/* * PowerPC emulation helpers for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "host-utils.h" #include "helper.h" #include "helper_regs.h" //#define DEBUG_OP //#define DEBUG_EXCEPTIONS //#define DEBUG_SOFTWARE_TLB /*****************************************************************************/ /* Exceptions processing helpers */ void helper_raise_exception_err (uint32_t exception, uint32_t error_code) { #if 0 printf("Raise exception %3x code : %d\n", exception, error_code); #endif env->exception_index = exception; env->error_code = error_code; cpu_loop_exit(); } void helper_raise_exception (uint32_t exception) { helper_raise_exception_err(exception, 0); } /*****************************************************************************/ /* Registers load and stores */ target_ulong helper_load_cr (void) { return (env->crf[0] << 28) | (env->crf[1] << 24) | (env->crf[2] << 20) | (env->crf[3] << 16) | (env->crf[4] << 12) | (env->crf[5] << 8) | (env->crf[6] << 4) | (env->crf[7] << 0); } void helper_store_cr (target_ulong val, uint32_t mask) { int i, sh; for (i = 0, sh = 7; i < 8; i++, sh--) { if (mask & (1 << sh)) env->crf[i] = (val >> (sh * 4)) & 0xFUL; } } /*****************************************************************************/ /* SPR accesses */ void helper_load_dump_spr (uint32_t sprn) { if (loglevel != 0) { fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", sprn, sprn, env->spr[sprn]); } } void helper_store_dump_spr (uint32_t sprn) { if (loglevel != 0) { fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n", sprn, sprn, env->spr[sprn]); } } target_ulong helper_load_tbl (void) { return cpu_ppc_load_tbl(env); } target_ulong helper_load_tbu (void) { return cpu_ppc_load_tbu(env); } target_ulong helper_load_atbl (void) { return cpu_ppc_load_atbl(env); } target_ulong helper_load_atbu (void) { return cpu_ppc_load_atbu(env); } target_ulong helper_load_601_rtcl (void) { return cpu_ppc601_load_rtcl(env); } target_ulong helper_load_601_rtcu (void) { return cpu_ppc601_load_rtcu(env); } #if !defined(CONFIG_USER_ONLY) #if defined (TARGET_PPC64) void helper_store_asr (target_ulong val) { ppc_store_asr(env, val); } #endif void helper_store_sdr1 (target_ulong val) { ppc_store_sdr1(env, val); } void helper_store_tbl (target_ulong val) { cpu_ppc_store_tbl(env, val); } void helper_store_tbu (target_ulong val) { cpu_ppc_store_tbu(env, val); } void helper_store_atbl (target_ulong val) { cpu_ppc_store_atbl(env, val); } void helper_store_atbu (target_ulong val) { cpu_ppc_store_atbu(env, val); } void helper_store_601_rtcl (target_ulong val) { cpu_ppc601_store_rtcl(env, val); } void helper_store_601_rtcu (target_ulong val) { cpu_ppc601_store_rtcu(env, val); } target_ulong helper_load_decr (void) { return cpu_ppc_load_decr(env); } void helper_store_decr (target_ulong val) { cpu_ppc_store_decr(env, val); } void helper_store_hid0_601 (target_ulong val) { target_ulong hid0; hid0 = env->spr[SPR_HID0]; if ((val ^ hid0) & 0x00000008) { /* Change current endianness */ env->hflags &= ~(1 << MSR_LE); env->hflags_nmsr &= ~(1 << MSR_LE); env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); env->hflags |= env->hflags_nmsr; if (loglevel != 0) { fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", __func__, val & 0x8 ? 'l' : 'b', env->hflags); } } env->spr[SPR_HID0] = (uint32_t)val; } void helper_store_403_pbr (uint32_t num, target_ulong value) { if (likely(env->pb[num] != value)) { env->pb[num] = value; /* Should be optimized */ tlb_flush(env, 1); } } target_ulong helper_load_40x_pit (void) { return load_40x_pit(env); } void helper_store_40x_pit (target_ulong val) { store_40x_pit(env, val); } void helper_store_40x_dbcr0 (target_ulong val) { store_40x_dbcr0(env, val); } void helper_store_40x_sler (target_ulong val) { store_40x_sler(env, val); } void helper_store_booke_tcr (target_ulong val) { store_booke_tcr(env, val); } void helper_store_booke_tsr (target_ulong val) { store_booke_tsr(env, val); } void helper_store_ibatu (uint32_t nr, target_ulong val) { ppc_store_ibatu(env, nr, val); } void helper_store_ibatl (uint32_t nr, target_ulong val) { ppc_store_ibatl(env, nr, val); } void helper_store_dbatu (uint32_t nr, target_ulong val) { ppc_store_dbatu(env, nr, val); } void helper_store_dbatl (uint32_t nr, target_ulong val) { ppc_store_dbatl(env, nr, val); } void helper_store_601_batl (uint32_t nr, target_ulong val) { ppc_store_ibatl_601(env, nr, val); } void helper_store_601_batu (uint32_t nr, target_ulong val) { ppc_store_ibatu_601(env, nr, val); } #endif /*****************************************************************************/ /* Memory load and stores */ static always_inline target_ulong addr_add(target_ulong addr, target_long arg) { #if defined(TARGET_PPC64) if (!msr_sf) return (uint32_t)(addr + arg); else #endif return addr + arg; } void helper_lmw (target_ulong addr, uint32_t reg) { for (; reg < 32; reg++) { if (msr_le) env->gpr[reg] = bswap32(ldl(addr)); else env->gpr[reg] = ldl(addr); addr = addr_add(addr, 4); } } void helper_stmw (target_ulong addr, uint32_t reg) { for (; reg < 32; reg++) { if (msr_le) stl(addr, bswap32((uint32_t)env->gpr[reg])); else stl(addr, (uint32_t)env->gpr[reg]); addr = addr_add(addr, 4); } } void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) { int sh; for (; nb > 3; nb -= 4) { env->gpr[reg] = ldl(addr); reg = (reg + 1) % 32; addr = addr_add(addr, 4); } if (unlikely(nb > 0)) { env->gpr[reg] = 0; for (sh = 24; nb > 0; nb--, sh -= 8) { env->gpr[reg] |= ldub(addr) << sh; addr = addr_add(addr, 1); } } } /* PPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { if (likely(xer_bc != 0)) { if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || (reg < rb && (reg + xer_bc) > rb))) { helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_LSWX); } else { helper_lsw(addr, xer_bc, reg); } } } void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) { int sh; for (; nb > 3; nb -= 4) { stl(addr, env->gpr[reg]); reg = (reg + 1) % 32; addr = addr_add(addr, 4); } if (unlikely(nb > 0)) { for (sh = 24; nb > 0; nb--, sh -= 8) stb(addr, (env->gpr[reg] >> sh) & 0xFF); addr = addr_add(addr, 1); } } static void do_dcbz(target_ulong addr, int dcache_line_size) { addr &= ~(dcache_line_size - 1); int i; for (i = 0 ; i < dcache_line_size ; i += 4) { stl(addr + i , 0); } if (env->reserve == addr) env->reserve = (target_ulong)-1ULL; } void helper_dcbz(target_ulong addr) { do_dcbz(addr, env->dcache_line_size); } void helper_dcbz_970(target_ulong addr) { if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) do_dcbz(addr, 32); else do_dcbz(addr, env->dcache_line_size); } void helper_icbi(target_ulong addr) { uint32_t tmp; addr &= ~(env->dcache_line_size - 1); /* Invalidate one cache line : * PowerPC specification says this is to be treated like a load * (not a fetch) by the MMU. To be sure it will be so, * do the load "by hand". */ tmp = ldl(addr); tb_invalidate_page_range(addr, addr + env->icache_line_size); } // XXX: to be tested target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { int i, c, d; d = 24; for (i = 0; i < xer_bc; i++) { c = ldub(addr); addr = addr_add(addr, 1); /* ra (if not 0) and rb are never modified */ if (likely(reg != rb && (ra == 0 || reg != ra))) { env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); } if (unlikely(c == xer_cmp)) break; if (likely(d != 0)) { d -= 8; } else { d = 24; reg++; reg = reg & 0x1F; } } return i; } /*****************************************************************************/ /* Fixed point operations helpers */ #if defined(TARGET_PPC64) /* multiply high word */ uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) { uint64_t tl, th; muls64(&tl, &th, arg1, arg2); return th; } /* multiply high word unsigned */ uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) { uint64_t tl, th; mulu64(&tl, &th, arg1, arg2); return th; } uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) { int64_t th; uint64_t tl; muls64(&tl, (uint64_t *)&th, arg1, arg2); /* If th != 0 && th != -1, then we had an overflow */ if (likely((uint64_t)(th + 1) <= 1)) { env->xer &= ~(1 << XER_OV); } else { env->xer |= (1 << XER_OV) | (1 << XER_SO); } return (int64_t)tl; } #endif target_ulong helper_cntlzw (target_ulong t) { return clz32(t); } #if defined(TARGET_PPC64) target_ulong helper_cntlzd (target_ulong t) { return clz64(t); } #endif /* shift right arithmetic helper */ target_ulong helper_sraw (target_ulong value, target_ulong shift) { int32_t ret; if (likely(!(shift & 0x20))) { if (likely((uint32_t)shift != 0)) { shift &= 0x1f; ret = (int32_t)value >> shift; if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { env->xer &= ~(1 << XER_CA); } else { env->xer |= (1 << XER_CA); } } else { ret = (int32_t)value; env->xer &= ~(1 << XER_CA); } } else { ret = (int32_t)value >> 31; if (ret) { env->xer |= (1 << XER_CA); } else { env->xer &= ~(1 << XER_CA); } } return (target_long)ret; } #if defined(TARGET_PPC64) target_ulong helper_srad (target_ulong value, target_ulong shift) { int64_t ret; if (likely(!(shift & 0x40))) { if (likely((uint64_t)shift != 0)) { shift &= 0x3f; ret = (int64_t)value >> shift; if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { env->xer &= ~(1 << XER_CA); } else { env->xer |= (1 << XER_CA); } } else { ret = (int64_t)value; env->xer &= ~(1 << XER_CA); } } else { ret = (int64_t)value >> 63; if (ret) { env->xer |= (1 << XER_CA); } else { env->xer &= ~(1 << XER_CA); } } return ret; } #endif target_ulong helper_popcntb (target_ulong val) { val = (val & 0x55555555) + ((val >> 1) & 0x55555555); val = (val & 0x33333333) + ((val >> 2) & 0x33333333); val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); return val; } #if defined(TARGET_PPC64) target_ulong helper_popcntb_64 (target_ulong val) { val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); return val; } #endif /*****************************************************************************/ /* Floating point operations helpers */ uint64_t helper_float32_to_float64(uint32_t arg) { CPU_FloatU f; CPU_DoubleU d; f.l = arg; d.d = float32_to_float64(f.f, &env->fp_status); return d.ll; } uint32_t helper_float64_to_float32(uint64_t arg) { CPU_FloatU f; CPU_DoubleU d; d.ll = arg; f.f = float64_to_float32(d.d, &env->fp_status); return f.l; } static always_inline int fpisneg (float64 d) { CPU_DoubleU u; u.d = d; return u.ll >> 63 != 0; } static always_inline int isden (float64 d) { CPU_DoubleU u; u.d = d; return ((u.ll >> 52) & 0x7FF) == 0; } static always_inline int iszero (float64 d) { CPU_DoubleU u; u.d = d; return (u.ll & ~0x8000000000000000ULL) == 0; } static always_inline int isinfinity (float64 d) { CPU_DoubleU u; u.d = d; return ((u.ll >> 52) & 0x7FF) == 0x7FF && (u.ll & 0x000FFFFFFFFFFFFFULL) == 0; } #ifdef CONFIG_SOFTFLOAT static always_inline int isfinite (float64 d) { CPU_DoubleU u; u.d = d; return (((u.ll >> 52) & 0x7FF) != 0x7FF); } static always_inline int isnormal (float64 d) { CPU_DoubleU u; u.d = d; uint32_t exp = (u.ll >> 52) & 0x7FF; return ((0 < exp) && (exp < 0x7FF)); } #endif uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) { CPU_DoubleU farg; int isneg; int ret; farg.ll = arg; isneg = fpisneg(farg.d); if (unlikely(float64_is_nan(farg.d))) { if (float64_is_signaling_nan(farg.d)) { /* Signaling NaN: flags are undefined */ ret = 0x00; } else { /* Quiet NaN */ ret = 0x11; } } else if (unlikely(isinfinity(farg.d))) { /* +/- infinity */ if (isneg) ret = 0x09; else ret = 0x05; } else { if (iszero(farg.d)) { /* +/- zero */ if (isneg) ret = 0x12; else ret = 0x02; } else { if (isden(farg.d)) { /* Denormalized numbers */ ret = 0x10; } else { /* Normalized numbers */ ret = 0x00; } if (isneg) { ret |= 0x08; } else { ret |= 0x04; } } } if (set_fprf) { /* We update FPSCR_FPRF */ env->fpscr &= ~(0x1F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; } /* We just need fpcc to update Rc1 */ return ret & 0xF; } /* Floating-point invalid operations exception */ static always_inline uint64_t fload_invalid_op_excp (int op) { uint64_t ret = 0; int ve; ve = fpscr_ve; if (op & POWERPC_EXCP_FP_VXSNAN) { /* Operation on signaling NaN */ env->fpscr |= 1 << FPSCR_VXSNAN; } if (op & POWERPC_EXCP_FP_VXSOFT) { /* Software-defined condition */ env->fpscr |= 1 << FPSCR_VXSOFT; } switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { case POWERPC_EXCP_FP_VXISI: /* Magnitude subtraction of infinities */ env->fpscr |= 1 << FPSCR_VXISI; goto update_arith; case POWERPC_EXCP_FP_VXIDI: /* Division of infinity by infinity */ env->fpscr |= 1 << FPSCR_VXIDI; goto update_arith; case POWERPC_EXCP_FP_VXZDZ: /* Division of zero by zero */ env->fpscr |= 1 << FPSCR_VXZDZ; goto update_arith; case POWERPC_EXCP_FP_VXIMZ: /* Multiplication of zero by infinity */ env->fpscr |= 1 << FPSCR_VXIMZ; goto update_arith; case POWERPC_EXCP_FP_VXVC: /* Ordered comparison of NaN */ env->fpscr |= 1 << FPSCR_VXVC; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; /* We must update the target FPR before raising the exception */ if (ve != 0) { env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* Exception is differed */ ve = 0; } break; case POWERPC_EXCP_FP_VXSQRT: /* Square root of a negative number */ env->fpscr |= 1 << FPSCR_VXSQRT; update_arith: env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ ret = UINT64_MAX; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } break; case POWERPC_EXCP_FP_VXCVI: /* Invalid conversion */ env->fpscr |= 1 << FPSCR_VXCVI; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ ret = UINT64_MAX; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } break; } /* Update the floating-point invalid operation summary */ env->fpscr |= 1 << FPSCR_VX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (ve != