sim-card
/
qemu
Archived
10
0
Fork 0

Document bluetooth support in qemu-doc.

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5654 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
balrog 2008-11-09 02:24:54 +00:00
parent ac4b0d0c4f
commit 2d5646916d
2 changed files with 69 additions and 0 deletions

View File

@ -623,6 +623,8 @@ USBDevice *usb_bt_init(HCIInfo *hci)
{
struct USBBtState *s;
if (!hci)
return NULL;
s = qemu_mallocz(sizeof(struct USBBtState));
if (!s)
return NULL;

View File

@ -782,6 +782,62 @@ connect to the guest telnet server.
@end table
Bluetooth(R) options:
@table @option
@item -bt hci[...]
Defines the function of the corresponding Bluetooth HCI. -bt options
are matched with the HCIs present in the chosen machine type. For
example when emulating a machine with only one HCI built into it, only
the first @code{-bt hci[...]} option is valid and defines the HCI's
logic. The Transport Layer is decided by the machine type. Currently
the machines @code{n800} and @code{n810} have one HCI and all other
machines have none.
@anchor{bt-hcis}
The following three types are recognized:
@table @code
@item -bt hci,null
(default) The corresponding Bluetooth HCI assumes no internal logic
and will not respond to any HCI commands or emit events.
@item -bt hci,host[:@var{id}]
(@code{bluez} only) The corresponding HCI passes commands / events
to / from the physical HCI identified by the name @var{id} (default:
@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
capable systems like Linux.
@item -bt hci[,vlan=@var{n}]
Add a virtual, standard HCI that will participate in the Bluetooth
scatternet @var{n} (default @code{0}). Similarly to @option{-net}
VLANs, devices inside a bluetooth network @var{n} can only communicate
with other devices in the same network (scatternet).
@end table
@item -bt vhci[,vlan=@var{n}]
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
to the host bluetooth stack instead of to the emulated target. This
allows the host and target machines to participate in a common scatternet
and communicate. Requires the Linux @code{vhci} driver installed. Can
be used as following:
@example
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
@end example
@item -bt device:@var{dev}[,vlan=@var{n}]
Emulate a bluetooth device @var{dev} and place it in network @var{n}
(default @code{0}). QEMU can only emulate one type of bluetooth devices
currently:
@table @code
@item keyboard
Virtual wireless keyboard implementing the HIDP bluetooth profile.
@end table
@end table
Linux boot specific: When using these options, you can use a given
Linux kernel without installing it in the disk image. It can be useful
for easier testing of various kernels.
@ -1767,6 +1823,15 @@ For instance, user-mode networking can be used with
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
@end example
Currently this cannot be used in machines that support PCI NICs.
@item bt[:@var{hci-type}]
Bluetooth dongle whose type is specified in the same format as with
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI. Example
usage:
@example
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
@end example
@end table
@node host_usb_devices
@ -2664,6 +2729,8 @@ Secure Digital card connected to OMAP MMC/SD host
@item
Three OMAP on-chip UARTs and on-chip STI debugging console
@item
A Bluetooth(R) transciever and HCI connected to an UART
@item
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
TUSB6010 chip - only USB host mode is supported
@item