sim-card
/
qemu
Archived
10
0
Fork 0
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@417 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2003-10-27 23:58:04 +00:00
parent baf8ebf01a
commit 285dc330bd
9 changed files with 47 additions and 320 deletions

View File

@ -1,4 +1,4 @@
version 0.4.4:
version 0.5.0:
- full hardware level VGA emulation
- graphical display with SDL
@ -16,8 +16,9 @@ version 0.4.4:
- preliminary SPARC target support (Thomas M. Ogrisegg)
- tun-fd option (Rusty Russell)
- automatic IDE geometry detection
- renamed 'vl' to qemu and user qemu to qemu-{cpu}.
- renamed 'vl' to qemu[-fast] and user qemu to qemu-{cpu}.
- added man page
- added full soft mmy mode to launch unpatched OSes.
version 0.4.3:

26
README
View File

@ -6,35 +6,17 @@ INSTALLATION
Type
./configure --interp-prefix=/usr/local/qemu-i386
./configure
make
to build qemu and libqemu.a.
to build qemu, qemu-CPU and libqemu.a (CPU is the name of the various
supported target CPUs).
Type
make install
to install QEMU in /usr/local/bin
* On x86 you should be able to launch any program by using the
libraries installed on your PC. For example:
./qemu -L / /bin/ls
* On non x86 CPUs, you need first to download at least an x86 glibc
(qemu-XXX-i386-glibc21.tar.gz on the qemu web page). Ensure that
LD_LIBRARY_PATH is not set:
unset LD_LIBRARY_PATH
Then you can launch the precompiled 'ls' x86 executable:
./qemu /usr/local/qemu-i386/bin/ls-i386
You can look at /usr/local/qemu-i386/bin/qemu-conf.sh so that QEMU is
automatically launched by the Linux kernel when you try to launch x86
executables.
to install QEMU in /usr/local
Tested tool versions
--------------------

View File

@ -6,11 +6,11 @@ x86 binary distribution:
* wine-20020411 tarball
./configure --prefix=/usr/local/qemu-i386/wine
./configure --prefix=/usr/local/wine-i386
All exe and libs were stripped. Some compile time tools and the
includes were deleted.
* ldconfig was launched to build the library links:
./qemu /usr/local/qemu-i386/bin/ldconfig-i386 -C /usr/local/qemu-i386/etc/ld.so.cache
qemu-i386 /usr/gnemul/qemu-i386/bin/ldconfig-i386 -C /usr/gnemul/qemu-i386/etc/ld.so.cache

9
TODO
View File

@ -1,17 +1,20 @@
- tests for each target CPU
- ppc qemu test
- optimize FPU operations (evaluate x87 stack pointer statically) and
fix cr0.TS emulation
- fix some 16 bit sp push/pop overflow
- sysenter/sysexit emulation
- finish segment ops (call far, ret far, load_seg suppressed)
- fix CCOP optimisation
- fix all remaining thread lock issues (must put TBs in a specific invalid
state, find a solution for tb_flush()).
- cpu loop optimisation (optimise ret case as the cpu state does not change)
- fix arm fpu rounding (at least for float->integer conversions)
- add IPC syscalls
lower priority:
--------------
- sysenter/sysexit emulation
- add IPC syscalls
- SMP support
- finish segment ops (call far, ret far, load_seg suppressed)
- use -msoft-float on ARM
- use kernel traps for unaligned accesses on ARM ?
- handle rare page fault cases (in particular if page fault in heplers or

