sdrangelove/sdrbase/dsp/dspengine.cpp

467 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include "dsp/dspengine.h"
#include "dsp/channelizer.h"
#include "dsp/samplefifo.h"
#include "dsp/samplesink.h"
#include "dsp/dspcommands.h"
#include "dsp/samplesource/samplesource.h"
DSPEngine::DSPEngine(MessageQueue* reportQueue, QObject* parent) :
QThread(parent),
m_messageQueue(),
m_reportQueue(reportQueue),
m_state(StNotStarted),
m_sampleSource(NULL),
m_sampleSinks(),
m_sampleRate(0),
m_centerFrequency(0),
m_dcOffsetCorrection(false),
m_iqImbalanceCorrection(false),
m_iOffset(0),
m_qOffset(0),
m_iRange(1 << 16),
m_qRange(1 << 16),
m_imbalance(65536)
{
moveToThread(this);
}
DSPEngine::~DSPEngine()
{
wait();
}
void DSPEngine::start()
{
DSPPing cmd;
QThread::start();
cmd.execute(&m_messageQueue);
}
void DSPEngine::stop()
{
DSPExit cmd;
cmd.execute(&m_messageQueue);
}
bool DSPEngine::startAcquisition()
{
DSPAcquisitionStart cmd;
return cmd.execute(&m_messageQueue) == StRunning;
}
void DSPEngine::stopAcquistion()
{
DSPAcquisitionStop cmd;
cmd.execute(&m_messageQueue);
}
void DSPEngine::setSource(SampleSource* source)
{
DSPSetSource cmd(source);
cmd.execute(&m_messageQueue);
}
void DSPEngine::addSink(SampleSink* sink)
{
DSPAddSink cmd(sink);
cmd.execute(&m_messageQueue);
}
void DSPEngine::removeSink(SampleSink* sink)
{
DSPRemoveSink cmd(sink);
cmd.execute(&m_messageQueue);
}
void DSPEngine::addAudioSource(AudioFifo* audioFifo)
{
DSPAddAudioSource cmd(audioFifo);
cmd.execute(&m_messageQueue);
}
void DSPEngine::removeAudioSource(AudioFifo* audioFifo)
{
DSPRemoveAudioSource cmd(audioFifo);
cmd.execute(&m_messageQueue);
}
void DSPEngine::configureCorrections(bool dcOffsetCorrection, bool iqImbalanceCorrection)
{
Message* cmd = DSPConfigureCorrection::create(dcOffsetCorrection, iqImbalanceCorrection);
cmd->submit(&m_messageQueue);
}
void DSPEngine::configureAudioOutput(const QString& audioOutput, quint32 audioOutputRate)
{
Message* cmd = DSPConfigureAudioOutput::create(audioOutput, audioOutputRate);
cmd->submit(&m_messageQueue);
}
QString DSPEngine::errorMessage()
{
DSPGetErrorMessage cmd;
cmd.execute(&m_messageQueue);
return cmd.getErrorMessage();
}
QString DSPEngine::deviceDescription()
{
DSPGetDeviceDescription cmd;
cmd.execute(&m_messageQueue);
return cmd.getDeviceDescription();
}
void DSPEngine::run()
{
connect(&m_messageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleMessages()), Qt::QueuedConnection);
m_state = StIdle;
handleMessages();
exec();
}
void DSPEngine::dcOffset(SampleVector::iterator begin, SampleVector::iterator end)
{
int count = end - begin;
int io = 0;
int qo = 0;
// sum all sample components
for(SampleVector::iterator it = begin; it < end; it++) {
io += it->real();
qo += it->imag();
}
// build a sliding average (el cheapo style)
m_iOffset = (m_iOffset * 3 + io / count) >> 2;
m_qOffset = (m_qOffset * 3 + qo / count) >> 2;
// correct samples
Sample corr(m_iOffset, m_qOffset);
for(SampleVector::iterator it = begin; it < end; it++)
*it -= corr;
}
void DSPEngine::imbalance(SampleVector::iterator begin, SampleVector::iterator end)
{
int iMin = 0;
int iMax = 0;
int qMin = 0;
int qMax = 0;
// find value ranges for both I and Q
// both intervals should be same same size (for a perfect circle)
for(SampleVector::iterator it = begin; it < end; it++) {
if(it != begin) {
if(it->real() < iMin)
iMin = it->real();
else if(it->real() > iMax)
iMax = it->real();
if(it->imag() < qMin)
qMin = it->imag();
else if(it->imag() > qMax)
qMax = it->imag();
} else {
iMin = it->real();
iMax = it->real();
qMin = it->imag();
qMax = it->imag();
}
}
// sliding average (el cheapo again)
m_iRange = (m_iRange * 15 + (iMax - iMin)) >> 4;
m_qRange = (m_qRange * 15 + (qMax - qMin)) >> 4;
// calculate imbalance as Q15.16
if(m_qRange != 0)
m_imbalance = ((uint)m_iRange << 16) / (uint)m_qRange;
// correct imbalance and convert back to signed int 16
for(SampleVector::iterator it = begin; it < end; it++)
it->m_imag = (it->m_imag * m_imbalance) >> 16;
}
void DSPEngine::work()
{
SampleFifo* sampleFifo = m_sampleSource->getSampleFifo();
size_t samplesDone = 0;
bool firstOfBurst = true;
while((sampleFifo->fill() > 0) && (m_messageQueue.countPending() == 0) && (samplesDone < m_sampleRate / 2)) {
SampleVector::iterator part1begin;
SampleVector::iterator part1end;
SampleVector::iterator part2begin;
SampleVector::iterator part2end;
size_t count = sampleFifo->readBegin(sampleFifo->fill(), &part1begin, &part1end, &part2begin, &part2end);
