLX*/ switch (CALLX_N) { case 0: /*CALLX0*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_mov_i32(tmp, cpu_R[CALLX_S]); tcg_gen_movi_i32(cpu_R[0], dc->next_pc); gen_jump(dc, tmp); tcg_temp_free(tmp); } break; case 1: /*CALLX4w*/ case 2: /*CALLX8w*/ case 3: /*CALLX12w*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; } break; } break; case 1: /*MOVSPw*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; case 2: /*SYNC*/ break; case 3: break; } break; case 1: /*AND*/ tcg_gen_and_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]); break; case 2: /*OR*/ tcg_gen_or_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]); break; case 3: /*XOR*/ tcg_gen_xor_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]); break; case 4: /*ST1*/ switch (RRR_R) { case 0: /*SSR*/ gen_right_shift_sar(dc, cpu_R[RRR_S]); break; case 1: /*SSL*/ gen_left_shift_sar(dc, cpu_R[RRR_S]); break; case 2: /*SSA8L*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(tmp, cpu_R[RRR_S], 3); gen_right_shift_sar(dc, tmp); tcg_temp_free(tmp); } break; case 3: /*SSA8B*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(tmp, cpu_R[RRR_S], 3); gen_left_shift_sar(dc, tmp); tcg_temp_free(tmp); } break; case 4: /*SSAI*/ { TCGv_i32 tmp = tcg_const_i32( RRR_S | ((RRR_T & 1) << 4)); gen_right_shift_sar(dc, tmp); tcg_temp_free(tmp); } break; case 6: /*RER*/ break; case 7: /*WER*/ break; case 8: /*ROTWw*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; case 14: /*NSAu*/ HAS_OPTION(XTENSA_OPTION_MISC_OP); gen_helper_nsa(cpu_R[RRR_T], cpu_R[RRR_S]); break; case 15: /*NSAUu*/ HAS_OPTION(XTENSA_OPTION_MISC_OP); gen_helper_nsau(cpu_R[RRR_T], cpu_R[RRR_S]); break; default: /*reserved*/ break; } break; case 5: /*TLB*/ break; case 6: /*RT0*/ switch (RRR_S) { case 0: /*NEG*/ tcg_gen_neg_i32(cpu_R[RRR_R], cpu_R[RRR_T]); break; case 1: /*ABS*/ { int label = gen_new_label(); tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_T]); tcg_gen_brcondi_i32( TCG_COND_GE, cpu_R[RRR_R], 0, label); tcg_gen_neg_i32(cpu_R[RRR_R], cpu_R[RRR_T]); gen_set_label(label); } break; default: /*reserved*/ break; } break; case 7: /*reserved*/ break; case 8: /*ADD*/ tcg_gen_add_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]); break; case 9: /*ADD**/ case 10: case 11: { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(tmp, cpu_R[RRR_S], OP2 - 8); tcg_gen_add_i32(cpu_R[RRR_R], tmp, cpu_R[RRR_T]); tcg_temp_free(tmp); } break; case 12: /*SUB*/ tcg_gen_sub_i32(cpu_R[RRR_R], cpu_R[RRR_S], cpu_R[RRR_T]); break; case 13: /*SUB**/ case 14: case 15: { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(tmp, cpu_R[RRR_S], OP2 - 12); tcg_gen_sub_i32(cpu_R[RRR_R], tmp, cpu_R[RRR_T]); tcg_temp_free(tmp); } break; } break; case 1: /*RST1*/ switch (OP2) { case 0: /*SLLI*/ case 1: tcg_gen_shli_i32(cpu_R[RRR_R], cpu_R[RRR_S], 32 - (RRR_T | ((OP2 & 1) << 