python libraires and command line tools for SIM/UICC/USIM/ISIM card analysis and programming. https://osmocom.org/projects/pysim
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
pysim/pySim/utils.py

1703 lines
55 KiB

# -*- coding: utf-8 -*-
""" pySim: various utilities
"""
import json
import abc
import string
from io import BytesIO
from typing import Optional, List, Dict, Any, Tuple
# Copyright (C) 2009-2010 Sylvain Munaut <tnt@246tNt.com>
# Copyright (C) 2021 Harald Welte <laforge@osmocom.org>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# just to differentiate strings of hex nibbles from everything else
Hexstr = str
def h2b(s: Hexstr) -> bytearray:
"""convert from a string of hex nibbles to a sequence of bytes"""
return bytearray.fromhex(s)
def b2h(b: bytearray) -> Hexstr:
"""convert from a sequence of bytes to a string of hex nibbles"""
return ''.join(['%02x' % (x) for x in b])
def h2i(s: Hexstr) -> List[int]:
"""convert from a string of hex nibbles to a list of integers"""
return [(int(x, 16) << 4)+int(y, 16) for x, y in zip(s[0::2], s[1::2])]
def i2h(s: List[int]) -> Hexstr:
"""convert from a list of integers to a string of hex nibbles"""
return ''.join(['%02x' % (x) for x in s])
def h2s(s: Hexstr) -> str:
"""convert from a string of hex nibbles to an ASCII string"""
return ''.join([chr((int(x, 16) << 4)+int(y, 16)) for x, y in zip(s[0::2], s[1::2])
if int(x + y, 16) != 0xff])
def s2h(s: str) -> Hexstr:
"""convert from an ASCII string to a string of hex nibbles"""
b = bytearray()
b.extend(map(ord, s))
return b2h(b)
def i2s(s: List[int]) -> str:
"""convert from a list of integers to an ASCII string"""
return ''.join([chr(x) for x in s])
def swap_nibbles(s: Hexstr) -> Hexstr:
"""swap the nibbles in a hex string"""
return ''.join([x+y for x, y in zip(s[1::2], s[0::2])])
def rpad(s: str, l: int, c='f') -> str:
"""pad string on the right side.
Args:
s : string to pad
l : total length to pad to
c : padding character
Returns:
String 's' padded with as many 'c' as needed to reach total length of 'l'
"""
return s + c * (l - len(s))
def lpad(s: str, l: int, c='f') -> str:
"""pad string on the left side.
Args:
s : string to pad
l : total length to pad to
c : padding character
Returns:
String 's' padded with as many 'c' as needed to reach total length of 'l'
"""
return c * (l - len(s)) + s
def half_round_up(n: int) -> int:
return (n + 1)//2
def str_sanitize(s: str) -> str:
"""replace all non printable chars, line breaks and whitespaces, with ' ', make sure that
there are no whitespaces at the end and at the beginning of the string.
Args:
s : string to sanitize
Returns:
filtered result of string 's'
"""
chars_to_keep = string.digits + string.ascii_letters + string.punctuation
res = ''.join([c if c in chars_to_keep else ' ' for c in s])
return res.strip()
#########################################################################
# poor man's COMPREHENSION-TLV decoder.
#########################################################################
def comprehensiontlv_parse_tag_raw(binary: bytes) -> Tuple[int, bytes]:
"""Parse a single Tag according to ETSI TS 101 220 Section 7.1.1"""
if binary[0] in [0x00, 0x80, 0xff]:
raise ValueError("Found illegal value 0x%02x in %s" %
(binary[0], binary))
if binary[0] == 0x7f:
# three-byte tag
tag = binary[0] << 16 | binary[1] << 8 | binary[2]
return (tag, binary[3:])
elif binary[0] == 0xff:
return None, binary
else:
# single byte tag
tag = binary[0]
return (tag, binary[1:])
def comprehensiontlv_parse_tag(binary: bytes) -> Tuple[dict, bytes]:
"""Parse a single Tag according to ETSI TS 101 220 Section 7.1.1"""
if binary[0] in [0x00, 0x80, 0xff]:
raise ValueError("Found illegal value 0x%02x in %s" %
(binary[0], binary))
if binary[0] == 0x7f:
# three-byte tag
tag = (binary[1] & 0x7f) << 8
tag |= binary[2]
compr = True if binary[1] & 0x80 else False
return ({'comprehension': compr, 'tag': tag}, binary[3:])
else:
# single byte tag
tag = binary[0] & 0x7f
compr = True if binary[0] & 0x80 else False
return ({'comprehension': compr, 'tag': tag}, binary[1:])
def comprehensiontlv_encode_tag(tag) -> bytes:
"""Encode a single Tag according to ETSI TS 101 220 Section 7.1.1"""
# permit caller to specify tag also as integer value
if isinstance(tag, int):
compr = True if tag < 0xff and tag & 0x80 else False
tag = {'tag': tag, 'comprehension': compr}
compr = tag.get('comprehension', False)
if tag['tag'] in [0x00, 0x80, 0xff] or tag['tag'] > 0xff:
# 3-byte format
byte3 = tag['tag'] & 0xff
byte2 = (tag['tag'] >> 8) & 0x7f
if compr:
byte2 |= 0x80
return b'\x7f' + byte2.to_bytes(1, 'big') + byte3.to_bytes(1, 'big')
else:
# 1-byte format
ret = tag['tag']
if compr:
ret |= 0x80
return ret.to_bytes(1, 'big')
# length value coding is equal to BER-TLV
def comprehensiontlv_parse_one(binary: bytes) -> Tuple[dict, int, bytes, bytes]:
"""Parse a single TLV IE at the start of the given binary data.