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); } return ret; } static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t arg2) { env->fpscr |= 1 << FPSCR_ZX; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) { helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); } } else { /* Set the result to infinity */ arg1 = ((arg1 ^ arg2) & 0x8000000000000000ULL); arg1 |= 0x7FFULL << 52; } return arg1; } static always_inline void float_overflow_excp (void) { env->fpscr |= 1 << FPSCR_OX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; } else { env->fpscr |= 1 << FPSCR_XX; env->fpscr |= 1 << FPSCR_FI; } } static always_inline void float_underflow_excp (void) { env->fpscr |= 1 << FPSCR_UX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; } } static always_inline void float_inexact_excp (void) { env->fpscr |= 1 << FPSCR_XX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; } } static always_inline void fpscr_set_rounding_mode (void) { int rnd_type; /* Set rounding mode */ switch (fpscr_rn) { case 0: /* Best approximation (round to nearest) */ rnd_type = float_round_nearest_even; break; case 1: /* Smaller magnitude (round toward zero) */ rnd_type = float_round_to_zero; break; case 2: /* Round toward +infinite */ rnd_type = float_round_up; break; default: case 3: /* Round toward -infinite */ rnd_type = float_round_down; break; } set_float_rounding_mode(rnd_type, &env->fp_status); } void helper_fpscr_clrbit (uint32_t bit) { int prev; prev = (env->fpscr >> bit) & 1; env->fpscr &= ~(1 << bit); if (prev == 1) { switch (bit) { case FPSCR_RN1: case FPSCR_RN: fpscr_set_rounding_mode(); break; default: break; } } } void helper_fpscr_setbit (uint32_t bit) { int prev; prev = (env->fpscr >> bit) & 1; env->fpscr |= 1 << bit; if (prev == 0) { switch (bit) { case FPSCR_VX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve) goto raise_ve; case FPSCR_OX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe) goto raise_oe; break; case FPSCR_UX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue) goto raise_ue; break; case FPSCR_ZX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze) goto raise_ze; break; case FPSCR_XX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe) goto raise_xe; break; case FPSCR_VXSNAN: case FPSCR_VXISI: case FPSCR_VXIDI: case FPSCR_VXZDZ: case FPSCR_VXIMZ: case FPSCR_VXVC: case FPSCR_VXSOFT: case FPSCR_VXSQRT: case FPSCR_VXCVI: env->fpscr |= 1 << FPSCR_VX; env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve != 0) goto raise_ve; break; case FPSCR_VE: if (fpscr_vx != 0) { raise_ve: env->error_code = POWERPC_EXCP_FP; if (fpscr_vxsnan) env->error_code |= POWERPC_EXCP_FP_VXSNAN; if (fpscr_vxisi) env->error_code |= POWERPC_EXCP_FP_VXISI; if (fpscr_vxidi) env->error_code |= POWERPC_EXCP_FP_VXIDI; if (fpscr_vxzdz) env->error_code |= POWERPC_EXCP_FP_VXZDZ; if (fpscr_vximz) env->error_code |= POWERPC_EXCP_FP_VXIMZ; if (fpscr_vxvc) env->error_code |= POWERPC_EXCP_FP_VXVC; if (fpscr_vxsoft) env->error_code |= POWERPC_EXCP_FP_VXSOFT; if (fpscr_vxsqrt) env->error_code |= POWERPC_EXCP_FP_VXSQRT; if (fpscr_vxcvi) env->error_code |= POWERPC_EXCP_FP_VXCVI; goto raise_excp; } break; case FPSCR_OE: if (fpscr_ox != 0) { raise_oe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; goto raise_excp; } break; case FPSCR_UE: if (fpscr_ux != 0) { raise_ue: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; goto raise_excp; } break; case FPSCR_ZE: if (fpscr_zx != 0) { raise_ze: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; goto raise_excp; } break; case FPSCR_XE: if (fpscr_xx != 0) { raise_xe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; goto raise_excp; } break; case FPSCR_RN1: case FPSCR_RN: fpscr_set_rounding_mode(); break; default: break; raise_excp: /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We have to update Rc1 before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; break; } } } void helper_store_fpscr (uint64_t arg, uint32_t mask) { /* * We use only the 32 LSB of the incoming fpr */ uint32_t prev, new; int i; prev = env->fpscr; new = (uint32_t)arg; new &= ~0x60000000; new |= prev & 0x60000000; for (i = 0; i < 8; i++) { if (mask & (1 << i)) { env->fpscr &= ~(0xF << (4 * i)); env->fpscr |= new & (0xF << (4 * i)); } } /* Update VX and FEX */ if (fpscr_ix != 0) env->fpscr |= 1 << FPSCR_VX; else env->fpscr &= ~(1 << FPSCR_VX); if ((fpscr_ex & fpscr_eex) != 0) { env->fpscr |= 1 << FPSCR_FEX; env->exception_index = POWERPC_EXCP_PROGRAM; /* XXX: we should compute it properly */ env->error_code = POWERPC_EXCP_FP; } else env->fpscr &= ~(1 << FPSCR_FEX); fpscr_set_rounding_mode(); } void helper_float_check_status (void) { #ifdef CONFIG_SOFTFLOAT if (env->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Differred floating-point exception after target FPR update */ if (msr_fe0 != 0 || msr_fe1 != 0) helper_raise_exception_err(env->exception_index, env->error_code); } else { int status = get_float_exception_flags(&env->fp_status); if (status & float_flag_overflow) { float_overflow_excp(); } else if (status & float_flag_underflow) { float_underflow_excp(); } else if (status & float_flag_inexact) { float_inexact_excp(); } } #else if (env->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Differred floating-point exception after target FPR update */ if (msr_fe0 != 0 || msr_fe1 != 0) helper_raise_exception_err(env->exception_index, env->error_code); } #endif } #ifdef CONFIG_SOFTFLOAT void helper_reset_fpstatus (void) { set_float_exception_flags(0, &env->fp_status); } #endif /* fadd - fadd. */ uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN addition */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) || fpisneg(farg1.d) == fpisneg(farg2.d))) { farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); } else { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); } #else farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); #endif return farg1.ll; } /* fsub - fsub. */ uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; #if USE_PRECISE_EMULATION { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN subtraction */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) || fpisneg(farg1.d) != fpisneg(farg2.d))) { farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); } else { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); } } #else farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); #endif return farg1.ll; } /* fmul - fmul. */ uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN