pysim/pySim/utils.py

775 lines
22 KiB
Python

# -*- coding: utf-8 -*-
""" pySim: various utilities
"""
#
# Copyright (C) 2009-2010 Sylvain Munaut <tnt@246tNt.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
def h2b(s):
"""convert from a string of hex nibbles to a sequence of bytes"""
return bytearray.fromhex(s)
def b2h(b):
"""convert from a sequence of bytes to a string of hex nibbles"""
return ''.join(['%02x'%(x) for x in b])
def h2i(s):
return [(int(x,16)<<4)+int(y,16) for x,y in zip(s[0::2], s[1::2])]
def i2h(s):
return ''.join(['%02x'%(x) for x in s])
def h2s(s):
return ''.join([chr((int(x,16)<<4)+int(y,16)) for x,y in zip(s[0::2], s[1::2])
if int(x + y, 16) != 0xff])
def s2h(s):
b = bytearray()
b.extend(map(ord, s))
return b2h(b)
# List of bytes to string
def i2s(s):
return ''.join([chr(x) for x in s])
def swap_nibbles(s):
return ''.join([x+y for x,y in zip(s[1::2], s[0::2])])
def rpad(s, l, c='f'):
return s + c * (l - len(s))
def lpad(s, l, c='f'):
return c * (l - len(s)) + s
def half_round_up(n):
return (n + 1)//2
# IMSI encoded format:
# For IMSI 0123456789ABCDE:
#
# | byte 1 | 2 upper | 2 lower | 3 upper | 3 lower | ... | 9 upper | 9 lower |
# | length in bytes | 0 | odd/even | 2 | 1 | ... | E | D |
#
# If the IMSI is less than 15 characters, it should be padded with 'f' from the end.
#
# The length is the total number of bytes used to encoded the IMSI. This includes the odd/even
# parity bit. E.g. an IMSI of length 14 is 8 bytes long, not 7, as it uses bytes 2 to 9 to
# encode itself.
#
# Because of this, an odd length IMSI fits exactly into len(imsi) + 1 // 2 bytes, whereas an
# even length IMSI only uses half of the last byte.
def enc_imsi(imsi):
"""Converts a string imsi into the value of the EF"""
l = half_round_up(len(imsi) + 1) # Required bytes - include space for odd/even indicator
oe = len(imsi) & 1 # Odd (1) / Even (0)
ei = '%02x' % l + swap_nibbles('%01x%s' % ((oe<<3)|1, rpad(imsi, 15)))
return ei
def dec_imsi(ef):
"""Converts an EF value to the imsi string representation"""
if len(ef) < 4:
return None
l = int(ef[0:2], 16) * 2 # Length of the IMSI string
l = l - 1 # Encoded length byte includes oe nibble
swapped = swap_nibbles(ef[2:]).rstrip('f')
if len(swapped) < 1:
return None
oe = (int(swapped[0])>>3) & 1 # Odd (1) / Even (0)
if not oe:
# if even, only half of last byte was used
l = l-1
if l != len(swapped) - 1:
return None
imsi = swapped[1:]
return imsi
def dec_iccid(ef):
return swap_nibbles(ef).strip('f')
def enc_iccid(iccid):
return swap_nibbles(rpad(iccid, 20))
def enc_plmn(mcc, mnc):
"""Converts integer MCC/MNC into 3 bytes for EF"""
if len(mnc) == 2:
mnc = "F%s" % mnc
return swap_nibbles("%s%s" % (mcc, mnc))
def dec_spn(ef):
byte1 = int(ef[0:2])
hplmn_disp = (byte1&0x01 == 0x01)
oplmn_disp = (byte1&0x02 == 0x02)
name = h2s(ef[2:])
return (name, hplmn_disp, oplmn_disp)
def enc_spn(name, hplmn_disp=False, oplmn_disp=False):
byte1 = 0x00
if hplmn_disp: byte1 = byte1|0x01
if oplmn_disp: byte1 = byte1|0x02
return i2h([byte1])+s2h(name)
def hexstr_to_Nbytearr(s, nbytes):
return [s[i:i+(nbytes*2)] for i in range(0, len(s), (nbytes*2)) ]
# Accepts hex string representing three bytes
def dec_mcc_from_plmn(plmn):