View File

@ -1 +1 @@
0.4.4
0.5.0

View File

@ -72,7 +72,7 @@ QEMU user mode emulation features:
QEMU full system emulation features:
@itemize
@item Using mmap() system calls to simulate the MMU
@item QEMU can either use a full software MMU for maximum portability or use the host system call mmap() to simulate the target MMU.
@end itemize
@section x86 emulation
@ -110,14 +110,7 @@ memory access.
10 byte @code{long double}s of x86 for floating point emulation to get
maximum performances.
@item Full system emulation only works if no data are mapped above the virtual address
0xc0000000 (yet).
@item Some priviledged instructions or behaviors are missing. Only the ones
needed for proper Linux kernel operation are emulated.
@item No memory separation between the kernel and the user processes is done.
It will be implemented very soon.
@item Some priviledged instructions or behaviors are missing, especially for segment protection testing (yet).
@end itemize
@ -177,9 +170,9 @@ unset LD_LIBRARY_PATH
Then you can launch the precompiled @file{ls} x86 executable:
@example
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
qemu-i386 tests/i386/ls
@end example
You can look at @file{/usr/local/qemu-i386/bin/qemu-conf.sh} so that
You can look at @file{qemu-binfmt-conf.sh} so that
QEMU is automatically launched by the Linux kernel when you try to
launch x86 executables. It requires the @code{binfmt_misc} module in the
Linux kernel.
@ -258,16 +251,15 @@ available:
@enumerate
@item
@code{qemu} uses the host Memory Management Unit (MMU) to simulate
@code{qemu-fast} uses the host Memory Management Unit (MMU) to simulate
the x86 MMU. It is @emph{fast} but has limitations because the whole 4 GB
address space cannot be used and some memory mapped peripherials
cannot be emulated accurately yet. Therefore, a specific Linux kernel
must be used (@xref{linux_compile}).
@item
@code{qemu-softmmu} uses a software MMU. It is about @emph{two times
slower} but gives a more accurate emulation. (XXX: Linux cannot be ran
unpatched yet).
@code{qemu} uses a software MMU. It is about @emph{two times
slower} but gives a more accurate emulation.
@end enumerate
@ -296,10 +288,10 @@ CMOS memory
@section Quick Start
Download the linux image (@file{linux.img}) and type:
Download and uncompress the linux image (@file{linux.img}) and type:
@example
qemu-softmmu linux.img
qemu linux.img
@end example
Linux should boot and give you a prompt.
@ -627,8 +619,10 @@ the real one. To know it, use the @code{ls -ls} command.
@node linux_compile
@section Linux Kernel Compilation
You should be able to use any kernel with QEMU provided you make the
following changes (only 2.4.x and 2.5.x were tested):
You can use any linux kernel with QEMU. However, if you want to use
@code{qemu-fast} to get maximum performances, you should make the
following changes to the Linux kernel (only 2.4.x and 2.5.x were
tested):
@enumerate
@item
@ -723,8 +717,6 @@ Then you can use gdb normally. For example, type 'c' to launch the kernel:
(gdb) c
@end example
WARNING: breakpoints and single stepping are not yet supported.
Here are some useful tips in order to use gdb on system code:
@enumerate
@ -1019,16 +1011,6 @@ The new Plex86 project.
In the directory @file{tests/}, various interesting testing programs
are available. There are used for regression testing.
@section @file{hello-i386}
Very simple statically linked x86 program, just to test QEMU during a
port to a new host CPU.
@section @file{hello-arm}
Very simple statically linked ARM program, just to test QEMU during a
port to a new host CPU.
@section @file{test-i386}
This program executes most of the 16 bit and 32 bit x86 instructions and
@ -1044,6 +1026,22 @@ The Linux system call @code{vm86()} is used to test vm86 emulation.
Various exceptions are raised to test most of the x86 user space
exception reporting.
@section @file{linux-test}
This program tests various Linux system calls. It is used to verify
that the system call parameters are correctly converted between target
and host CPUs.
@section @file{hello-i386}
Very simple statically linked x86 program, just to test QEMU during a
port to a new host CPU.
@section @file{hello-arm}
Very simple statically linked ARM program, just to test QEMU during a
port to a new host CPU.
@section @file{sha1}
It is a simple benchmark. Care must be taken to interpret the results

View File

@ -71,7 +71,7 @@ int __chk_error(const char *filename, int line, int ret)
#define FILE_BUF_SIZE 300
void file_test(void)
void test_file(void)
{
int fd, i, len, ret;
uint8_t buf[FILE_BUF_SIZE];
@ -499,7 +499,7 @@ void test_signal(void)
int main(int argc, char **argv)
{
file_test();
test_file();
test_fork();
test_time();
test_socket();
@ -507,4 +507,3 @@ int main(int argc, char **argv)
test_signal();
return 0;
}

View File

@ -1,62 +0,0 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <inttypes.h>
#include <pthread.h>
#include <sys/wait.h>
#include <sched.h>
int thread1_func(void *arg)
{
int i;
char buf[512];
for(i=0;i<10;i++) {
snprintf(buf, sizeof(buf), "thread1: %d %s\n", i, (char *)arg);
write(1, buf, strlen(buf));
usleep(100 * 1000);
}
return 0;
}
int thread2_func(void *arg)
{
int i;
char buf[512];
for(i=0;i<20;i++) {
snprintf(buf, sizeof(buf), "thread2: %d %s\n", i, (char *)arg);
write(1, buf, strlen(buf));
usleep(120 * 1000);
}
return 0;
}
#define STACK_SIZE 16384
void test_clone(void)
{
uint8_t *stack1, *stack2;
int pid1, pid2, status1, status2;
stack1 = malloc(STACK_SIZE);
pid1 = clone(thread1_func, stack1 + STACK_SIZE,
CLONE_VM | CLONE_FS | CLONE_FILES | SIGCHLD, "hello1");
stack2 = malloc(STACK_SIZE);
pid2 = clone(thread2_func, stack2 + STACK_SIZE,
CLONE_VM | CLONE_FS | CLONE_FILES | SIGCHLD, "hello2");
while (waitpid(pid1, &status1, 0) != pid1);
while (waitpid(pid2, &status2, 0) != pid2);
printf("status1=0x%x\n", status1);
printf("status2=0x%x\n", status2);
printf("End of clone test.\n");
}
int main(int argc, char **argv)
{
test_clone();
return 0;
}