Args:
binary : binary input data of BER-TLV length field
Returns:
Tuple of (tag:dict, len:int, remainder:bytes)
"""
(tagdict, remainder) = comprehensiontlv_parse_tag(binary)
(length, remainder) = bertlv_parse_len(remainder)
value = remainder[:length]
remainder = remainder[length:]
return (tagdict, length, value, remainder)
#########################################################################
# poor man's BER-TLV decoder. To be a more sophisticated OO library later
#########################################################################
def bertlv_parse_tag_raw(binary: bytes) -> Tuple[int, bytes]:
"""Get a single raw Tag from start of input according to ITU-T X.690 8.1.2
Args:
binary : binary input data of BER-TLV length field
Returns:
Tuple of (tag:int, remainder:bytes)
"""
# check for FF padding at the end, as customary in SIM card files
if binary[0] == 0xff and len(binary) == 1 or binary[0] == 0xff and binary[1] == 0xff:
return None, binary
tag = binary[0] & 0x1f
if tag <= 30:
return binary[0], binary[1:]
else: # multi-byte tag
tag = binary[0]
i = 1
last = False
while not last:
last = False if binary[i] & 0x80 else True
tag <<= 8
tag |= binary[i]
i += 1
return tag, binary[i:]
def bertlv_parse_tag(binary: bytes) -> Tuple[dict, bytes]:
"""Parse a single Tag value according to ITU-T X.690 8.1.2
Args:
binary : binary input data of BER-TLV length field
Returns:
Tuple of ({class:int, constructed:bool, tag:int}, remainder:bytes)
"""
cls = binary[0] >> 6
constructed = True if binary[0] & 0x20 else False
tag = binary[0] & 0x1f
if tag <= 30:
return ({'class': cls, 'constructed': constructed, 'tag': tag}, binary[1:])
else: # multi-byte tag
tag = 0
i = 1
last = False
while not last:
last = False if binary[i] & 0x80 else True
tag <<= 7
tag |= binary[i] & 0x7f
i += 1
return ({'class': cls, 'constructed': constructed, 'tag': tag}, binary[i:])
def bertlv_encode_tag(t) -> bytes:
"""Encode a single Tag value according to ITU-T X.690 8.1.2
"""
def get_top7_bits(inp: int) -> Tuple[int, int]:
"""Get top 7 bits of integer. Returns those 7 bits as integer and the remaining LSBs."""
remain_bits = inp.bit_length()
if remain_bits >= 7:
bitcnt = 7
else:
bitcnt = remain_bits
outp = inp >> (remain_bits - bitcnt)
remainder = inp & ~ (inp << (remain_bits - bitcnt))
return outp, remainder
if isinstance(t, int):
# FIXME: multiple byte tags
tag = t & 0x1f
constructed = True if t & 0x20 else False
cls = t >> 6
else:
tag = t['tag']
constructed = t['constructed']
cls = t['class']
if tag <= 30:
t = tag & 0x1f
if constructed:
t |= 0x20
t |= (cls & 3) << 6
return bytes([t])
else: # multi-byte tag
t = 0x1f
if constructed:
t |= 0x20
t |= (cls & 3) << 6
tag_bytes = bytes([t])
remain = tag
while True:
t, remain = get_top7_bits(remain)
if remain:
t |= 0x80
tag_bytes += bytes([t])
if not remain:
break
return tag_bytes
def bertlv_parse_len(binary: bytes) -> Tuple[int, bytes]:
"""Parse a single Length value according to ITU-T X.690 8.1.3;
only the definite form is supported here.
Args:
binary : binary input data of BER-TLV length field
Returns:
Tuple of (length, remainder)
"""
if binary[0] < 0x80:
return (binary[0], binary[1:])
else:
num_len_oct = binary[0] & 0x7f
length = 0
for i in range(1, 1+num_len_oct):
length <<= 8
length |= binary[i]
return (length, binary[1+num_len_oct:])
def bertlv_encode_len(length: int) -> bytes:
"""Encode a single Length value according to ITU-T X.690 8.1.3;
only the definite form is supported here.
Args:
length : length value to be encoded
Returns:
binary output data of BER-TLV length field
"""
if length < 0x80:
return length.to_bytes(1, 'big')
elif length <= 0xff:
return b'\x81' + length.to_bytes(1, 'big')
elif length <= 0xffff:
return b'\x82' + length.to_bytes(2, 'big')
elif length <= 0xffffff:
return b'\x83' + length.to_bytes(3, 'big')
elif length <= 0xffffffff:
return b'\x84' + length.to_bytes(4, 'big')
else:
raise ValueError("Length > 32bits not supported")
def bertlv_parse_one(binary: bytes) -> Tuple[dict, int, bytes, bytes]:
"""Parse a single TLV IE at the start of the given binary data.
Args:
binary : binary input data of BER-TLV length field
Returns:
Tuple of (tag:dict, len:int, remainder:bytes)
"""
(tagdict, remainder) = bertlv_parse_tag(binary)
(length, remainder) = bertlv_parse_len(remainder)
value = remainder[:length]
remainder = remainder[length:]
return (tagdict, length, value, remainder)
# IMSI encoded format:
# For IMSI 0123456789ABCDE:
#
# | byte 1 | 2 upper | 2 lower | 3 upper | 3 lower | ... | 9 upper | 9 lower |
# | length in bytes | 0 | odd/even | 2 | 1 | ... | E | D |
#
# If the IMSI is less than 15 characters, it should be padded with 'f' from the end.
#
# The length is the total number of bytes used to encoded the IMSI. This includes the odd/even
# parity bit. E.g. an IMSI of length 14 is 8 bytes long, not 7, as it uses bytes 2 to 9 to
# encode itself.
#
# Because of this, an odd length IMSI fits exactly into len(imsi) + 1 // 2 bytes, whereas an
# even length IMSI only uses half of the last byte.
def enc_imsi(imsi: str):
"""Converts a string IMSI into the encoded value of the EF"""
l = half_round_up(
len(imsi) + 1) # Required bytes - include space for odd/even indicator
oe = len(imsi) & 1 # Odd (1) / Even (0)
ei = '%02x' % l + swap_nibbles('%01x%s' % ((oe << 3) | 1, rpad(imsi, 15)))
return ei
def dec_imsi(ef: Hexstr) -> Optional[str]:
"""Converts an EF value to the IMSI string representation"""
if len(ef) < 4:
return None
l = int(ef[0:2], 16) * 2 # Length of the IMSI string
l = l - 1 # Encoded length byte includes oe nibble
swapped = swap_nibbles(ef[2:]).rstrip('f')
if len(swapped) < 1:
return None
oe = (int(swapped[0]) >> 3) & 1 # Odd (1) / Even (0)
if not oe:
# if even, only half of last byte was used
l = l-1
if l != len(swapped) - 1:
return None
imsi = swapped[1:]
return imsi
def dec_iccid(ef: Hexstr) -> str:
return swap_nibbles(ef).strip('f')
def enc_iccid(iccid: str) -> Hexstr:
return swap_nibbles(rpad(iccid, 20))
def enc_plmn(mcc: Hexstr, mnc: Hexstr) -> Hexstr:
"""Converts integer MCC/MNC into 3 bytes for EF"""
# Make sure there are no excess whitespaces in the input
# parameters
mcc = mcc.strip()
mnc = mnc.strip()