ia = h2i(plmn)
digit1 = ia[0] & 0x0F # 1st byte, LSB
digit2 = (ia[0] & 0xF0) >> 4 # 1st byte, MSB
digit3 = ia[1] & 0x0F # 2nd byte, LSB
if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
return 0xFFF # 4095
return derive_mcc(digit1, digit2, digit3)
def dec_mnc_from_plmn(plmn):
ia = h2i(plmn)
digit1 = (ia[1] & 0xF0) >>4 # 2nd byte, MSB
digit2 = ia[2] & 0x0F # 3rd byte, LSB
digit3 = (ia[2] & 0xF0) >> 4 # 3nd byte, MSB
if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
return 0xFFF # 4095
return derive_mnc(digit1, digit2, digit3)
def dec_act(twohexbytes):
act_list = [
{'bit': 15, 'name': "UTRAN"},
{'bit': 14, 'name': "E-UTRAN"},
{'bit': 7, 'name': "GSM"},
{'bit': 6, 'name': "GSM COMPACT"},
{'bit': 5, 'name': "cdma2000 HRPD"},
{'bit': 4, 'name': "cdma2000 1xRTT"},
]
ia = h2i(twohexbytes)
u16t = (ia[0] << 8)|ia[1]
sel = []
for a in act_list:
if u16t & (1 << a['bit']):
sel.append(a['name'])
return sel
def dec_xplmn_w_act(fivehexbytes):
res = {'mcc': 0, 'mnc': 0, 'act': []}
plmn_chars = 6
act_chars = 4
plmn_str = fivehexbytes[:plmn_chars] # first three bytes (six ascii hex chars)
act_str = fivehexbytes[plmn_chars:plmn_chars + act_chars] # two bytes after first three bytes
res['mcc'] = dec_mcc_from_plmn(plmn_str)
res['mnc'] = dec_mnc_from_plmn(plmn_str)
res['act'] = dec_act(act_str)
return res
def format_xplmn_w_act(hexstr):
s = ""
for rec_data in hexstr_to_Nbytearr(hexstr, 5):
rec_info = dec_xplmn_w_act(rec_data)
if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
rec_str = "unused"
else:
rec_str = "MCC: %03d MNC: %03d AcT: %s" % (rec_info['mcc'], rec_info['mnc'], ", ".join(rec_info['act']))
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def dec_loci(hexstr):
res = {'tmsi': '', 'mcc': 0, 'mnc': 0, 'lac': '', 'status': 0}
res['tmsi'] = hexstr[:8]
res['mcc'] = dec_mcc_from_plmn(hexstr[8:14])
res['mnc'] = dec_mnc_from_plmn(hexstr[8:14])
res['lac'] = hexstr[14:18]
res['status'] = h2i(hexstr[20:22])
return res
def dec_psloci(hexstr):
res = {'p-tmsi': '', 'p-tmsi-sig': '', 'mcc': 0, 'mnc': 0, 'lac': '', 'rac': '', 'status': 0}
res['p-tmsi'] = hexstr[:8]
res['p-tmsi-sig'] = hexstr[8:14]
res['mcc'] = dec_mcc_from_plmn(hexstr[14:20])
res['mnc'] = dec_mnc_from_plmn(hexstr[14:20])
res['lac'] = hexstr[20:24]
res['rac'] = hexstr[24:26]
res['status'] = h2i(hexstr[26:28])
return res
def dec_epsloci(hexstr):
res = {'guti': '', 'mcc': 0, 'mnc': 0, 'tac': '', 'status': 0}
res['guti'] = hexstr[:24]
res['tai'] = hexstr[24:34]
res['mcc'] = dec_mcc_from_plmn(hexstr[24:30])
res['mnc'] = dec_mnc_from_plmn(hexstr[24:30])
res['tac'] = hexstr[30:34]
res['status'] = h2i(hexstr[34:36])
return res
def dec_xplmn(threehexbytes):
res = {'mcc': 0, 'mnc': 0, 'act': []}
plmn_chars = 6
plmn_str = threehexbytes[:plmn_chars] # first three bytes (six ascii hex chars)
res['mcc'] = dec_mcc_from_plmn(plmn_str)
res['mnc'] = dec_mnc_from_plmn(plmn_str)
return res
def format_xplmn(hexstr):
s = ""
for rec_data in hexstr_to_Nbytearr(hexstr, 3):
rec_info = dec_xplmn(rec_data)
if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
rec_str = "unused"
else:
rec_str = "MCC: %03d MNC: %03d" % (rec_info['mcc'], rec_info['mnc'])