View File

@ -1,194 +0,0 @@
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <setjmp.h>
#include <sys/ucontext.h>
jmp_buf jmp_env;
void alarm_handler(int sig)
{
printf("alarm signal=%d\n", sig);
alarm(1);
}
#ifndef REG_EAX
#define REG_EAX EAX
#define REG_EBX EBX
#define REG_ECX ECX
#define REG_EDX EDX
#define REG_ESI ESI
#define REG_EDI EDI
#define REG_EBP EBP
#define REG_ESP ESP
#define REG_EIP EIP
#define REG_EFL EFL
#define REG_TRAPNO TRAPNO
#define REG_ERR ERR
#endif
void dump_regs(struct ucontext *uc)
{
printf("EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EFL=%08x EIP=%08x trapno=%02x err=%08x\n",
uc->uc_mcontext.gregs[REG_EAX],
uc->uc_mcontext.gregs[REG_EBX],
uc->uc_mcontext.gregs[REG_ECX],
uc->uc_mcontext.gregs[REG_EDX],
uc->uc_mcontext.gregs[REG_ESI],
uc->uc_mcontext.gregs[REG_EDI],
uc->uc_mcontext.gregs[REG_EBP],
uc->uc_mcontext.gregs[REG_ESP],
uc->uc_mcontext.gregs[REG_EFL],
uc->uc_mcontext.gregs[REG_EIP],
uc->uc_mcontext.gregs[REG_TRAPNO],
uc->uc_mcontext.gregs[REG_ERR]);
}
void sig_handler(int sig, siginfo_t *info, void *puc)
{
struct ucontext *uc = puc;
printf("%s: si_signo=%d si_errno=%d si_code=%d si_addr=0x%08lx\n",
strsignal(info->si_signo),
info->si_signo, info->si_errno, info->si_code,
(unsigned long)info->si_addr);
dump_regs(uc);
longjmp(jmp_env, 1);
}
int v1;
int tab[2];
int main(int argc, char **argv)
{
struct sigaction act;
volatile int val;
act.sa_sigaction = sig_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGFPE, &act, NULL);
sigaction(SIGILL, &act, NULL);
sigaction(SIGSEGV, &act, NULL);
sigaction(SIGTRAP, &act, NULL);
/* test division by zero reporting */
if (setjmp(jmp_env) == 0) {
/* now divide by zero */
v1 = 0;
v1 = 2 / v1;
}
/* test illegal instruction reporting */
if (setjmp(jmp_env) == 0) {
/* now execute an invalid instruction */
asm volatile("ud2");
}
/* test SEGV reporting */
if (setjmp(jmp_env) == 0) {
/* now store in an invalid address */
*(char *)0x1234 = 1;
}
/* test SEGV reporting */
if (setjmp(jmp_env) == 0) {
/* read from an invalid address */
v1 = *(char *)0x1234;
}
printf("segment GPF exception:\n");
if (setjmp(jmp_env) == 0) {
/* load an invalid segment */
asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 0));
}
printf("INT exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("int $0xfd");
}
printf("INT3 exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("int3");
}
printf("CLI exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("cli");
}
printf("STI exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("cli");
}
printf("INTO exception:\n");
if (setjmp(jmp_env) == 0) {
/* overflow exception */
asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
}
printf("BOUND exception:\n");
if (setjmp(jmp_env) == 0) {
/* bound exception */
tab[0] = 1;
tab[1] = 10;
asm volatile ("bound %0, %1" : : "r" (11), "m" (tab));
}
printf("OUTB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
}
printf("INB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
}
printf("REP OUTSB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
}
printf("REP INSB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
}
printf("HLT exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("hlt");
}
printf("single step exception:\n");
val = 0;
if (setjmp(jmp_env) == 0) {
asm volatile ("pushf\n"
"orl $0x00100, (%%esp)\n"
"popf\n"
"movl $0xabcd, %0\n" : "=m" (val) : : "cc", "memory");
}
printf("val=0x%x\n", val);
#if 1
{
int i;
act.sa_handler = alarm_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGALRM, &act, NULL);
alarm(1);
for(i = 0;i < 2; i++) {
sleep(1);
}
}
#endif
return 0;
}