multiplication */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely((isinfinity(farg1.d) && iszero(farg2.d)) || (iszero(farg1.d) && isinfinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); } else { farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); } #else farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); #endif return farg1.ll; } /* fdiv - fdiv. */ uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN division */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(isinfinity(farg1.d) && isinfinity(farg2.d))) { /* Division of infinity by infinity */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); } else if (unlikely(iszero(farg2.d))) { if (iszero(farg1.d)) { /* Division of zero by zero */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); } else { /* Division by zero */ farg1.ll = float_zero_divide_excp(farg1.d, farg2.d); } } else { farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); } #else farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); #endif return farg1.ll; } /* fabs */ uint64_t helper_fabs (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; farg.d = float64_abs(farg.d); return farg.ll; } /* fnabs */ uint64_t helper_fnabs (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; farg.d = float64_abs(farg.d); farg.d = float64_chs(farg.d); return farg.ll; } /* fneg */ uint64_t helper_fneg (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; farg.d = float64_chs(farg.d); return farg.ll; } /* fctiw - fctiw. */ uint64_t helper_fctiw (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { /* qNan / infinity conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { farg.ll = float64_to_int32(farg.d, &env->fp_status); #if USE_PRECISE_EMULATION /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 */ farg.ll |= 0xFFF80000ULL << 32; #endif } return farg.ll; } /* fctiwz - fctiwz. */ uint64_t helper_fctiwz (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { /* qNan / infinity conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); #if USE_PRECISE_EMULATION /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 */ farg.ll |= 0xFFF80000ULL << 32; #endif } return farg.ll; } #if defined(TARGET_PPC64) /* fcfid - fcfid. */ uint64_t helper_fcfid (uint64_t arg) { CPU_DoubleU farg; farg.d = int64_to_float64(arg, &env->fp_status); return farg.ll; } /* fctid - fctid. */ uint64_t helper_fctid (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { /* qNan / infinity conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { farg.ll = float64_to_int64(farg.d, &env->fp_status); } return farg.ll; } /* fctidz - fctidz. */ uint64_t helper_fctidz (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { /* qNan / infinity conversion */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); } return farg.ll; } #endif static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN round */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { /* qNan / infinity round */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { set_float_rounding_mode(rounding_mode, &env->fp_status); farg.ll = float64_round_to_int(farg.d, &env->fp_status); /* Restore rounding mode from FPSCR */ fpscr_set_rounding_mode(); } return farg.ll; } uint64_t helper_frin (uint64_t arg) { return do_fri(arg, float_round_nearest_even); } uint64_t helper_friz (uint64_t arg) { return do_fri(arg, float_round_to_zero); } uint64_t helper_frip (uint64_t arg) { return do_fri(arg, float_round_up); } uint64_t helper_frim (uint64_t arg) { return do_fri(arg, float_round_down); } /* fmadd - fmadd. */ uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ farg1.d = (farg1.d * farg2.d) + farg3.d; #endif } #else farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); #endif return farg1.ll; } /* fmsub - fmsub. */ uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ farg1.d = (farg1.d * farg2.d) - farg3.d; #endif } #else farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); #endif return farg1.ll; } /* fnmadd - fnmadd. */ uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #if USE_PRECISE_EMULATION #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); farg1.d= float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ farg1.d = (farg1.d * farg2.d) + farg3.d; #endif #else farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); #endif if (likely(!float64_is_nan(farg1.d))) farg1.d = float64_chs(farg1.d); } return farg1.ll; } /* fnmsub - fnmsub. */ uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #if USE_PRECISE_EMULATION #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ farg1.d = (farg1.d * farg2.d) - farg3.d; #endif #else farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); #endif if (likely(!float64_is_nan(farg1.d))) farg1.d = float64_chs(farg1.d); } return farg1.ll; } /* frsp - frsp. */ uint64_t helper_frsp (uint64_t arg) { CPU_DoubleU farg; float32 f32; farg.ll = arg; #if USE_PRECISE_EMULATION if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN square root */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); } #else f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); #endif return farg.ll; } /* fsqrt - fsqrt. */ uint64_t helper_fsqrt (uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN square root */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) { /* Square root of a negative nonzero number */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); } else { farg.d = float64_sqrt(farg.d, &env->fp_status); } return farg.ll; } /* fre - fre. */ uint64_t helper_fre (uint64_t arg) { CPU_DoubleU fone, farg; fone.ll = 0x3FF0000000000000ULL; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(iszero(farg.d))) { /* Zero reciprocal */ farg.ll = float_zero_divide_excp(fone.d, farg.d); } else if (likely(isnormal(farg.d))) { farg.d = float64_div(fone.d, farg.d, &env->fp_status); } else { if (farg.ll == 0x8000000000000000ULL) { farg.ll = 0xFFF0000000000000ULL; } else if (farg.ll == 0x0000000000000000ULL) { farg.ll = 0x7FF0000000000000ULL; } else if (float64_is_nan(farg.d)) { farg.ll = 0x7FF8000000000000ULL; } else if (fpisneg(farg.d)) { farg.ll = 0x8000000000000000ULL; } else { farg.ll = 0x0000000000000000ULL; } } return farg.d; } /* fres - fres. */ uint64_t helper_fres (uint64_t arg) { CPU_DoubleU fone, farg; fone.ll = 0x3FF0000000000000ULL; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(iszero(farg.d))) { /* Zero reciprocal */ farg.ll = float_zero_divide_excp(fone.d, farg.d); } else if (likely(isnormal(farg.d))) { #if USE_PRECISE_EMULATION farg.d = float64_div(fone.d, farg.d, &env->fp_status); farg.d = float64_to_float32(farg.d, &env->fp_status); #else farg.d = float32_div(fone.d, farg.d, &env->fp_status); #endif } else { if (farg.ll == 