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def derive_milenage_opc(ki_hex, op_hex):
"""
Run the milenage algorithm to calculate OPC from Ki and OP
"""
from Crypto.Cipher import AES
from Crypto.Util.strxor import strxor
from pySim.utils import b2h
# We pass in hex string and now need to work on bytes
ki_bytes = bytes(h2b(ki_hex))
op_bytes = bytes(h2b(op_hex))
aes = AES.new(ki_bytes, AES.MODE_ECB)
opc_bytes = aes.encrypt(op_bytes)
return b2h(strxor(opc_bytes, op_bytes))
def calculate_luhn(cc):
"""
Calculate Luhn checksum used in e.g. ICCID and IMEI
"""
num = list(map(int, str(cc)))
check_digit = 10 - sum(num[-2::-2] + [sum(divmod(d * 2, 10)) for d in num[::-2]]) % 10
return 0 if check_digit == 10 else check_digit
def mcc_from_imsi(imsi):
"""
Derive the MCC (Mobile Country Code) from the first three digits of an IMSI
"""
if imsi == None:
return None
if len(imsi) > 3:
return imsi[:3]
else:
return None
def mnc_from_imsi(imsi, long=False):
"""
Derive the MNC (Mobile Country Code) from the 4th to 6th digit of an IMSI
"""
if imsi == None:
return None
if len(imsi) > 3:
if long:
return imsi[3:6]
else:
return imsi[3:5]
else:
return None
def derive_mcc(digit1, digit2, digit3):
"""
Derive decimal representation of the MCC (Mobile Country Code)
from three given digits.
"""
mcc = 0
if digit1 != 0x0f:
mcc += digit1 * 100
if digit2 != 0x0f:
mcc += digit2 * 10
if digit3 != 0x0f:
mcc += digit3
return mcc
def derive_mnc(digit1, digit2, digit3=0x0f):
"""
Derive decimal representation of the MNC (Mobile Network Code)
from two or (optionally) three given digits.
"""
mnc = 0
# 3-rd digit is optional for the MNC. If present
# the algorythm is the same as for the MCC.
if digit3 != 0x0f:
return derive_mcc(digit1, digit2, digit3)
if digit1 != 0x0f:
mnc += digit1 * 10
if digit2 != 0x0f:
mnc += digit2
return mnc
def dec_msisdn(ef_msisdn):
"""
Decode MSISDN from EF.MSISDN or EF.ADN (same structure).
See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3.
"""
# Convert from str to (kind of) 'bytes'
ef_msisdn = h2b(ef_msisdn)
# Make sure mandatory fields are present
if len(ef_msisdn) < 14:
raise ValueError("EF.MSISDN is too short")
# Skip optional Alpha Identifier
xlen = len(ef_msisdn) - 14
msisdn_lhv = ef_msisdn[xlen:]
# Parse the length (in bytes) of the BCD encoded number
bcd_len = msisdn_lhv[0]
# BCD length = length of dial num (max. 10 bytes) + 1 byte ToN and NPI
if bcd_len == 0xff:
return None
elif bcd_len > 11 or bcd_len < 1:
raise ValueError("Length of MSISDN (%d bytes) is out of range" % bcd_len)
# Parse ToN / NPI
ton = (msisdn_lhv[1] >> 4) & 0x07
npi = msisdn_lhv[1] & 0x0f
bcd_len -= 1
# No MSISDN?
if not bcd_len:
return (npi, ton, None)
msisdn = swap_nibbles(b2h(msisdn_lhv[2:][:bcd_len])).rstrip('f')
# International number 10.5.118/3GPP TS 24.008
if ton == 0x01:
msisdn = '+' + msisdn
return (npi, ton, msisdn)
def enc_msisdn(msisdn, npi=0x01, ton=0x03):
"""
Encode MSISDN as LHV so it can be stored to EF.MSISDN.
See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3.
Default NPI / ToN values:
- NPI: ISDN / telephony numbering plan (E.164 / E.163),
- ToN: network specific or international number (if starts with '+').