# Make sure that MCC/MNC are correctly padded with leading
# zeros or 'F', depending on the length.
if len(mnc) == 0:
mnc = "FFF"
elif len(mnc) == 1:
mnc = "F0" + mnc
elif len(mnc) == 2:
mnc += "F"
if len(mcc) == 0:
mcc = "FFF"
elif len(mcc) == 1:
mcc = "00" + mcc
elif len(mcc) == 2:
mcc = "0" + mcc
return (mcc[1] + mcc[0]) + (mnc[2] + mcc[2]) + (mnc[1] + mnc[0])
def dec_plmn(threehexbytes: Hexstr) -> dict:
res = {'mcc': "0", 'mnc': "0"}
dec_mcc_from_plmn_str(threehexbytes)
res['mcc'] = dec_mcc_from_plmn_str(threehexbytes)
res['mnc'] = dec_mnc_from_plmn_str(threehexbytes)
return res
def dec_spn(ef):
"""Obsolete, kept for API compatibility"""
from ts_51_011 import EF_SPN
abstract_data = EF_SPN().decode_hex(ef)
show_in_hplmn = abstract_data['show_in_hplmn']
hide_in_oplmn = abstract_data['hide_in_oplmn']
name = abstract_data['spn']
return (name, show_in_hplmn, hide_in_oplmn)
def enc_spn(name: str, show_in_hplmn=False, hide_in_oplmn=False):
"""Obsolete, kept for API compatibility"""
from ts_51_011 import EF_SPN
abstract_data = {
'hide_in_oplmn': hide_in_oplmn,
'show_in_hplmn': show_in_hplmn,
'spn': name,
}
return EF_SPN().encode_hex(abstract_data)
def hexstr_to_Nbytearr(s, nbytes):
return [s[i:i+(nbytes*2)] for i in range(0, len(s), (nbytes*2))]
# Accepts hex string representing three bytes
def dec_mcc_from_plmn(plmn: Hexstr) -> int:
ia = h2i(plmn)
digit1 = ia[0] & 0x0F # 1st byte, LSB
digit2 = (ia[0] & 0xF0) >> 4 # 1st byte, MSB
digit3 = ia[1] & 0x0F # 2nd byte, LSB
if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
return 0xFFF # 4095
return derive_mcc(digit1, digit2, digit3)
def dec_mcc_from_plmn_str(plmn: Hexstr) -> str:
digit1 = plmn[1] # 1st byte, LSB
digit2 = plmn[0] # 1st byte, MSB
digit3 = plmn[3] # 2nd byte, LSB
res = digit1 + digit2 + digit3
return res.upper().strip("F")
def dec_mnc_from_plmn(plmn: Hexstr) -> int:
ia = h2i(plmn)
digit1 = ia[2] & 0x0F # 3rd byte, LSB
digit2 = (ia[2] & 0xF0) >> 4 # 3rd byte, MSB
digit3 = (ia[1] & 0xF0) >> 4 # 2nd byte, MSB
if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
return 0xFFF # 4095
return derive_mnc(digit1, digit2, digit3)
def dec_mnc_from_plmn_str(plmn: Hexstr) -> str:
digit1 = plmn[5] # 3rd byte, LSB
digit2 = plmn[4] # 3rd byte, MSB
digit3 = plmn[2] # 2nd byte, MSB
res = digit1 + digit2 + digit3
return res.upper().strip("F")
def dec_act(twohexbytes: Hexstr) -> List[str]:
act_list = [
{'bit': 15, 'name': "UTRAN"},
{'bit': 14, 'name': "E-UTRAN"},
{'bit': 11, 'name': "NG-RAN"},
{'bit': 7, 'name': "GSM"},
{'bit': 6, 'name': "GSM COMPACT"},
{'bit': 5, 'name': "cdma2000 HRPD"},
{'bit': 4, 'name': "cdma2000 1xRTT"},
]
ia = h2i(twohexbytes)
u16t = (ia[0] << 8) | ia[1]
sel = []
for a in act_list:
if u16t & (1 << a['bit']):
if a['name'] == "E-UTRAN":
# The Access technology identifier of E-UTRAN
# allows a more detailed specification:
if u16t & (1 << 13) and u16t & (1 << 12):
sel.append("E-UTRAN WB-S1")
sel.append("E-UTRAN NB-S1")
elif u16t & (1 << 13):
sel.append("E-UTRAN WB-S1")
elif u16t & (1 << 12):
sel.append("E-UTRAN NB-S1")
else:
sel.append("E-UTRAN")
else:
sel.append(a['name'])
return sel
def dec_xplmn_w_act(fivehexbytes: Hexstr) -> Dict[str, Any]:
res = {'mcc': "0", 'mnc': "0", 'act': []}
plmn_chars = 6
act_chars = 4
# first three bytes (six ascii hex chars)
plmn_str = fivehexbytes[:plmn_chars]
# two bytes after first three bytes
act_str = fivehexbytes[plmn_chars:plmn_chars + act_chars]
res['mcc'] = dec_mcc_from_plmn_str(plmn_str)
res['mnc'] = dec_mnc_from_plmn_str(plmn_str)
res['act'] = dec_act(act_str)
return res
def format_xplmn_w_act(hexstr):
s = ""
for rec_data in hexstr_to_Nbytearr(hexstr, 5):
rec_info = dec_xplmn_w_act(rec_data)
if rec_info['mcc'] == "" and rec_info['mnc'] == "":
rec_str = "unused"
else:
rec_str = "MCC: %s MNC: %s AcT: %s" % (
rec_info['mcc'], rec_info['mnc'], ", ".join(rec_info['act']))
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def dec_loci(hexstr):
res = {'tmsi': '', 'mcc': 0, 'mnc': 0, 'lac': '', 'status': 0}
res['tmsi'] = hexstr[:8]
res['mcc'] = dec_mcc_from_plmn(hexstr[8:14])
res['mnc'] = dec_mnc_from_plmn(hexstr[8:14])
res['lac'] = hexstr[14:18]
res['status'] = h2i(hexstr[20:22])
return res
def dec_psloci(hexstr):
res = {'p-tmsi': '', 'p-tmsi-sig': '', 'mcc': 0,
'mnc': 0, 'lac': '', 'rac': '', 'status': 0}
res['p-tmsi'] = hexstr[:8]
res['p-tmsi-sig'] = hexstr[8:14]
res['mcc'] = dec_mcc_from_plmn(hexstr[14:20])
res['mnc'] = dec_mnc_from_plmn(hexstr[14:20])
res['lac'] = hexstr[20:24]
res['rac'] = hexstr[24:26]
res['status'] = h2i(hexstr[26:28])
return res
def dec_epsloci(hexstr):
res = {'guti': '', 'mcc': 0, 'mnc': 0, 'tac': '', 'status': 0}
res['guti'] = hexstr[:24]
res['tai'] = hexstr[24:34]
res['mcc'] = dec_mcc_from_plmn(hexstr[24:30])
res['mnc'] = dec_mnc_from_plmn(hexstr[24:30])
res['tac'] = hexstr[30:34]
res['status'] = h2i(hexstr[34:36])
return res
def dec_xplmn(threehexbytes: Hexstr) -> dict:
res = {'mcc': 0, 'mnc': 0, 'act': []}
plmn_chars = 6
# first three bytes (six ascii hex chars)
plmn_str = threehexbytes[:plmn_chars]
res['mcc'] = dec_mcc_from_plmn(plmn_str)
res['mnc'] = dec_mnc_from_plmn(plmn_str)
return res
def format_xplmn(hexstr: Hexstr) -> str:
s = ""
for rec_data in hexstr_to_Nbytearr(hexstr, 3):
rec_info = dec_xplmn(rec_data)
if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
rec_str = "unused"
else:
rec_str = "MCC: %03d MNC: %03d" % (
rec_info['mcc'], rec_info['mnc'])
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def derive_milenage_opc(ki_hex: Hexstr, op_hex: Hexstr) -> Hexstr:
"""
Run the milenage algorithm to calculate OPC from Ki and OP