4))); break; case 2: /*SRAI*/ case 3: tcg_gen_sari_i32(cpu_R[RRR_R], cpu_R[RRR_T], RRR_S | ((OP2 & 1) << 4)); break; case 4: /*SRLI*/ tcg_gen_shri_i32(cpu_R[RRR_R], cpu_R[RRR_T], RRR_S); break; case 6: /*XSR*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_mov_i32(tmp, cpu_R[RRR_T]); gen_rsr(dc, cpu_R[RRR_T], RSR_SR); gen_wsr(dc, RSR_SR, tmp); tcg_temp_free(tmp); } break; /* * Note: 64 bit ops are used here solely because SAR values * have range 0..63 */ #define gen_shift_reg(cmd, reg) do { \ TCGv_i64 tmp = tcg_temp_new_i64(); \ tcg_gen_extu_i32_i64(tmp, reg); \ tcg_gen_##cmd##_i64(v, v, tmp); \ tcg_gen_trunc_i64_i32(cpu_R[RRR_R], v); \ tcg_temp_free_i64(v); \ tcg_temp_free_i64(tmp); \ } while (0) #define gen_shift(cmd) gen_shift_reg(cmd, cpu_SR[SAR]) case 8: /*SRC*/ { TCGv_i64 v = tcg_temp_new_i64(); tcg_gen_concat_i32_i64(v, cpu_R[RRR_T], cpu_R[RRR_S]); gen_shift(shr); } break; case 9: /*SRL*/ if (dc->sar_5bit) { tcg_gen_shr_i32(cpu_R[RRR_R], cpu_R[RRR_T], cpu_SR[SAR]); } else { TCGv_i64 v = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(v, cpu_R[RRR_T]); gen_shift(shr); } break; case 10: /*SLL*/ if (dc->sar_m32_5bit) { tcg_gen_shl_i32(cpu_R[RRR_R], cpu_R[RRR_S], dc->sar_m32); } else { TCGv_i64 v = tcg_temp_new_i64(); TCGv_i32 s = tcg_const_i32(32); tcg_gen_sub_i32(s, s, cpu_SR[SAR]); tcg_gen_andi_i32(s, s, 0x3f); tcg_gen_extu_i32_i64(v, cpu_R[RRR_S]); gen_shift_reg(shl, s); tcg_temp_free(s); } break; case 11: /*SRA*/ if (dc->sar_5bit) { tcg_gen_sar_i32(cpu_R[RRR_R], cpu_R[RRR_T], cpu_SR[SAR]); } else { TCGv_i64 v = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(v, cpu_R[RRR_T]); gen_shift(sar); } break; #undef gen_shift #undef gen_shift_reg case 12: /*MUL16U*/ HAS_OPTION(XTENSA_OPTION_16_BIT_IMUL); { TCGv_i32 v1 = tcg_temp_new_i32(); TCGv_i32 v2 = tcg_temp_new_i32(); tcg_gen_ext16u_i32(v1, cpu_R[RRR_S]); tcg_gen_ext16u_i32(v2, cpu_R[RRR_T]); tcg_gen_mul_i32(cpu_R[RRR_R], v1, v2); tcg_temp_free(v2); tcg_temp_free(v1); } break; case 13: /*MUL16S*/ HAS_OPTION(XTENSA_OPTION_16_BIT_IMUL); { TCGv_i32 v1 = tcg_temp_new_i32(); TCGv_i32 v2 = tcg_temp_new_i32(); tcg_gen_ext16s_i32(v1, cpu_R[RRR_S]); tcg_gen_ext16s_i32(v2, cpu_R[RRR_T]); tcg_gen_mul_i32(cpu_R[RRR_R], v1, v2); tcg_temp_free(v2); tcg_temp_free(v1); } break; default: /*reserved*/ break; } break; case 2: /*RST2*/ break; case 3: /*RST3*/ switch (OP2) { case 0: /*RSR*/ gen_rsr(dc, cpu_R[RRR_T], RSR_SR); break; case 1: /*WSR*/ gen_wsr(dc, RSR_SR, cpu_R[RRR_T]); break; case 2: /*SEXTu*/ HAS_OPTION(XTENSA_OPTION_MISC_OP); { int shift = 24 - RRR_T; if (shift == 24) { tcg_gen_ext8s_i32(cpu_R[RRR_R], cpu_R[RRR_S]); } else if (shift == 16) { tcg_gen_ext16s_i32(cpu_R[RRR_R], cpu_R[RRR_S]); } else { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(tmp, cpu_R[RRR_S], shift); tcg_gen_sari_i32(cpu_R[RRR_R], tmp, shift); tcg_temp_free(tmp); } } break; case 