"""
# Leading '+' indicates International Number
if msisdn[0] == '+':
msisdn = msisdn[1:]
ton = 0x01
# Append 'f' padding if number of digits is odd
if len(msisdn) % 2 > 0:
msisdn += 'f'
# BCD length also includes NPI/ToN header
bcd_len = len(msisdn) // 2 + 1
npi_ton = (npi & 0x0f) | ((ton & 0x07) << 4) | 0x80
bcd = rpad(swap_nibbles(msisdn), 10 * 2) # pad to 10 octets
return ('%02x' % bcd_len) + ('%02x' % npi_ton) + bcd
def dec_st(st, table="sim"):
"""
Parses the EF S/U/IST and prints the list of available services in EF S/U/IST
"""
if table == "isim":
from pySim.ts_31_103 import EF_IST_map
lookup_map = EF_IST_map
elif table == "usim":
from pySim.ts_31_102 import EF_UST_map
lookup_map = EF_UST_map
else:
from pySim.ts_51_011 import EF_SST_map
lookup_map = EF_SST_map
st_bytes = [st[i:i+2] for i in range(0, len(st), 2) ]
avail_st = ""
# Get each byte and check for available services
for i in range(0, len(st_bytes)):
# Byte i contains info about Services num (8i+1) to num (8i+8)
byte = int(st_bytes[i], 16)
# Services in each byte are in order MSB to LSB
# MSB - Service (8i+8)
# LSB - Service (8i+1)
for j in range(1, 9):
if byte&0x01 == 0x01 and ((8*i) + j in lookup_map):
# Byte X contains info about Services num (8X-7) to num (8X)
# bit = 1: service available
# bit = 0: service not available
avail_st += '\tService %d - %s\n' % ((8*i) + j, lookup_map[(8*i) + j])
byte = byte >> 1
return avail_st
def first_TLV_parser(bytelist):
'''
first_TLV_parser([0xAA, 0x02, 0xAB, 0xCD, 0xFF, 0x00]) -> (170, 2, [171, 205])
parses first TLV format record in a list of bytelist
returns a 3-Tuple: Tag, Length, Value
Value is a list of bytes
parsing of length is ETSI'style 101.220
'''
Tag = bytelist[0]
if bytelist[1] == 0xFF:
Len = bytelist[2]*256 + bytelist[3]
Val = bytelist[4:4+Len]
else:
Len = bytelist[1]
Val = bytelist[2:2+Len]
return (Tag, Len, Val)
def TLV_parser(bytelist):
'''
TLV_parser([0xAA, ..., 0xFF]) -> [(T, L, [V]), (T, L, [V]), ...]
loops on the input list of bytes with the "first_TLV_parser()" function
returns a list of 3-Tuples
'''
ret = []
while len(bytelist) > 0:
T, L, V = first_TLV_parser(bytelist)
if T == 0xFF:
# padding bytes
break
ret.append( (T, L, V) )
# need to manage length of L
if L > 0xFE:
bytelist = bytelist[ L+4 : ]
else:
bytelist = bytelist[ L+2 : ]
return ret
def enc_st(st, service, state=1):
"""
Encodes the EF S/U/IST/EST and returns the updated Service Table
Parameters:
st - Current value of SIM/USIM/ISIM Service Table
service - Service Number to encode as activated/de-activated
state - 1 mean activate, 0 means de-activate
Returns:
s - Modified value of SIM/USIM/ISIM Service Table
Default values:
- state: 1 - Sets the particular Service bit to 1
"""
st_bytes = [st[i:i+2] for i in range(0, len(st), 2) ]
s = ""
# Check whether the requested service is present in each byte
for i in range(0, len(st_bytes)):
# Byte i contains info about Services num (8i+1) to num (8i+8)
if service in range((8*i) + 1, (8*i) + 9):
byte = int(st_bytes[i], 16)
# Services in each byte are in order MSB to LSB
# MSB - Service (8i+8)
# LSB - Service (8i+1)
mod_byte = 0x00
# Copy bit by bit contents of byte to mod_byte with modified bit
# for requested service
for j in range(1, 9):
mod_byte = mod_byte >> 1
if service == (8*i) + j:
mod_byte = state == 1 and mod_byte|0x80 or mod_byte&0x7f
else:
mod_byte = byte&0x01 == 0x01 and mod_byte|0x80 or mod_byte&0x7f
byte = byte >> 1
s += ('%02x' % (mod_byte))
else:
s += st_bytes[i]
return s
def dec_addr_tlv(hexstr):
"""
Decode hex string to get EF.P-CSCF Address or EF.ePDGId or EF.ePDGIdEm.
See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.