"""
from Crypto.Cipher import AES
# pylint: disable=no-name-in-module
from Crypto.Util.strxor import strxor
from pySim.utils import b2h
# We pass in hex string and now need to work on bytes
ki_bytes = bytes(h2b(ki_hex))
op_bytes = bytes(h2b(op_hex))
aes = AES.new(ki_bytes, AES.MODE_ECB)
opc_bytes = aes.encrypt(op_bytes)
return b2h(strxor(opc_bytes, op_bytes))
def calculate_luhn(cc) -> int:
"""
Calculate Luhn checksum used in e.g. ICCID and IMEI
"""
num = list(map(int, str(cc)))
check_digit = 10 - sum(num[-2::-2] + [sum(divmod(d * 2, 10))
for d in num[::-2]]) % 10
return 0 if check_digit == 10 else check_digit
def mcc_from_imsi(imsi: str) -> Optional[str]:
"""
Derive the MCC (Mobile Country Code) from the first three digits of an IMSI
"""
if imsi == None:
return None
if len(imsi) > 3:
return imsi[:3]
else:
return None
def mnc_from_imsi(imsi: str, long: bool = False) -> Optional[str]:
"""
Derive the MNC (Mobile Country Code) from the 4th to 6th digit of an IMSI
"""
if imsi == None:
return None
if len(imsi) > 3:
if long:
return imsi[3:6]
else:
return imsi[3:5]
else:
return None
def derive_mcc(digit1: int, digit2: int, digit3: int) -> int:
"""
Derive decimal representation of the MCC (Mobile Country Code)
from three given digits.
"""
mcc = 0
if digit1 != 0x0f:
mcc += digit1 * 100
if digit2 != 0x0f:
mcc += digit2 * 10
if digit3 != 0x0f:
mcc += digit3
return mcc
def derive_mnc(digit1: int, digit2: int, digit3: int = 0x0f) -> int:
"""
Derive decimal representation of the MNC (Mobile Network Code)
from two or (optionally) three given digits.
"""
mnc = 0
# 3-rd digit is optional for the MNC. If present
# the algorythm is the same as for the MCC.
if digit3 != 0x0f:
return derive_mcc(digit1, digit2, digit3)
if digit1 != 0x0f:
mnc += digit1 * 10
if digit2 != 0x0f:
mnc += digit2
return mnc
def dec_msisdn(ef_msisdn: Hexstr) -> Optional[Tuple[int, int, Optional[str]]]:
"""
Decode MSISDN from EF.MSISDN or EF.ADN (same structure).
See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3.
"""
# Convert from str to (kind of) 'bytes'
ef_msisdn = h2b(ef_msisdn)
# Make sure mandatory fields are present
if len(ef_msisdn) < 14:
raise ValueError("EF.MSISDN is too short")
# Skip optional Alpha Identifier
xlen = len(ef_msisdn) - 14
msisdn_lhv = ef_msisdn[xlen:]
# Parse the length (in bytes) of the BCD encoded number
bcd_len = msisdn_lhv[0]
# BCD length = length of dial num (max. 10 bytes) + 1 byte ToN and NPI
if bcd_len == 0xff:
return None
elif bcd_len > 11 or bcd_len < 1:
raise ValueError(
"Length of MSISDN (%d bytes) is out of range" % bcd_len)
# Parse ToN / NPI
ton = (msisdn_lhv[1] >> 4) & 0x07
npi = msisdn_lhv[1] & 0x0f
bcd_len -= 1
# No MSISDN?
if not bcd_len:
return (npi, ton, None)
msisdn = swap_nibbles(b2h(msisdn_lhv[2:][:bcd_len])).rstrip('f')
# International number 10.5.118/3GPP TS 24.008
if ton == 0x01:
msisdn = '+' + msisdn
return (npi, ton, msisdn)
def enc_msisdn(msisdn: str, npi: int = 0x01, ton: int = 0x03) -> Hexstr:
"""
Encode MSISDN as LHV so it can be stored to EF.MSISDN.
See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3. (The result
will not contain the optional Alpha Identifier at the beginning.)
Default NPI / ToN values:
- NPI: ISDN / telephony numbering plan (E.164 / E.163),
- ToN: network specific or international number (if starts with '+').
"""
# If no MSISDN is supplied then encode the file contents as all "ff"
if msisdn == "" or msisdn == "+":
return "ff" * 14
# Leading '+' indicates International Number
if msisdn[0] == '+':
msisdn = msisdn[1:]
ton = 0x01
# An MSISDN must not exceed 20 digits
if len(msisdn) > 20:
raise ValueError("msisdn must not be longer than 20 digits")
# Append 'f' padding if number of digits is odd
if len(msisdn) % 2 > 0:
msisdn += 'f'
# BCD length also includes NPI/ToN header
bcd_len = len(msisdn) // 2 + 1
npi_ton = (npi & 0x0f) | ((ton & 0x07) << 4) | 0x80
bcd = rpad(swap_nibbles(msisdn), 10 * 2) # pad to 10 octets
return ('%02x' % bcd_len) + ('%02x' % npi_ton) + bcd + ("ff" * 2)
def dec_st(st, table="sim") -> str:
"""
Parses the EF S/U/IST and prints the list of available services in EF S/U/IST
"""
if table == "isim":
from pySim.ts_31_103 import EF_IST_map
lookup_map = EF_IST_map
elif table == "usim":
from pySim.ts_31_102 import EF_UST_map
lookup_map = EF_UST_map
else:
from pySim.ts_51_011 import EF_SST_map
lookup_map = EF_SST_map
st_bytes = [st[i:i+2] for i in range(0, len(st), 2)]
avail_st = ""
# Get each byte and check for available services
for i in range(0, len(st_bytes)):
# Byte i contains info about Services num (8i+1) to num (8i+8)
byte = int(st_bytes[i], 16)
# Services in each byte are in order MSB to LSB
# MSB - Service (8i+8)
# LSB - Service (8i+1)
for j in range(1, 9):
if byte & 0x01 == 0x01 and ((8*i) + j in lookup_map):
# Byte X contains info about Services num (8X-7) to num (8X)
# bit = 1: service available
# bit = 0: service not available
avail_st += '\tService %d - %s\n' % (
(8*i) + j, lookup_map[(8*i) + j])
byte = byte >> 1
return avail_st
def first_TLV_parser(bytelist):
'''
first_TLV_parser([0xAA, 0x02, 0xAB, 0xCD, 0xFF, 0x00]) -> (170, 2, [171, 205])
parses first TLV format record in a list of bytelist
returns a 3-Tuple: Tag, Length, Value
Value is a list of bytes
parsing of length is ETSI'style 101.220
'''
Tag = bytelist[0]
if bytelist[1] == 0xFF:
Len = bytelist[2]*256 + bytelist[3]
Val = bytelist[4:4+Len]
else:
Len = bytelist[1]
Val = bytelist[2:2+Len]
return (Tag, Len, Val)
def TLV_parser(bytelist):
'''
TLV_parser([0xAA, ..., 0xFF]) -> [(T, L, [V]), (T, L, [V]), ...]