3: /*CLAMPSu*/ HAS_OPTION(XTENSA_OPTION_MISC_OP); { TCGv_i32 tmp1 = tcg_temp_new_i32(); TCGv_i32 tmp2 = tcg_temp_new_i32(); int label = gen_new_label(); tcg_gen_sari_i32(tmp1, cpu_R[RRR_S], 24 - RRR_T); tcg_gen_xor_i32(tmp2, tmp1, cpu_R[RRR_S]); tcg_gen_andi_i32(tmp2, tmp2, 0xffffffff << (RRR_T + 7)); tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_S]); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp2, 0, label); tcg_gen_sari_i32(tmp1, cpu_R[RRR_S], 31); tcg_gen_xori_i32(cpu_R[RRR_R], tmp1, 0xffffffff >> (25 - RRR_T)); gen_set_label(label); tcg_temp_free(tmp1); tcg_temp_free(tmp2); } break; case 4: /*MINu*/ case 5: /*MAXu*/ case 6: /*MINUu*/ case 7: /*MAXUu*/ HAS_OPTION(XTENSA_OPTION_MISC_OP); { static const TCGCond cond[] = { TCG_COND_LE, TCG_COND_GE, TCG_COND_LEU, TCG_COND_GEU }; int label = gen_new_label(); if (RRR_R != RRR_T) { tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_S]); tcg_gen_brcond_i32(cond[OP2 - 4], cpu_R[RRR_S], cpu_R[RRR_T], label); tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_T]); } else { tcg_gen_brcond_i32(cond[OP2 - 4], cpu_R[RRR_T], cpu_R[RRR_S], label); tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_S]); } gen_set_label(label); } break; case 8: /*MOVEQZ*/ case 9: /*MOVNEZ*/ case 10: /*MOVLTZ*/ case 11: /*MOVGEZ*/ { static const TCGCond cond[] = { TCG_COND_NE, TCG_COND_EQ, TCG_COND_GE, TCG_COND_LT }; int label = gen_new_label(); tcg_gen_brcondi_i32(cond[OP2 - 8], cpu_R[RRR_T], 0, label); tcg_gen_mov_i32(cpu_R[RRR_R], cpu_R[RRR_S]); gen_set_label(label); } break; case 12: /*MOVFp*/ HAS_OPTION(XTENSA_OPTION_BOOLEAN); break; case 13: /*MOVTp*/ HAS_OPTION(XTENSA_OPTION_BOOLEAN); break; case 14: /*RUR*/ { int st = (RRR_S << 4) + RRR_T; if (uregnames[st]) { tcg_gen_mov_i32(cpu_R[RRR_R], cpu_UR[st]); } else { qemu_log("RUR %d not implemented, ", st); } } break; case 15: /*WUR*/ { if (uregnames[RSR_SR]) { tcg_gen_mov_i32(cpu_UR[RSR_SR], cpu_R[RRR_T]); } else { qemu_log("WUR %d not implemented, ", RSR_SR); } } break; } break; case 4: /*EXTUI*/ case 5: { int shiftimm = RRR_S | (OP1 << 4); int maskimm = (1 << (OP2 + 1)) - 1; TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shri_i32(tmp, cpu_R[RRR_T], shiftimm); tcg_gen_andi_i32(cpu_R[RRR_R], tmp, maskimm); tcg_temp_free(tmp); } break; case 6: /*CUST0*/ break; case 7: /*CUST1*/ break; case 8: /*LSCXp*/ HAS_OPTION(XTENSA_OPTION_COPROCESSOR); break; case 9: /*LSC4*/ break; case 10: /*FP0*/ HAS_OPTION(XTENSA_OPTION_FP_COPROCESSOR); break; case 11: /*FP1*/ HAS_OPTION(XTENSA_OPTION_FP_COPROCESSOR); break; default: /*reserved*/ break; } break; case 1: /*L32R*/ { TCGv_i32 tmp = tcg_const_i32( (0xfffc0000 | (RI16_IMM16 << 2)) + ((dc->pc + 3) & ~3)); /* no ext L32R */ tcg_gen_qemu_ld32u(cpu_R[RRR_T], tmp, 0); tcg_temp_free(tmp); } break; case 2: /*LSAI*/ #define