"""
# Convert from hex str to int bytes list
addr_tlv_bytes = h2i(hexstr)
s = ""
# Get list of tuples containing parsed TLVs
tlvs = TLV_parser(addr_tlv_bytes)
for tlv in tlvs:
# tlv = (T, L, [V])
# T = Tag
# L = Length
# [V] = List of value
# Invalid Tag value scenario
if tlv[0] != 0x80:
continue
# Empty field - Zero length
if tlv[1] == 0:
continue
# First byte in the value has the address type
addr_type = tlv[2][0]
# TODO: Support parsing of IPv6
# Address Type: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), other (Reserved)
if addr_type == 0x00: #FQDN
# Skip address tye byte i.e. first byte in value list
content = tlv[2][1:]
s += "\t%s # %s\n" % (i2h(content), i2s(content))
elif addr_type == 0x01: #IPv4
# Skip address tye byte i.e. first byte in value list
# Skip the unused byte in Octect 4 after address type byte as per 3GPP TS 31.102
ipv4 = tlv[2][2:]
content = '.'.join(str(x) for x in ipv4)
s += "\t%s # %s\n" % (i2h(ipv4), content)
return s
def enc_addr_tlv(addr, addr_type='00'):
"""
Encode address TLV object used in EF.P-CSCF Address, EF.ePDGId and EF.ePDGIdEm.
See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.
Default values:
- addr_type: 00 - FQDN format of Address
"""
s = ""
# TODO: Encoding of IPv6 address
if addr_type == '00': #FQDN
hex_str = s2h(addr)
s += '80' + ('%02x' % ((len(hex_str)//2)+1)) + '00' + hex_str
elif addr_type == '01': #IPv4
ipv4_list = addr.split('.')
ipv4_str = ""
for i in ipv4_list:
ipv4_str += ('%02x' % (int(i)))
# Unused bytes shall be set to 'ff'. i.e 4th Octet after Address Type is not used
# IPv4 Address is in octet 5 to octet 8 of the TLV data object
s += '80' + ('%02x' % ((len(ipv4_str)//2)+2)) + '01' + 'ff' + ipv4_str
return s
def sanitize_pin_adm(pin_adm, pin_adm_hex = None):
"""
The ADM pin can be supplied either in its hexadecimal form or as
ascii string. This function checks the supplied opts parameter and
returns the pin_adm as hex encoded string, regardles in which form
it was originally supplied by the user
"""
if pin_adm is not None:
if len(pin_adm) <= 8:
pin_adm = ''.join(['%02x'%(ord(x)) for x in pin_adm])
pin_adm = rpad(pin_adm, 16)
else:
raise ValueError("PIN-ADM needs to be <=8 digits (ascii)")
if pin_adm_hex is not None:
if len(pin_adm_hex) == 16:
pin_adm = pin_adm_hex
# Ensure that it's hex-encoded
try:
try_encode = h2b(pin_adm)
except ValueError:
raise ValueError("PIN-ADM needs to be hex encoded using this option")
else:
raise ValueError("PIN-ADM needs to be exactly 16 digits (hex encoded)")
return pin_adm
def init_reader(opts):
"""
Init card reader driver
"""
try:
if opts.pcsc_dev is not None:
print("Using PC/SC reader interface")
from pySim.transport.pcsc import PcscSimLink
sl = PcscSimLink(opts.pcsc_dev)
elif opts.osmocon_sock is not None:
print("Using Calypso-based (OsmocomBB) reader interface")
from pySim.transport.calypso import CalypsoSimLink
sl = CalypsoSimLink(sock_path=opts.osmocon_sock)
elif opts.modem_dev is not None:
print("Using modem for Generic SIM Access (3GPP TS 27.007)")
from pySim.transport.modem_atcmd import ModemATCommandLink
sl = ModemATCommandLink(device=opts.modem_dev, baudrate=opts.modem_baud)
else: # Serial reader is default
print("Using serial reader interface")
from pySim.transport.serial import SerialSimLink
sl = SerialSimLink(device=opts.device, baudrate=opts.baudrate)
return sl
except Exception as e:
print("Card reader initialization failed with exception:\n" + str(e))
return None
def enc_ePDGSelection(hexstr, mcc, mnc, epdg_priority='0001', epdg_fqdn_format='00'):
"""
Encode ePDGSelection so it can be stored at EF.ePDGSelection or EF.ePDGSelectionEm.
See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.
Default values:
- epdg_priority: '0001' - 1st Priority
- epdg_fqdn_format: '00' - Operator Identifier FQDN
"""
plmn1 = enc_plmn(mcc, mnc) + epdg_priority + epdg_fqdn_format
# TODO: Handle encoding of Length field for length more than 127 Bytes
content = '80' + ('%02x' % (len(plmn1)//2)) + plmn1
content = rpad(content, len(hexstr))
return content
def dec_ePDGSelection(sixhexbytes):
"""
Decode ePDGSelection to get EF.ePDGSelection or EF.ePDGSelectionEm.