loops on the input list of bytes with the "first_TLV_parser()" function
returns a list of 3-Tuples
'''
ret = []
while len(bytelist) > 0:
T, L, V = first_TLV_parser(bytelist)
if T == 0xFF:
# padding bytes
break
ret.append((T, L, V))
# need to manage length of L
if L > 0xFE:
bytelist = bytelist[L+4:]
else:
bytelist = bytelist[L+2:]
return ret
def enc_st(st, service, state=1):
"""
Encodes the EF S/U/IST/EST and returns the updated Service Table
Parameters:
st - Current value of SIM/USIM/ISIM Service Table
service - Service Number to encode as activated/de-activated
state - 1 mean activate, 0 means de-activate
Returns:
s - Modified value of SIM/USIM/ISIM Service Table
Default values:
- state: 1 - Sets the particular Service bit to 1
"""
st_bytes = [st[i:i+2] for i in range(0, len(st), 2)]
s = ""
# Check whether the requested service is present in each byte
for i in range(0, len(st_bytes)):
# Byte i contains info about Services num (8i+1) to num (8i+8)
if service in range((8*i) + 1, (8*i) + 9):
byte = int(st_bytes[i], 16)
# Services in each byte are in order MSB to LSB
# MSB - Service (8i+8)
# LSB - Service (8i+1)
mod_byte = 0x00
# Copy bit by bit contents of byte to mod_byte with modified bit
# for requested service
for j in range(1, 9):
mod_byte = mod_byte >> 1
if service == (8*i) + j:
mod_byte = state == 1 and mod_byte | 0x80 or mod_byte & 0x7f
else:
mod_byte = byte & 0x01 == 0x01 and mod_byte | 0x80 or mod_byte & 0x7f
byte = byte >> 1
s += ('%02x' % (mod_byte))
else:
s += st_bytes[i]
return s
def dec_addr_tlv(hexstr):
"""
Decode hex string to get EF.P-CSCF Address or EF.ePDGId or EF.ePDGIdEm.
See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.
"""
# Convert from hex str to int bytes list
addr_tlv_bytes = h2i(hexstr)
# Get list of tuples containing parsed TLVs
tlvs = TLV_parser(addr_tlv_bytes)
for tlv in tlvs:
# tlv = (T, L, [V])
# T = Tag
# L = Length
# [V] = List of value
# Invalid Tag value scenario
if tlv[0] != 0x80:
continue
# Empty field - Zero length
if tlv[1] == 0:
continue
# First byte in the value has the address type
addr_type = tlv[2][0]
# TODO: Support parsing of IPv6
# Address Type: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), other (Reserved)
if addr_type == 0x00: # FQDN
# Skip address tye byte i.e. first byte in value list
content = tlv[2][1:]
return (i2s(content), '00')
elif addr_type == 0x01: # IPv4
# Skip address tye byte i.e. first byte in value list
# Skip the unused byte in Octect 4 after address type byte as per 3GPP TS 31.102
ipv4 = tlv[2][2:]
content = '.'.join(str(x) for x in ipv4)
return (content, '01')
else:
raise ValueError("Invalid address type")
return (None, None)
def enc_addr_tlv(addr, addr_type='00'):
"""
Encode address TLV object used in EF.P-CSCF Address, EF.ePDGId and EF.ePDGIdEm.
See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.
Default values:
- addr_type: 00 - FQDN format of Address
"""
s = ""
# TODO: Encoding of IPv6 address
if addr_type == '00': # FQDN
hex_str = s2h(addr)
s += '80' + ('%02x' % ((len(hex_str)//2)+1)) + '00' + hex_str
elif addr_type == '01': # IPv4
ipv4_list = addr.split('.')
ipv4_str = ""
for i in ipv4_list:
ipv4_str += ('%02x' % (int(i)))
# Unused bytes shall be set to 'ff'. i.e 4th Octet after Address Type is not used
# IPv4 Address is in octet 5 to octet 8 of the TLV data object
s += '80' + ('%02x' % ((len(ipv4_str)//2)+2)) + '01' + 'ff' + ipv4_str
return s
def is_hex(string: str, minlen: int = 2, maxlen: Optional[int] = None) -> bool:
"""
Check if a string is a valid hexstring
"""
# Filter obviously bad strings
if not string:
return False
if len(string) < minlen or minlen < 2:
return False
if len(string) % 2:
return False
if maxlen and len(string) > maxlen:
return False
# Try actual encoding to be sure
try:
try_encode = h2b(string)
return True
except:
return False
def sanitize_pin_adm(pin_adm, pin_adm_hex=None) -> Hexstr:
"""
The ADM pin can be supplied either in its hexadecimal form or as
ascii string. This function checks the supplied opts parameter and
returns the pin_adm as hex encoded string, regardless in which form
it was originally supplied by the user
"""
if pin_adm is not None:
if len(pin_adm) <= 8:
pin_adm = ''.join(['%02x' % (ord(x)) for x in pin_adm])
pin_adm = rpad(pin_adm, 16)
else:
raise ValueError("PIN-ADM needs to be <=8 digits (ascii)")
if pin_adm_hex is not None:
if len(pin_adm_hex) == 16:
pin_adm = pin_adm_hex
# Ensure that it's hex-encoded
try:
try_encode = h2b(pin_adm)
except ValueError:
raise ValueError(
"PIN-ADM needs to be hex encoded using this option")
else:
raise ValueError(
"PIN-ADM needs to be exactly 16 digits (hex encoded)")
return pin_adm
def enc_ePDGSelection(hexstr, mcc, mnc, epdg_priority='0001', epdg_fqdn_format='00'):
"""
Encode ePDGSelection so it can be stored at EF.ePDGSelection or EF.ePDGSelectionEm.