gen_load_store(type, shift) do { \ TCGv_i32 addr = tcg_temp_new_i32(); \ tcg_gen_addi_i32(addr, cpu_R[RRI8_S], RRI8_IMM8 << shift); \ tcg_gen_qemu_##type(cpu_R[RRI8_T], addr, 0); \ tcg_temp_free(addr); \ } while (0) switch (RRI8_R) { case 0: /*L8UI*/ gen_load_store(ld8u, 0); break; case 1: /*L16UI*/ gen_load_store(ld16u, 1); break; case 2: /*L32I*/ gen_load_store(ld32u, 2); break; case 4: /*S8I*/ gen_load_store(st8, 0); break; case 5: /*S16I*/ gen_load_store(st16, 1); break; case 6: /*S32I*/ gen_load_store(st32, 2); break; case 7: /*CACHEc*/ break; case 9: /*L16SI*/ gen_load_store(ld16s, 1); break; case 10: /*MOVI*/ tcg_gen_movi_i32(cpu_R[RRI8_T], RRI8_IMM8 | (RRI8_S << 8) | ((RRI8_S & 0x8) ? 0xfffff000 : 0)); break; case 11: /*L32AIy*/ HAS_OPTION(XTENSA_OPTION_MP_SYNCHRO); gen_load_store(ld32u, 2); /*TODO acquire?*/ break; case 12: /*ADDI*/ tcg_gen_addi_i32(cpu_R[RRI8_T], cpu_R[RRI8_S], RRI8_IMM8_SE); break; case 13: /*ADDMI*/ tcg_gen_addi_i32(cpu_R[RRI8_T], cpu_R[RRI8_S], RRI8_IMM8_SE << 8); break; case 14: /*S32C1Iy*/ HAS_OPTION(XTENSA_OPTION_MP_SYNCHRO); { int label = gen_new_label(); TCGv_i32 tmp = tcg_temp_local_new_i32(); TCGv_i32 addr = tcg_temp_local_new_i32(); tcg_gen_mov_i32(tmp, cpu_R[RRI8_T]); tcg_gen_addi_i32(addr, cpu_R[RRI8_S], RRI8_IMM8 << 2); tcg_gen_qemu_ld32u(cpu_R[RRI8_T], addr, 0); tcg_gen_brcond_i32(TCG_COND_NE, cpu_R[RRI8_T], cpu_SR[SCOMPARE1], label); tcg_gen_qemu_st32(tmp, addr, 0); gen_set_label(label); tcg_temp_free(addr); tcg_temp_free(tmp); } break; case 15: /*S32RIy*/ HAS_OPTION(XTENSA_OPTION_MP_SYNCHRO); gen_load_store(st32, 2); /*TODO release?*/ break; default: /*reserved*/ break; } break; #undef gen_load_store case 3: /*LSCIp*/ HAS_OPTION(XTENSA_OPTION_COPROCESSOR); break; case 4: /*MAC16d*/ HAS_OPTION(XTENSA_OPTION_MAC16); break; case 5: /*CALLN*/ switch (CALL_N) { case 0: /*CALL0*/ tcg_gen_movi_i32(cpu_R[0], dc->next_pc); gen_jumpi(dc, (dc->pc & ~3) + (CALL_OFFSET_SE << 2) + 4, 0); break; case 1: /*CALL4w*/ case 2: /*CALL8w*/ case 3: /*CALL12w*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; } break; case 6: /*SI*/ switch (CALL_N) { case 0: /*J*/ gen_jumpi(dc, dc->pc + 4 + CALL_OFFSET_SE, 0); break; case 1: /*BZ*/ { static const TCGCond cond[] = { TCG_COND_EQ, /*BEQZ*/ TCG_COND_NE, /*BNEZ*/ TCG_COND_LT, /*BLTZ*/ TCG_COND_GE, /*BGEZ*/ }; gen_brcondi(dc, cond[BRI12_M & 3], cpu_R[BRI12_S], 0, 4 + BRI12_IMM12_SE); } break; case 2: /*BI0*/ { static const TCGCond cond[] = { TCG_COND_EQ, /*BEQI*/ TCG_COND_NE, /*BNEI*/ TCG_COND_LT, /*BLTI*/ TCG_COND_GE, /*BGEI*/ }; gen_brcondi(dc, cond[BRI8_M & 3], cpu_R[BRI8_S], B4CONST[BRI8_R], 4 + BRI8_IMM8_SE); } break; case 3: /*BI1*/ switch (BRI8_M) { case 0: /*ENTRYw*/ HAS_OPTION(XTENSA_OPTION_WINDOWED_REGISTER); break; case 1: /*B1*/ switch (BRI8_R) { case 0: /*BFp*/ HAS_OPTION(XTENSA_OPTION_BOOLEAN); break; case 1: /*BTp*/ HAS_OPTION(XTENSA_OPTION_BOOLEAN); break; case 8: /*LOOP*/ break; case 9: /*LOOPNEZ*/ break; case 10: /*LOOPGTZ*/ break; default: /*reserved*/ break; } break; case 2: /*BLTUI*/ case 3: /*BGEUI*/ gen_brcondi(dc, BRI8_M == 2 ? TCG_COND_LTU : TCG_COND_GEU, cpu_R[BRI8_S], B4CONSTU[BRI8_R], 4 + BRI8_IMM8_SE); break; } break; } break; case 7: /*B*/ { TCGCond eq_ne = (RRI8_R & 8) ? TCG_COND_NE : TCG_COND_EQ; switch (RRI8_R & 7) { case 0: /*BNONE*/ /*BANY*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_and_i32(tmp, cpu_R[RRI8_S], cpu_R[RRI8_T]); gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE); tcg_temp_free(tmp); } break; case 1: /*BEQ*/ /*BNE*/ case 2: /*BLT*/ /*BGE*/ case 3: /*BLTU*/ /*BGEU*/ { static const TCGCond cond[] = { [1] = TCG_COND_EQ, [2] = TCG_COND_LT, [3] = TCG_COND_LTU, [9] = TCG_COND_NE, [10] = TCG_COND_GE, [11] = TCG_COND_GEU, }; gen_brcond(dc, cond[RRI8_R], cpu_R[RRI8_S], cpu_R[RRI8_T], 4 + RRI8_IMM8_SE); } break; case 4: /*BALL*/ /*BNALL*/ { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_and_i32(tmp, cpu_R[RRI8_S], cpu_R[RRI8_T]); gen_brcond(dc, eq_ne, tmp, cpu_R[RRI8_T], 4 + RRI8_IMM8_SE); tcg_temp_free(tmp); } break; case 5: /*BBC*/ /*BBS*/ { TCGv_i32 bit = tcg_const_i32(1); TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(tmp, cpu_R[RRI8_T], 0x1f); tcg_gen_shl_i32(bit, bit, tmp); tcg_gen_and_i32(tmp, cpu_R[RRI8_S], bit); gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE); tcg_temp_free(tmp); tcg_temp_free(bit); } break; case 6: /*BBCI*/ /*BBSI*/ case 7: { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(tmp, cpu_R[RRI8_S], 1 << (((RRI8_R & 1) << 4) | RRI8_T)); gen_brcondi(dc, eq_ne, tmp, 0, 4 + RRI8_IMM8_SE); tcg_temp_free(tmp); } break; } } break; #define gen_narrow_load_store(type) do { \ TCGv_i32 addr = tcg_temp_new_i32(); \ tcg_gen_addi_i32(addr, cpu_R[RRRN_S], RRRN_R << 2); \ tcg_gen_qemu_##type(cpu_R[RRRN_T], addr, 0); \ tcg_temp_free(addr); \ } while (0) case 8: /*L32I.Nn*/ gen_narrow_load_store(ld32u); break; case 9: /*S32I.Nn*/ gen_narrow_load_store(st32); break; #undef gen_narrow_load_store case 10: /*ADD.Nn*/ tcg_gen_add_i32(cpu_R[RRRN_R], cpu_R[RRRN_S], cpu_R[RRRN_T]); break; case 11: /*ADDI.Nn*/ tcg_gen_addi_i32(cpu_R[RRRN_R], cpu_R[RRRN_S], RRRN_T ? RRRN_T : -1); break; case 12: /*ST2n*/ if (RRRN_T < 8) { /*MOVI.Nn*/ tcg_gen_movi_i32(cpu_R[RRRN_S], RRRN_R | (RRRN_T << 4) | ((RRRN_T & 6) == 6 ? 0xffffff80 : 0)); } else { /*BEQZ.Nn*/ /*BNEZ.Nn*/ TCGCond eq_ne = (RRRN_T & 4) ? TCG_COND_NE : TCG_COND_EQ; gen_brcondi(dc, eq_ne, cpu_R[RRRN_S], 0, 4 + (RRRN_R | ((RRRN_T & 3) << 4))); } break; case 13: /*ST3n*/ switch (RRRN_R) { case 0: /*MOV.Nn*/ tcg_gen_mov_i32(cpu_R[RRRN_T], cpu_R[RRRN_S]); break; case 15: /*S3*/ switch (RRRN_T) { case 0: /*RET.Nn*/ gen_jump(dc, cpu_R[0]); break; case 1: /*RETW.Nn*/ break; case 2: /*BREAK.Nn*/ break; case 3: /*NOP.Nn*/ break; case 6: /*ILL.Nn*/ break; default: /*reserved*/ break; } break; default: /*reserved*/ break; } break; default: /*reserved*/ break; } dc->pc = dc->next_pc; return; invalid_opcode: qemu_log("INVALID(pc = %08x)\n", dc->pc); dc->pc = dc->next_pc; #undef HAS_OPTION } static void check_breakpoint(CPUState *env, DisasContext *dc) { CPUBreakpoint *bp; if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) { QTAILQ_FOREACH(bp, &env->breakpoints, entry) { if (bp->pc == dc->pc) { tcg_gen_movi_i32(cpu_pc, dc->pc); gen_exception(EXCP_DEBUG); dc->is_jmp = DISAS_UPDATE; } } } } static void gen_intermediate_code_internal( CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext dc; int insn_count = 0; int j, lj = -1; uint16_t *gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; int max_insns = tb->cflags & CF_COUNT_MASK; uint32_t pc_start = tb->pc; uint32_t next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; if (max_insns == 0) { max_insns = CF_COUNT_MASK; } dc.config = env->config; dc.singlestep_enabled = env->singlestep_enabled; dc.tb = tb; dc.pc = pc_start; dc.is_jmp = DISAS_NEXT; init_sar_tracker(&dc); gen_icount_start(); do { check_breakpoint(env, &dc); if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) { gen_opc_instr_start[lj++] = 0; } } gen_opc_pc[lj] = dc.pc; gen_opc_instr_start[lj] = 1; gen_opc_icount[lj] = insn_count; } if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP))) { tcg_gen_debug_insn_start(dc.pc); } disas_xtensa_insn(&dc); ++insn_count; if (env->singlestep_enabled) { tcg_gen_movi_i32(cpu_pc, dc.pc); gen_exception(EXCP_DEBUG); break; } } while (dc.is_jmp == DISAS_NEXT && insn_count < max_insns && dc.pc < next_page_start && gen_opc_ptr < gen_opc_end); reset_sar_tracker(&dc); if (dc.is_jmp == DISAS_NEXT) { gen_jumpi(&dc, dc.pc, 0); } gen_icount_end(tb, insn_count); *gen_opc_ptr = INDEX_op_end; if (!search_pc) { tb->size = dc.pc - pc_start; tb->icount = insn_count; } } void gen_intermediate_code(CPUState *env, TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 0); } void gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 1); } void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf, int flags) { int i, j; cpu_fprintf(f, "PC=%08x\n\n", env->pc); for (i = j = 0; i < 256; ++i) { if (sregnames[i]) { cpu_fprintf(f, "%s=%08x%c", sregnames[i], env->sregs[i], (j++ % 4) == 3 ? '\n' : ' '); } } cpu_fprintf(f, (j % 4) == 0 ? "\n" : "\n\n"); for (i = j = 0; i < 256; ++i) { if (uregnames[i]) { cpu_fprintf(f, "%s=%08x%c", uregnames[i], env->uregs[i], (j++ % 4) == 3 ? '\n' : ' '); } } cpu_fprintf(f, (j % 4) == 0 ? "\n" : "\n\n"); for (i = 0; i < 16; ++i) { cpu_fprintf(f, "A%02d=%08x%c", i, env->regs[i], (i % 4) == 3 ? '\n' : ' '); } } void restore_state_to_opc(CPUState *env, TranslationBlock *tb, int pc_pos) { env->pc = gen_opc_pc[pc_pos]; }