See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.
"""
res = {'mcc': 0, 'mnc': 0, 'epdg_priority': 0, 'epdg_fqdn_format': ''}
plmn_chars = 6
epdg_priority_chars = 4
epdg_fqdn_format_chars = 2
# first three bytes (six ascii hex chars)
plmn_str = sixhexbytes[:plmn_chars]
# two bytes after first three bytes
epdg_priority_str = sixhexbytes[plmn_chars:plmn_chars + epdg_priority_chars]
# one byte after first five bytes
epdg_fqdn_format_str = sixhexbytes[plmn_chars + epdg_priority_chars:plmn_chars + epdg_priority_chars + epdg_fqdn_format_chars]
res['mcc'] = dec_mcc_from_plmn(plmn_str)
res['mnc'] = dec_mnc_from_plmn(plmn_str)
res['epdg_priority'] = epdg_priority_str
res['epdg_fqdn_format'] = epdg_fqdn_format_str == '00' and 'Operator Identifier FQDN' or 'Location based FQDN'
return res
def format_ePDGSelection(hexstr):
ePDGSelection_info_tag_chars = 2
ePDGSelection_info_tag_str = hexstr[:2]
s = ""
# Minimum length
len_chars = 2
# TODO: Need to determine length properly - definite length support only
# Inconsistency in spec: 3GPP TS 31.102 version 15.2.0 Release 15, 4.2.104
# As per spec, length is 5n, n - number of PLMNs
# But, each PLMN entry is made of PLMN (3 Bytes) + ePDG Priority (2 Bytes) + ePDG FQDN format (1 Byte)
# Totalling to 6 Bytes, maybe length should be 6n
len_str = hexstr[ePDGSelection_info_tag_chars:ePDGSelection_info_tag_chars+len_chars]
# Not programmed scenario
if int(len_str, 16) == 255 or int(ePDGSelection_info_tag_str, 16) == 255:
len_chars = 0
ePDGSelection_info_tag_chars = 0
if len_str[0] == '8':
# The bits 7 to 1 denotes the number of length octets if length > 127
if int(len_str[1]) > 0:
# Update number of length octets
len_chars = len_chars * int(len_str[1])
len_str = hexstr[ePDGSelection_info_tag_chars:len_chars]
content_str = hexstr[ePDGSelection_info_tag_chars+len_chars:]
# Right pad to prevent index out of range - multiple of 6 bytes
content_str = rpad(content_str, len(content_str) + (12 - (len(content_str) % 12)))
for rec_data in hexstr_to_Nbytearr(content_str, 6):
rec_info = dec_ePDGSelection(rec_data)
if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
rec_str = "unused"
else:
rec_str = "MCC: %03d MNC: %03d ePDG Priority: %s ePDG FQDN format: %s" % \
(rec_info['mcc'], rec_info['mnc'], rec_info['epdg_priority'], rec_info['epdg_fqdn_format'])
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def get_addr_type(addr):
"""
Validates the given address and returns it's type (FQDN or IPv4 or IPv6)
Return: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), None (Bad address argument given)
TODO: Handle IPv6
"""
# Empty address string
if not len(addr):
return None
addr_list = addr.split('.')
# Check for IPv4/IPv6
try:
import ipaddress
# Throws ValueError if addr is not correct
ipa = ipaddress.ip_address(addr)
if ipa.version == 4:
return 0x01
elif ipa.version == 6:
return 0x02
except Exception as e:
invalid_ipv4 = True
for i in addr_list:
# Invalid IPv4 may qualify for a valid FQDN, so make check here
# e.g. 172.24.15.300
import re
if not re.match('^[0-9_]+$', i):
invalid_ipv4 = False
break
if invalid_ipv4:
return None
fqdn_flag = True
for i in addr_list:
# Only Alpha-numeric characters and hyphen - RFC 1035
import re
if not re.match("^[a-zA-Z0-9]+(?:-[a-zA-Z0-9]+)?$", i):
fqdn_flag = False
break
# FQDN
if fqdn_flag:
return 0x00
return None
def sw_match(sw, pattern):
"""Match given SW against given pattern."""
# Create a masked version of the returned status word
sw_lower = sw.lower()
sw_masked = ""
for i in range(0, 4):
if sw_lower[i] == '?':
sw_masked = sw_masked + '?'
elif sw_lower[i] == 'x':
sw_masked = sw_masked + 'x'
else:
sw_masked = sw_masked + sw_lower[i]
return sw_masked == pattern