See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.
Default values:
- epdg_priority: '0001' - 1st Priority
- epdg_fqdn_format: '00' - Operator Identifier FQDN
"""
plmn1 = enc_plmn(mcc, mnc) + epdg_priority + epdg_fqdn_format
# TODO: Handle encoding of Length field for length more than 127 Bytes
content = '80' + ('%02x' % (len(plmn1)//2)) + plmn1
content = rpad(content, len(hexstr))
return content
def dec_ePDGSelection(sixhexbytes):
"""
Decode ePDGSelection to get EF.ePDGSelection or EF.ePDGSelectionEm.
See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.
"""
res = {'mcc': 0, 'mnc': 0, 'epdg_priority': 0, 'epdg_fqdn_format': ''}
plmn_chars = 6
epdg_priority_chars = 4
epdg_fqdn_format_chars = 2
# first three bytes (six ascii hex chars)
plmn_str = sixhexbytes[:plmn_chars]
# two bytes after first three bytes
epdg_priority_str = sixhexbytes[plmn_chars:plmn_chars +
epdg_priority_chars]
# one byte after first five bytes
epdg_fqdn_format_str = sixhexbytes[plmn_chars +
epdg_priority_chars:plmn_chars + epdg_priority_chars + epdg_fqdn_format_chars]
res['mcc'] = dec_mcc_from_plmn(plmn_str)
res['mnc'] = dec_mnc_from_plmn(plmn_str)
res['epdg_priority'] = epdg_priority_str
res['epdg_fqdn_format'] = epdg_fqdn_format_str == '00' and 'Operator Identifier FQDN' or 'Location based FQDN'
return res
def format_ePDGSelection(hexstr):
ePDGSelection_info_tag_chars = 2
ePDGSelection_info_tag_str = hexstr[:2]
s = ""
# Minimum length
len_chars = 2
# TODO: Need to determine length properly - definite length support only
# Inconsistency in spec: 3GPP TS 31.102 version 15.2.0 Release 15, 4.2.104
# As per spec, length is 5n, n - number of PLMNs
# But, each PLMN entry is made of PLMN (3 Bytes) + ePDG Priority (2 Bytes) + ePDG FQDN format (1 Byte)
# Totalling to 6 Bytes, maybe length should be 6n
len_str = hexstr[ePDGSelection_info_tag_chars:ePDGSelection_info_tag_chars+len_chars]
# Not programmed scenario
if int(len_str, 16) == 255 or int(ePDGSelection_info_tag_str, 16) == 255:
len_chars = 0
ePDGSelection_info_tag_chars = 0
if len_str[0] == '8':
# The bits 7 to 1 denotes the number of length octets if length > 127
if int(len_str[1]) > 0:
# Update number of length octets
len_chars = len_chars * int(len_str[1])
len_str = hexstr[ePDGSelection_info_tag_chars:len_chars]
content_str = hexstr[ePDGSelection_info_tag_chars+len_chars:]
# Right pad to prevent index out of range - multiple of 6 bytes
content_str = rpad(content_str, len(content_str) +
(12 - (len(content_str) % 12)))
for rec_data in hexstr_to_Nbytearr(content_str, 6):
rec_info = dec_ePDGSelection(rec_data)
if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
rec_str = "unused"
else:
rec_str = "MCC: %03d MNC: %03d ePDG Priority: %s ePDG FQDN format: %s" % \
(rec_info['mcc'], rec_info['mnc'],
rec_info['epdg_priority'], rec_info['epdg_fqdn_format'])
s += "\t%s # %s\n" % (rec_data, rec_str)
return s
def get_addr_type(addr):
"""
Validates the given address and returns it's type (FQDN or IPv4 or IPv6)
Return: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), None (Bad address argument given)
TODO: Handle IPv6
"""
# Empty address string
if not len(addr):
return None
addr_list = addr.split('.')
# Check for IPv4/IPv6
try:
import ipaddress
# Throws ValueError if addr is not correct
ipa = ipaddress.ip_address(addr)
if ipa.version == 4:
return 0x01
elif ipa.version == 6:
return 0x02
except Exception as e:
invalid_ipv4 = True
for i in addr_list:
# Invalid IPv4 may qualify for a valid FQDN, so make check here
# e.g. 172.24.15.300
import re
if not re.match('^[0-9_]+$', i):
invalid_ipv4 = False
break
if invalid_ipv4:
return None
fqdn_flag = True
for i in addr_list:
# Only Alpha-numeric characters and hyphen - RFC 1035
import re
if not re.match("^[a-zA-Z0-9]+(?:-[a-zA-Z0-9]+)?$", i):
fqdn_flag = False
break
# FQDN
if fqdn_flag:
return 0x00
return None
def sw_match(sw: str, pattern: str) -> bool:
"""Match given SW against given pattern."""
# Create a masked version of the returned status word
sw_lower = sw.lower()
sw_masked = ""
for i in range(0, 4):
if pattern[i] == '?':
sw_masked = sw_masked + '?'
elif pattern[i] == 'x':
sw_masked = sw_masked + 'x'
else:
sw_masked = sw_masked + sw_lower[i]
# Compare the masked version against the pattern
return sw_masked == pattern
def tabulate_str_list(str_list, width: int = 79, hspace: int = 2, lspace: int = 1,
align_left: bool = True) -> str:
"""Pretty print a list of strings into a tabulated form.
Args:
width : total width in characters per line
space : horizontal space between cells
lspace : number of spaces before row
align_lef : Align text to the left side
Returns:
multi-line string containing formatted table
"""
if str_list == None:
return ""
if len(str_list) <= 0:
return ""
longest_str = max(str_list, key=len)
cellwith = len(longest_str) + hspace
cols = width // cellwith
rows = (len(str_list) - 1) // cols + 1
table = []
for i in iter(range(rows)):
str_list_row = str_list[i::rows]
if (align_left):
format_str_cell = '%%-%ds'
else:
format_str_cell = '%%%ds'
format_str_row = (format_str_cell % cellwith) * len(str_list_row)
format_str_row = (" " * lspace) + format_str_row
table.append(format_str_row % tuple(str_list_row))
return '\n'.join(table)
def auto_int(x):
"""Helper function for argparse to accept hexadecimal integers."""
return int(x, 0)
def expand_hex(hexstring, length):
"""Expand a given hexstring to a specified length by replacing "." or ".."
with a filler that is derived from the neighboring nibbles respective
bytes. Usually this will be the nibble respective byte before "." or
"..", execpt when the string begins with "." or "..", then the nibble
respective byte after "." or ".." is used.". In case the string cannot
be expanded for some reason, the input string is returned unmodified.
Args:
hexstring : hexstring to expand
length : desired length of the resulting hexstring.