0x8000000000000000ULL) { farg.ll = 0xFFF0000000000000ULL; } else if (farg.ll == 0x0000000000000000ULL) { farg.ll = 0x7FF0000000000000ULL; } else if (float64_is_nan(farg.d)) { farg.ll = 0x7FF8000000000000ULL; } else if (fpisneg(farg.d)) { farg.ll = 0x8000000000000000ULL; } else { farg.ll = 0x0000000000000000ULL; } } return farg.ll; } /* frsqrte - frsqrte. */ uint64_t helper_frsqrte (uint64_t arg) { CPU_DoubleU fone, farg; fone.ll = 0x3FF0000000000000ULL; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal square root */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) { /* Reciprocal square root of a negative nonzero number */ farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); } else if (likely(isnormal(farg.d))) { farg.d = float64_sqrt(farg.d, &env->fp_status); farg.d = float32_div(fone.d, farg.d, &env->fp_status); } else { if (farg.ll == 0x8000000000000000ULL) { farg.ll = 0xFFF0000000000000ULL; } else if (farg.ll == 0x0000000000000000ULL) { farg.ll = 0x7FF0000000000000ULL; } else if (float64_is_nan(farg.d)) { farg.ll |= 0x000FFFFFFFFFFFFFULL; } else if (fpisneg(farg.d)) { farg.ll = 0x7FF8000000000000ULL; } else { farg.ll = 0x0000000000000000ULL; } } return farg.ll; } /* fsel - fsel. */ uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1; farg1.ll = arg1; if (!fpisneg(farg1.d) || iszero(farg1.d)) return arg2; else return arg3; } void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_nan(farg1.d) || float64_is_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; env->crf[crfD] = ret; if (unlikely(ret == 0x01UL && (float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d)))) { /* sNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } } void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_nan(farg1.d) || float64_is_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; env->crf[crfD] = ret; if (unlikely (ret == 0x01UL)) { if (float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d)) { /* sNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXVC); } else { /* qNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); } } } #if !defined (CONFIG_USER_ONLY) void helper_store_msr (target_ulong val) { val = hreg_store_msr(env, val, 0); if (val != 0) { env->interrupt_request |= CPU_INTERRUPT_EXITTB; helper_raise_exception(val); } } static always_inline void do_rfi (target_ulong nip, target_ulong msr, target_ulong msrm, int keep_msrh) { #if defined(TARGET_PPC64) if (msr & (1ULL << MSR_SF)) { nip = (uint64_t)nip; msr &= (uint64_t)msrm; } else { nip = (uint32_t)nip; msr = (uint32_t)(msr & msrm); if (keep_msrh) msr |= env->msr & ~((uint64_t)0xFFFFFFFF); } #else nip = (uint32_t)nip; msr &= (uint32_t)msrm; #endif /* XXX: beware: this is false if VLE is supported */ env->nip = nip & ~((target_ulong)0x00000003); hreg_store_msr(env, msr, 1); #if defined (DEBUG_OP) cpu_dump_rfi(env->nip, env->msr); #endif /* No need to raise an exception here, * as rfi is always the last insn of a TB */ env->interrupt_request |= CPU_INTERRUPT_EXITTB; } void helper_rfi (void) { do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], ~((target_ulong)0xFFFF0000), 1); } #if defined(TARGET_PPC64) void helper_rfid (void) { do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], ~((target_ulong)0xFFFF0000), 0); } void helper_hrfid (void) { do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], ~((target_ulong)0xFFFF0000), 0); } #endif #endif void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); } } #if defined(TARGET_PPC64) void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); } #endif /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ target_ulong helper_clcs (uint32_t arg) { switch (arg) { case 0x0CUL: /* Instruction cache line size */ return env->icache_line_size; break; case 0x0DUL: /* Data cache line size */ return env->dcache_line_size; break; case 0x0EUL: /* Minimum cache line size */ return (env->icache_line_size < env->dcache_line_size) ? env->icache_line_size : env->dcache_line_size; break; case 0x0FUL: /* Maximum cache line size */ return (env->icache_line_size > env->dcache_line_size) ? env->icache_line_size : env->dcache_line_size; break; default: /* Undefined */ return 0; break; } } target_ulong helper_div (target_ulong arg1, target_ulong arg2) { uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = tmp % arg2; return tmp / (int32_t)arg2; } } target_ulong helper_divo (target_ulong arg1, target_ulong arg2) { uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->xer |= (1 << XER_OV) | (1 << XER_SO); env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = tmp % arg2; tmp /= (int32_t)arg2; if ((int32_t)tmp != tmp) { env->xer |= (1 << XER_OV) | (1 << XER_SO); } else { env->xer &= ~(1 << XER_OV); } return tmp; } } target_ulong helper_divs (target_ulong arg1, target_ulong arg2) { if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; return (int32_t)arg1 / (int32_t)arg2; } } target_ulong helper_divso (target_ulong arg1, target_ulong arg2) { if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->xer |= (1 << XER_OV) | (1 << XER_SO); env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->xer &= ~(1 << XER_OV); env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; return (int32_t)arg1 / (int32_t)arg2; } } #if !defined (CONFIG_USER_ONLY) target_ulong helper_rac (target_ulong addr) { mmu_ctx_t ctx; int nb_BATs; target_ulong ret = 0; /* We don't have to generate many instances of this instruction, * as rac is supervisor only. */ /* XXX: FIX THIS: Pretend we have no BAT */ nb_BATs = env->nb_BATs; env->nb_BATs = 0; if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0) ret = ctx.raddr; env->nb_BATs = nb_BATs; return ret; } void helper_rfsvc (void) { do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); } #endif /*****************************************************************************/ /* 602 specific instructions */ /* mfrom is the most crazy instruction ever seen, imho ! */ /* Real implementation uses a ROM table. Do the same */ /* Extremly decomposed: * -arg / 256 * return 256 * log10(10 + 1.0) + 0.5 */ #if !defined (CONFIG_USER_ONLY) target_ulong helper_602_mfrom (target_ulong arg) { if (likely(arg < 602)) { #include "mfrom_table.c" return mfrom_ROM_table[arg]; } else { return 0; } } #endif /*****************************************************************************/ /* Embedded PowerPC specific helpers */ /* XXX: to be improved to check access rights when in user-mode */ target_ulong helper_load_dcr (target_ulong dcrn) { target_ulong val = 0; if (unlikely(env->dcr_env == NULL)) { if (loglevel != 0) { fprintf(logfile, "No DCR environment\n"); } helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) { if (loglevel != 0) { fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn); } helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } return val; } void helper_store_dcr (target_ulong dcrn, target_ulong val) { if (unlikely(env->dcr_env == NULL)) { if (loglevel != 0) { fprintf(logfile, "No DCR environment\n"); } helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) { if (loglevel != 0) { fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn); } helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } } #if !defined(CONFIG_USER_ONLY) void helper_40x_rfci (void) { do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], ~((target_ulong)0xFFFF0000), 0); } void helper_rfci (void) { do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, ~((target_ulong)0x3FFF0000), 0); } void helper_rfdi (void) { do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, ~((target_ulong)0x3FFF0000), 0); } void helper_rfmci (void) { do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, ~((target_ulong)0x3FFF0000), 0); } #endif /* 440 specific */ target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc) { target_ulong mask; int i; i = 1; for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((high & mask) == 0) { if (update_Rc) { env->crf[0] = 0x4; } goto done; } i++; } for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((low & mask) == 0) { if (update_Rc) { env->crf[0] = 0x8; } goto done; } i++; } if (update_Rc) { env->crf[0] = 0x2; } done: env->xer = (env->xer & ~0x7F) | i; if (update_Rc) { env->crf[0] |= xer_so; } return i; } /*****************************************************************************/ /* SPE extension helpers */ /* Use a table to make this quicker */ static uint8_t hbrev[16] = { 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, }; static always_inline uint8_t byte_reverse (uint8_t val) { return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); } static always_inline uint32_t word_reverse (uint32_t val) { return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); } #define MASKBITS 16 // Random value - to be fixed (implementation dependant) target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) { uint32_t a, b, d, mask; mask = UINT32_MAX >> (32 - MASKBITS); a = arg1 & mask; b = arg2 & mask; d = word_reverse(1 + word_reverse(a | ~b)); return (arg1 & ~mask) | (d & b); } uint32_t helper_cntlsw32 (uint32_t val) { if (val & 0x80000000) return clz32(~val); else return clz32(val); } uint32_t helper_cntlzw32 (uint32_t val) { return clz32(val); } /* Single-precision floating-point conversions */ static always_inline uint32_t efscfsi (uint32_t val) { CPU_FloatU u; u.f = int32_to_float32(val, &env->spe_status); return u.l; } static always_inline uint32_t efscfui (uint32_t val) { CPU_FloatU u; u.f = uint32_to_float32(val, &env->spe_status); return u.l; } static always_inline int32_t efsctsi (uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; return float32_to_int32(u.f, &env->spe_status); } static always_inline uint32_t efsctui (uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; return float32_to_uint32(u.f, &env->spe_status); } static always_inline uint32_t efsctsiz (uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; return float32_to_int32_round_to_zero(u.f, &env->spe_status); } static always_inline uint32_t efsctuiz (uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; return float32_to_uint32_round_to_zero(u.f, &env->spe_status); } static always_inline uint32_t efscfsf (uint32_t val) { CPU_FloatU u; float32 tmp; u.f = int32_to_float32(val, &env->spe_status); tmp = int64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_div(u.f, tmp, &env->spe_status); return u.l; } static always_inline uint32_t efscfuf (uint32_t val) { CPU_FloatU u; float32 tmp; u.f = uint32_to_float32(val, &env->spe_status); tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_div(u.f, tmp, &env->spe_status); return u.l; } static always_inline uint32_t efsctsf (uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_int32(u.f, &env->spe_status); } static always_inline uint32_t efsctuf (uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_nan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_uint32(u.f, &env->spe_status); } #define HELPER_SPE_SINGLE_CONV(name) \ uint32_t helper_e##name (uint32_t val) \ { \ return e##name(val); \ } /* efscfsi */ HELPER_SPE_SINGLE_CONV(fscfsi); /* efscfui */ HELPER_SPE_SINGLE_CONV(fscfui); /* efscfuf */ HELPER_SPE_SINGLE_CONV(fscfuf); /* efscfsf */ HELPER_SPE_SINGLE_CONV(fscfsf); /* efsctsi */ HELPER_SPE_SINGLE_CONV(fsctsi); /* efsctui */ HELPER_SPE_SINGLE_CONV(fsctui); /* efsctsiz */ HELPER_SPE_SINGLE_CONV(fsctsiz); /* efsctuiz */ HELPER_SPE_SINGLE_CONV(fsctuiz); /* efsctsf */ HELPER_SPE_SINGLE_CONV(fsctsf); /* efsctuf */ HELPER_SPE_SINGLE_CONV(fsctuf); #define HELPER_SPE_VECTOR_CONV(name) \ uint64_t helper_ev##name (uint64_t val) \ { \ return ((uint64_t)e##name(val >> 32) << 32) | \ (uint64_t)e##name(val); \ } /* evfscfsi */ HELPER_SPE_VECTOR_CONV(fscfsi); /* evfscfui */ HELPER_SPE_VECTOR_CONV(fscfui); /* evfscfuf */ HELPER_SPE_VECTOR_CONV(fscfuf); /* evfscfsf */ HELPER_SPE_VECTOR_CONV(fscfsf); /* evfsctsi */ HELPER_SPE_VECTOR_CONV(fsctsi); /* evfsctui */ HELPER_SPE_VECTOR_CONV(fsctui); /* evfsctsiz */ HELPER_SPE_VECTOR_CONV(fsctsiz); /* evfsctuiz */ HELPER_SPE_VECTOR_CONV(fsctuiz); /* evfsctsf */ HELPER_SPE_VECTOR_CONV(fsctsf); /* evfsctuf */ HELPER_SPE_VECTOR_CONV(fsctuf); /* Single-precision floating-point arithmetic */ static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_add(u1.f, u2.f, &env->spe_status); return u1.l; } static always_inline uint32_t efssub (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_sub(u1.f, u2.f, &env->spe_status); return u1.l; } static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_mul(u1.f, u2.f, &env->spe_status); return u1.l; } static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_div(u1.f, u2.f, &env->spe_status); return u1.l; } #define HELPER_SPE_SINGLE_ARITH(name) \ uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ { \ return e##name(op1, op2); \ } /* efsadd */ HELPER_SPE_SINGLE_ARITH(fsadd); /* efssub */ HELPER_SPE_SINGLE_ARITH(fssub); /* efsmul */ HELPER_SPE_SINGLE_ARITH(fsmul); /* efsdiv */ HELPER_SPE_SINGLE_ARITH(fsdiv); #define HELPER_SPE_VECTOR_ARITH(name) \ uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ { \ return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ (uint64_t)e##name(op1, op2); \ } /* evfsadd */ HELPER_SPE_VECTOR_ARITH(fsadd); /* evfssub */ HELPER_SPE_VECTOR_ARITH(fssub); /* evfsmul */ HELPER_SPE_VECTOR_ARITH(fsmul); /* evfsdiv */ HELPER_SPE_VECTOR_ARITH(fsdiv); /* Single-precision floating-point comparisons */ static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0; } static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4; } static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0; } static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return efststlt(op1, op2); } static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return efststgt(op1, op2); } static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return efststeq(op1, op2); } #define HELPER_SINGLE_SPE_CMP(name) \ uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ { \ return e##name(op1, op2) << 2; \ } /* efststlt */ HELPER_SINGLE_SPE_CMP(fststlt); /* efststgt */ HELPER_SINGLE_SPE_CMP(fststgt); /* efststeq */ HELPER_SINGLE_SPE_CMP(fststeq); /* efscmplt */ HELPER_SINGLE_SPE_CMP(fscmplt); /* efscmpgt */ HELPER_SINGLE_SPE_CMP(fscmpgt); /* efscmpeq */ HELPER_SINGLE_SPE_CMP(fscmpeq); static always_inline uint32_t evcmp_merge (int t0, int t1) { return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); } #define HELPER_VECTOR_SPE_CMP(name) \ uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ { \ return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ } /* evfststlt */ HELPER_VECTOR_SPE_CMP(fststlt); /* evfststgt */ HELPER_VECTOR_SPE_CMP(fststgt); /* evfststeq */ HELPER_VECTOR_SPE_CMP(fststeq); /* evfscmplt */ HELPER_VECTOR_SPE_CMP(fscmplt); /* evfscmpgt */ HELPER_VECTOR_SPE_CMP(fscmpgt); /* evfscmpeq */ HELPER_VECTOR_SPE_CMP(fscmpeq); /* Double-precision floating-point conversion */ uint64_t helper_efdcfsi (uint32_t val) { CPU_DoubleU u; u.d = int32_to_float64(val, &env->spe_status); return u.ll; } uint64_t helper_efdcfsid (uint64_t val) { CPU_DoubleU u; u.d = int64_to_float64(val, &env->spe_status); return u.ll; } uint64_t helper_efdcfui (uint32_t val) { CPU_DoubleU u; u.d = uint32_to_float64(val, &env->spe_status); return u.ll; } uint64_t helper_efdcfuid (uint64_t val) { CPU_DoubleU u; u.d = uint64_to_float64(val, &env->spe_status); return u.ll; } uint32_t helper_efdctsi (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_int32(u.d, &env->spe_status); } uint32_t helper_efdctui (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_uint32(u.d, &env->spe_status); } uint32_t helper_efdctsiz (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_int32_round_to_zero(u.d, &env->spe_status); } uint64_t helper_efdctsidz (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_int64_round_to_zero(u.d, &env->spe_status); } uint32_t helper_efdctuiz (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_uint32_round_to_zero(u.d, &env->spe_status); } uint64_t helper_efdctuidz (uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; return float64_to_uint64_round_to_zero(u.d, &env->spe_status); } uint64_t helper_efdcfsf (uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = int32_to_float64(val, &env->spe_status); tmp = int64_to_float64(1ULL << 32, &env->spe_status); u.d = float64_div(u.d, tmp, &env->spe_status); return u.ll; } uint64_t helper_efdcfuf (uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = uint32_to_float64(val, &env->spe_status); tmp = int64_to_float64(1ULL << 32, &env->spe_status); u.d = float64_div(u.d, tmp, &env->spe_status); return u.ll; } uint32_t helper_efdctsf (uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.d = float64_mul(u.d, tmp, &env->spe_status); return float64_to_int32(u.d, &env->spe_status); } uint32_t helper_efdctuf (uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_nan(u.d))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.d = float64_mul(u.d, tmp, &env->spe_status); return float64_to_uint32(u.d, &env->spe_status); } uint32_t helper_efscfd (uint64_t val) { CPU_DoubleU u1; CPU_FloatU u2; u1.ll = val; u2.f = float64_to_float32(u1.d, &env->spe_status); return u2.l; } uint64_t helper_efdcfs (uint32_t val) { CPU_DoubleU u2; CPU_FloatU u1; u1.l = val; u2.d = float32_to_float64(u1.f, &env->spe_status); return u2.ll; } /* Double precision fixed-point arithmetic */ uint64_t helper_efdadd (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_add(u1.d, u2.d, &env->spe_status); return u1.ll; } uint64_t helper_efdsub (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_sub(u1.d, u2.d, &env->spe_status); return u1.ll; } uint64_t helper_efdmul (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_mul(u1.d, u2.d, &env->spe_status); return u1.ll; } uint64_t helper_efddiv (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_div(u1.d, u2.d, &env->spe_status); return u1.ll; } /* Double precision floating point helpers */ uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0; } uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4; } uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0; } uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstlt(op1, op2); } uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstgt(op1, op2); } uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtsteq(op1, op2); } /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (unlikely(ret != 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } helper_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } /* Segment registers load and store */ target_ulong helper_load_sr (target_ulong sr_num) { return env->sr[sr_num]; } void helper_store_sr (target_ulong sr_num, target_ulong val) { ppc_store_sr(env, sr_num, val); } /* SLB management */ #if defined(TARGET_PPC64) target_ulong helper_load_slb (target_ulong slb_nr) { return ppc_load_slb(env, slb_nr); } void helper_store_slb (target_ulong slb_nr, target_ulong rs) { ppc_store_slb(env, slb_nr, rs); } void helper_slbia (void) { ppc_slb_invalidate_all(env); } void helper_slbie (target_ulong addr) { ppc_slb_invalidate_one(env, addr); } #endif /* defined(TARGET_PPC64) */ /* TLB management */ void helper_tlbia (void) { ppc_tlb_invalidate_all(env); } void helper_tlbie (target_ulong addr) { ppc_tlb_invalidate_one(env, addr); } /* Software driven TLBs management */ /* PowerPC 602/603 software TLB load instructions helpers */ static void do_6xx_tlb (target_ulong new_EPN, int is_code) { target_ulong RPN, CMP, EPN; int way; RPN = env->spr[SPR_RPA]; if (is_code) { CMP = env->spr[SPR_ICMP]; EPN = env->spr[SPR_IMISS]; } else { CMP = env->spr[SPR_DCMP]; EPN = env->spr[SPR_DMISS]; } way = (env->spr[SPR_SRR1] >> 17) & 1; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX " PTE1 " ADDRX " way %d\n", __func__, new_EPN, EPN, CMP, RPN, way); } #endif /* Store this TLB */ ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), way, is_code, CMP, RPN); } void helper_6xx_tlbd (target_ulong EPN) { do_6xx_tlb(EPN, 0); } void helper_6xx_tlbi (target_ulong EPN) { do_6xx_tlb(EPN, 1); } /* PowerPC 74xx software TLB load instructions helpers */ static void do_74xx_tlb (target_ulong new_EPN, int is_code) { target_ulong RPN, CMP, EPN; int way; RPN = env->spr[SPR_PTELO]; CMP = env->spr[SPR_PTEHI]; EPN = env->spr[SPR_TLBMISS] & ~0x3; way = env->spr[SPR_TLBMISS] & 0x3; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX " PTE1 " ADDRX " way %d\n", __func__, new_EPN, EPN, CMP, RPN, way); } #endif /* Store this TLB */ ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), way, is_code, CMP, RPN); } void helper_74xx_tlbd (target_ulong EPN) { do_74xx_tlb(EPN, 0); } void helper_74xx_tlbi (target_ulong EPN) { do_74xx_tlb(EPN, 1); } static always_inline target_ulong booke_tlb_to_page_size (int size) { return 1024 << (2 * size); } static always_inline int booke_page_size_to_tlb (target_ulong page_size) { int size; switch (page_size) { case 0x00000400UL: size = 0x0; break; case 0x00001000UL: size = 0x1; break; case 0x00004000UL: size = 0x2; break; case 0x00010000UL: size = 0x3; break; case 0x00040000UL: size = 0x4; break; case 0x00100000UL: size = 0x5; break; case 0x00400000UL: size = 0x6; break; case 0x01000000UL: size = 0x7; break; case 0x04000000UL: size = 0x8; break; case 0x10000000UL: size = 0x9; break; case 0x40000000UL: size = 0xA; break; #if defined (TARGET_PPC64) case 0x000100000000ULL: size = 0xB; break; case 0x000400000000ULL: size = 0xC; break; case 0x001000000000ULL: size = 0xD; break; case 0x004000000000ULL: size = 0xE; break; case 0x010000000000ULL: size = 0xF; break; #endif default: size = -1; break; } return size; } /* Helpers for 4xx TLB management */ target_ulong helper_4xx_tlbre_lo (target_ulong entry) { ppcemb_tlb_t *tlb; target_ulong ret; int size; entry &= 0x3F; tlb = &env->tlb[entry].tlbe; ret = tlb->EPN; if (tlb->prot & PAGE_VALID) ret |= 0x400; size = booke_page_size_to_tlb(tlb->size); if (size < 0 || size > 0x7) size = 1; ret |= size << 7; env->spr[SPR_40x_PID] = tlb->PID; return ret; } target_ulong helper_4xx_tlbre_hi (target_ulong entry) { ppcemb_tlb_t *tlb; target_ulong ret; entry &= 0x3F; tlb = &env->tlb[entry].tlbe; ret = tlb->RPN; if (tlb->prot & PAGE_EXEC) ret |= 0x200; if (tlb->prot & PAGE_WRITE) ret |= 0x100; return ret; } void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val) { ppcemb_tlb_t *tlb; target_ulong page, end; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val); } #endif entry &= 0x3F; tlb = &env->tlb[entry].tlbe; /* Invalidate previous TLB (if it's valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); } #endif for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7); /* We cannot handle TLB size < TARGET_PAGE_SIZE. * If this ever occurs, one should use the ppcemb target instead * of the ppc or ppc64 one */ if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) { cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " "are not supported (%d)\n", tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7)); } tlb->EPN = val & ~(tlb->size - 1); if (val & 0x40) tlb->prot |= PAGE_VALID; else tlb->prot &= ~PAGE_VALID; if (val & 0x20) { /* XXX: TO BE FIXED */ cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); } tlb->PID = env->spr[SPR_40x_PID]; /* PID */ tlb->attr = val & 0xFF; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, (int)entry, tlb->RPN, tlb->EPN, tlb->size, tlb->prot & PAGE_READ ? 'r' : '-', tlb->prot & PAGE_WRITE ? 'w' : '-', tlb->prot & PAGE_EXEC ? 'x' : '-', tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); } #endif /* Invalidate new TLB (if valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: invalidate TLB %d start " ADDRX " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); } #endif for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } } void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val) { ppcemb_tlb_t *tlb; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val); } #endif entry &= 0x3F; tlb = &env->tlb[entry].tlbe; tlb->RPN = val & 0xFFFFFC00; tlb->prot = PAGE_READ; if (val & 0x200) tlb->prot |= PAGE_EXEC; if (val & 0x100) tlb->prot |= PAGE_WRITE; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, (int)entry, tlb->RPN, tlb->EPN, tlb->size, tlb->prot & PAGE_READ ? 'r' : '-', tlb->prot & PAGE_WRITE ? 'w' : '-', tlb->prot & PAGE_EXEC ? 'x' : '-', tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); } #endif } target_ulong helper_4xx_tlbsx (target_ulong address) { return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]); } /* PowerPC 440 TLB management */ void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value) { ppcemb_tlb_t *tlb; target_ulong EPN, RPN, size; int do_flush_tlbs; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s word %d entry %d value " ADDRX "\n", __func__, word, (int)entry, value); } #endif do_flush_tlbs = 0; entry &= 0x3F; tlb = &env->tlb[entry].tlbe; switch (word) { default: /* Just here to please gcc */ case 0: EPN = value & 0xFFFFFC00; if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) do_flush_tlbs = 1; tlb->EPN = EPN; size = booke_tlb_to_page_size((value >> 4) & 0xF); if ((tlb->prot & PAGE_VALID) && tlb->size < size) do_flush_tlbs = 1; tlb->size = size; tlb->attr &= ~0x1; tlb->attr |= (value >> 8) & 1; if (value & 0x200) { tlb->prot |= PAGE_VALID; } else { if (tlb->prot & PAGE_VALID) { tlb->prot &= ~PAGE_VALID; do_flush_tlbs = 1; } } tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; if (do_flush_tlbs) tlb_flush(env, 1); break; case 1: RPN = value & 0xFFFFFC0F; if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) tlb_flush(env, 1); tlb->RPN = RPN; break; case 2: tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00); tlb->prot = tlb->prot & PAGE_VALID; if (value & 0x1) tlb->prot |= PAGE_READ << 4; if (value & 0x2) tlb->prot |= PAGE_WRITE << 4; if (value & 0x4) tlb->prot |= PAGE_EXEC << 4; if (value & 0x8) tlb->prot |= PAGE_READ; if (value & 0x10) tlb->prot |= PAGE_WRITE; if (value & 0x20) tlb->prot |= PAGE_EXEC; break; } } target_ulong helper_440_tlbre (uint32_t word, target_ulong entry) { ppcemb_tlb_t *tlb; target_ulong ret; int size; entry &= 0x3F; tlb = &env->tlb[entry].tlbe; switch (word) { default: /* Just here to please gcc */ case 0: ret = tlb->EPN; size = booke_page_size_to_tlb(tlb->size); if (size < 0 || size > 0xF) size = 1; ret |= size << 4; if (tlb->attr & 0x1) ret |= 0x100; if (tlb->prot & PAGE_VALID) ret |= 0x200; env->spr[SPR_440_MMUCR] &= ~0x000000FF; env->spr[SPR_440_MMUCR] |= tlb->PID; break; case 1: ret = tlb->RPN; break; case 2: ret = tlb->attr & ~0x1; if (tlb->prot & (PAGE_READ << 4)) ret |= 0x1; if (tlb->prot & (PAGE_WRITE << 4)) ret |= 0x2; if (tlb->prot & (PAGE_EXEC << 4)) ret |= 0x4; if (tlb->prot & PAGE_READ) ret |= 0x8; if (tlb->prot & PAGE_WRITE) ret |= 0x10; if (tlb->prot & PAGE_EXEC) ret |= 0x20; break; } return ret; } target_ulong helper_440_tlbsx (target_ulong address) { return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF); } #endif /* !CONFIG_USER_ONLY */