Returns:
expanded hexstring
"""
# expand digit aligned
if hexstring.count(".") == 1:
pos = hexstring.index(".")
if pos > 0:
filler = hexstring[pos - 1]
else:
filler = hexstring[pos + 1]
missing = length * 2 - (len(hexstring) - 1)
if missing <= 0:
return hexstring
return hexstring.replace(".", filler * missing)
# expand byte aligned
elif hexstring.count("..") == 1:
if len(hexstring) % 2:
return hexstring
pos = hexstring.index("..")
if pos % 2:
return hexstring
if pos > 1:
filler = hexstring[pos - 2:pos]
else:
filler = hexstring[pos + 2:pos+4]
missing = length * 2 - (len(hexstring) - 2)
if missing <= 0:
return hexstring
return hexstring.replace("..", filler * (missing // 2))
# no change
return hexstring
class JsonEncoder(json.JSONEncoder):
"""Extend the standard library JSONEncoder with support for more types."""
def default(self, o):
if isinstance(o, BytesIO) or isinstance(o, bytes) or isinstance(o, bytearray):
return b2h(o)
return json.JSONEncoder.default(self, o)
def boxed_heading_str(heading, width=80):
"""Generate a string that contains a boxed heading."""
# Auto-enlarge box if heading exceeds length
if len(heading) > width - 4:
width = len(heading) + 4
res = "#" * width
fstr = "\n# %-" + str(width - 4) + "s #\n"
res += fstr % (heading)
res += "#" * width
return res
class DataObject(abc.ABC):
"""A DataObject (DO) in the sense of ISO 7816-4. Contrary to 'normal' TLVs where one
simply has any number of different TLVs that may occur in any order at any point, ISO 7816
has the habit of specifying TLV data but with very spcific ordering, or specific choices of
tags at specific points in a stream. This class tries to represent this."""
def __init__(self, name: str, desc: Optional[str] = None, tag: Optional[int] = None):
"""
Args:
name: A brief, all-lowercase, underscore separated string identifier
desc: A human-readable description of what this DO represents
tag : The tag associated with this DO
"""
self.name = name
self.desc = desc
self.tag = tag
self.decoded = None
self.encoded = None
def __str__(self):
return self.name
def __repr__(self) -> str:
return '%s(%s)' % (self.__class__, self.name)
def __or__(self, other) -> 'DataObjectChoice':
"""OR-ing DataObjects together renders a DataObjectChoice."""
if isinstance(other, DataObject):
# DataObject | DataObject = DataObjectChoice
return DataObjectChoice(None, members=[self, other])
else:
raise TypeError
def __add__(self, other) -> 'DataObjectCollection':
"""ADD-ing DataObjects together renders a DataObjectCollection."""
if isinstance(other, DataObject):
# DataObject + DataObject = DataObjectCollectin
return DataObjectCollection(None, members=[self, other])
else:
raise TypeError
def _compute_tag(self) -> int:
"""Compute the tag (sometimes the tag encodes part of the value)."""
return self.tag
def to_dict(self) -> dict:
"""Return a dict in form "name: decoded_value" """
return {self.name: self.decoded}
@abc.abstractmethod
def from_bytes(self, do: bytes):
"""Parse the value part of the DO into the internal state of this instance.
Args:
do : binary encoded bytes
"""
@abc.abstractmethod
def to_bytes(self) -> bytes:
"""Encode the internal state of this instance into the TLV value part.
Returns:
binary bytes encoding the internal state
"""
def from_tlv(self, do: bytes) -> bytes:
"""Parse binary TLV representation into internal state. The resulting decoded
representation is _not_ returned, but just internalized in the object instance!
Args:
do : input bytes containing TLV-encoded representation
Returns:
bytes remaining at end of 'do' after parsing one TLV/DO.
"""
if do[0] != self.tag:
raise ValueError('%s: Can only decode tag 0x%02x' %
(self, self.tag))
length = do[1]
val = do[2:2+length]
self.from_bytes(val)
# return remaining bytes
return do[2+length:]
def to_tlv(self) -> bytes:
"""Encode internal representation to binary TLV.
Returns:
bytes encoded in TLV format.
"""
val = self.to_bytes()
return bertlv_encode_tag(self._compute_tag()) + bertlv_encode_len(len(val)) + val
# 'codec' interface
def decode(self, binary: bytes) -> Tuple[dict, bytes]:
"""Decode a single DOs from the input data.
Args:
binary : binary bytes of encoded data
Returns:
tuple of (decoded_result, binary_remainder)
"""
tag = binary[0]
if tag != self.tag:
raise ValueError('%s: Unknown Tag 0x%02x in %s; expected 0x%02x' %
(self, tag, binary, self.tag))
remainder = self.from_tlv(binary)
return (self.to_dict(), remainder)
# 'codec' interface
def encode(self) -> bytes:
return self.to_tlv()
class TL0_DataObject(DataObject):
"""Data Object that has Tag, Len=0 and no Value part."""
def __init__(self, name: str, desc: str, tag: int, val=None):
super().__init__(name, desc, tag)
self.val = val
def from_bytes(self, binary: bytes):
if len(binary) != 0:
raise ValueError
self.decoded = self.val
def to_bytes(self) -> bytes:
return b''
class DataObjectCollection:
"""A DataObjectCollection consits of multiple Data Objects identified by their tags.
A given encoded DO may contain any of them in any order, and may contain multiple instances
of each DO."""
def __init__(self, name: str, desc: Optional[str] = None, members=None):
self.name = name
self.desc = desc
self.members = members or []
self.members_by_tag = {}
self.members_by_name = {}
self.members_by_tag = {m.tag: m for m in members}
self.members_by_name = {m.name: m for m in members}
def __str__(self) -> str:
member_strs = [str(x) for x in self.members]
return '%s(%s)' % (self.name, ','.join(member_strs))
def __repr__(self) -> str:
member_strs = [repr(x) for x in self.members]
return '%s(%s)' % (self.__class__, ','.join(member_strs))
def __add__(self, other) -> 'DataObjectCollection':
"""Extending DataCollections with other DataCollections or DataObjects."""
if isinstance(other, DataObjectCollection):
# adding one collection to another
members = self.members + other.members
return DataObjectCollection(self.name, self.desc, members)
elif isinstance(other, DataObject):
# adding a member to a collection
return DataObjectCollection(self.name, self.desc, self.members + [other])
else:
raise TypeError
# 'codec' interface
def decode(self, binary: bytes) -> Tuple[List, bytes]:
"""Decode any number of DOs from the collection until the end of the input data,
or uninitialized memory (0xFF) is found.
Args:
binary : binary bytes of encoded data
Returns:
tuple of (decoded_result, binary_remainder)
"""
res = []
remainder = binary
# iterate until no binary trailer is left
while len(remainder):
tag = remainder[0]
if tag == 0xff: # uninitialized memory at the end?
return (res, remainder)
if not tag in self.members_by_tag:
raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' %
(self, tag, remainder, self.members_by_tag.keys()))
obj = self.members_by_tag[tag]
# DO from_tlv returns remainder of binary
remainder = obj.from_tlv(remainder)
# collect our results
res.append(obj.to_dict())
return (res, remainder)
# 'codec' interface
def encode(self, decoded) -> bytes:
res = bytearray()
for i in decoded:
obj = self.members_by_name(i[0])
res.append(obj.to_tlv())
return res
class DataObjectChoice(DataObjectCollection):
"""One Data Object from within a choice, identified by its tag.
This means that exactly one member of the choice must occur, and which one occurs depends
on the tag."""
def __add__(self, other):
"""We overload the add operator here to avoid inheriting it from DataObjecCollection."""
raise TypeError
def __or__(self, other) -> 'DataObjectChoice':
"""OR-ing a Choice to another choice extends the choice, as does OR-ing a DataObject."""
if isinstance(other, DataObjectChoice):
# adding one collection to another
members = self.members + other.members
return DataObjectChoice(self.name, self.desc, members)
elif isinstance(other, DataObject):
# adding a member to a collection
return DataObjectChoice(self.name, self.desc, self.members + [other])
else:
raise TypeError
# 'codec' interface
def decode(self, binary: bytes) -> Tuple[dict, bytes]:
"""Decode a single DOs from the choice based on the tag.
Args:
binary : binary bytes of encoded data
Returns:
tuple of (decoded_result, binary_remainder)
"""
tag = binary[0]
if tag == 0xff:
return (None, binary)
if not tag in self.members_by_tag:
raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' %
(self, tag, binary, self.members_by_tag.keys()))
obj = self.members_by_tag[tag]
remainder = obj.from_tlv(binary)
return (obj.to_dict(), remainder)
# 'codec' interface
def encode(self, decoded) -> bytes:
obj = self.members_by_name[list(decoded)[0]]
obj.decoded = list(decoded.values())[0]
return obj.to_tlv()
class DataObjectSequence:
"""A sequence of DataObjects or DataObjectChoices. This allows us to express a certain
ordered sequence of DOs or choices of DOs that have to appear as per the specification.
By wrapping them into this formal DataObjectSequence, we can offer convenience methods
for encoding or decoding an entire sequence."""
def __init__(self, name: str, desc: Optional[str] = None, sequence=None):
self.sequence = sequence or []
self.name = name
self.desc = desc
def __str__(self) -> str:
member_strs = [str(x) for x in self.sequence]
return '%s(%s)' % (self.name, ','.join(member_strs))
def __repr__(self) -> str:
member_strs = [repr(x) for x in self.sequence]
return '%s(%s)' % (self.__class__, ','.join(member_strs))
def __add__(self, other) -> 'DataObjectSequence':
"""Add (append) a DataObject or DataObjectChoice to the sequence."""
if isinstance(other, 'DataObject'):
return DataObjectSequence(self.name, self.desc, self.sequence + [other])
elif isinstance(other, 'DataObjectChoice'):
return DataObjectSequence(self.name, self.desc, self.sequence + [other])
elif isinstance(other, 'DataObjectSequence'):
return DataObjectSequence(self.name, self.desc, self.sequence + other.sequence)
# 'codec' interface
def decode(self, binary: bytes) -> Tuple[list, bytes]:
"""Decode a sequence by calling the decoder of each element in the sequence.
Args:
binary : binary bytes of encoded data
Returns:
tuple of (decoded_result, binary_remainder)
"""
remainder = binary
res = []
for e in self.sequence:
(r, remainder) = e.decode(remainder)
if r:
res.append(r)
return (res, remainder)
# 'codec' interface
def decode_multi(self, do: bytes) -> Tuple[list, bytes]:
"""Decode multiple occurrences of the sequence from the binary input data.
Args:
do : binary input data to be decoded
Returns:
list of results of the decoder of this sequences
"""
remainder = do
res = []
while len(remainder):
(r, remainder2) = self.decode(remainder)
if r:
res.append(r)
if len(remainder2) < len(remainder):
remainder = remainder2
else:
remainder = remainder2
break
return (res, remainder)
# 'codec' interface
def encode(self, decoded) -> bytes:
"""Encode a sequence by calling the encoder of each element in the sequence."""
encoded = bytearray()
i = 0
for e in self.sequence:
encoded += e.encode(decoded[i])
i += 1
return encoded
def encode_multi(self, decoded) -> bytes:
"""Encode multiple occurrences of the sequence from the decoded input data.
Args:
decoded : list of json-serializable input data; one sequence per list item
Returns:
binary encoded output data
"""
encoded = bytearray()
for d in decoded:
encoded += self.encode(d)
return encoded
class CardCommand:
"""A single card command / instruction."""
def __init__(self, name, ins, cla_list=None, desc=None):
self.name = name
self.ins = ins
self.cla_list = cla_list or []
self.cla_list = [x.lower() for x in self.cla_list]
self.desc = desc
def __str__(self):
return self.name
def __repr__(self):
return '%s(INS=%02x,CLA=%s)' % (self.name, self.ins, self.cla_list)
def match_cla(self, cla):
"""Does the given CLA match the CLA list of the command?."""
if not isinstance(cla, str):
cla = '%02u' % cla
cla = cla.lower()
for cla_match in self.cla_list:
cla_masked = ""
for i in range(0, 2):
if cla_match[i] == 'x':
cla_masked += 'x'
else:
cla_masked += cla[i]
if cla_masked == cla_match:
return True
return False
class CardCommandSet:
"""A set of card instructions, typically specified within one spec."""
def __init__(self, name, cmds=[]):
self.name = name
self.cmds = {c.ins: c for c in cmds}
def __str__(self):
return self.name
def __getitem__(self, idx):
return self.cmds[idx]
def __add__(self, other):
if isinstance(other, CardCommand):
if other.ins in self.cmds:
raise ValueError('%s: INS 0x%02x already defined: %s' %
(self, other.ins, self.cmds[other.ins]))
self.cmds[other.ins] = other
elif isinstance(other, CardCommandSet):
for c in other.cmds.keys():
self.cmds[c] = other.cmds[c]
else:
raise ValueError(
'%s: Unsupported type to add operator: %s' % (self, other))
def lookup(self, ins, cla=None):
"""look-up the command within the CommandSet."""
ins = int(ins)
if not ins in self.cmds:
return None
cmd = self.cmds[ins]
if cla and not cmd.match_cla(cla):
return None
return cmd
def all_subclasses(cls) -> set:
"""Recursively get all subclasses of a specified class"""
return set(cls.__subclasses__()).union([s for c in cls.__subclasses__() for s in all_subclasses(c)])