// first part of FIFO data
if(part1begin != part1end) {
// correct stuff
if(m_dcOffsetCorrection)
dcOffset(part1begin, part1end);
if(m_iqImbalanceCorrection)
imbalance(part1begin, part1end);
// feed data to handlers
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); ++it)
(*it)->feed(part1begin, part1end, firstOfBurst);
firstOfBurst = false;
}
// second part of FIFO data (used when block wraps around)
if(part2begin != part2end) {
// correct stuff
if(m_dcOffsetCorrection)
dcOffset(part2begin, part2end);
if(m_iqImbalanceCorrection)
imbalance(part2begin, part2end);
// feed data to handlers
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); ++it)
(*it)->feed(part2begin, part2end, firstOfBurst);
firstOfBurst = false;
}
// adjust FIFO pointers
sampleFifo->readCommit(count);
samplesDone += count;
}
}
DSPEngine::State DSPEngine::gotoIdle()
{
switch(m_state) {
case StNotStarted:
return StNotStarted;
case StIdle:
case StError:
return StIdle;
case StRunning:
break;
}
if(m_sampleSource == NULL)
return StIdle;
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); it++)
(*it)->stop();
m_sampleSource->stopInput();
m_deviceDescription.clear();
m_audioOutput.stop();
m_sampleRate = 0;
return StIdle;
}
DSPEngine::State DSPEngine::gotoRunning()
{
switch(m_state) {
case StNotStarted:
return StNotStarted;
case StRunning:
return StRunning;
case StIdle:
case StError:
break;
}
if(m_sampleSource == NULL)
return gotoError("No sample source configured");
m_iOffset = 0;
m_qOffset = 0;
m_iRange = 1 << 16;
m_qRange = 1 << 16;
if(!m_sampleSource->startInput(0))
return gotoError("Could not start sample source");
m_deviceDescription = m_sampleSource->getDeviceDescription();
if(!m_audioOutput.start()) {
m_sampleSource->stopInput();
return gotoError(m_audioOutput.getError());
}
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); it++)
(*it)->start();
m_sampleRate = 0; // make sure, report is sent
generateReport();
return StRunning;
}
DSPEngine::State DSPEngine::gotoError(const QString& errorMessage)
{
m_errorMessage = errorMessage;
m_deviceDescription.clear();
m_state = StError;
return StError;
}
void DSPEngine::handleSetSource(SampleSource* source)
{
gotoIdle();
if(m_sampleSource != NULL)
disconnect(m_sampleSource->getSampleFifo(), SIGNAL(dataReady()), this, SLOT(handleData()));
m_sampleSource = source;
if(m_sampleSource != NULL)
connect(m_sampleSource->getSampleFifo(), SIGNAL(dataReady()), this, SLOT(handleData()), Qt::QueuedConnection);
generateReport();
}
void DSPEngine::generateReport()
{
bool needReport = false;
int sampleRate;
quint64 centerFrequency;
if(m_sampleSource != NULL) {
sampleRate = m_sampleSource->getSampleRate();
centerFrequency = m_sampleSource->getCenterFrequency();
} else {
sampleRate = 100000;
centerFrequency = 100000000;
}
if(sampleRate != m_sampleRate) {
m_sampleRate = sampleRate;
needReport = true;
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); it++) {
DSPSignalNotification* signal = DSPSignalNotification::create(m_sampleRate, 0);
signal->submit(&m_messageQueue, *it);
}
}
if(centerFrequency != m_centerFrequency) {
m_centerFrequency = centerFrequency;
needReport = true;
}
if(needReport) {
Message* rep = DSPEngineReport::create(m_sampleRate, m_centerFrequency);
rep->submit(m_reportQueue);
}
}
bool DSPEngine::distributeMessage(Message* message)
{
if(m_sampleSource != NULL) {
if((message->getDestination() == NULL) || (message->getDestination() == m_sampleSource)) {
if(m_sampleSource->handleMessage(message)) {
generateReport();
return true;
}
}
}
for(SampleSinks::const_iterator it = m_sampleSinks.begin(); it != m_sampleSinks.end(); it++) {
if((message->getDestination() == NULL) || (message->getDestination() == *it)) {
if((*it)->handleMessage(message))
return true;
}
}
return false;
}
void DSPEngine::handleData()
{
if(m_state == StRunning)
work();
}
void DSPEngine::handleMessages()
{
Message* message;
while((message = m_messageQueue.accept()) != NULL) {
//qDebug("Message: %s", message->getIdentifier());
if(DSPPing::match(message)) {
message->completed(m_state);
} else if(DSPExit::match(message)) {
gotoIdle();
m_state = StNotStarted;
exit();
message->completed(m_state);
} else if(DSPAcquisitionStart::match(message)) {
m_state = gotoIdle();
if(m_state == StIdle)
m_state = gotoRunning();
message->completed(m_state);
} else if(DSPAcquisitionStop::match(message)) {
m_state = gotoIdle();
message->completed(m_state);
} else if(DSPGetDeviceDescription::match(message)) {
DSPGetDeviceDescription::cast(message)->setDeviceDescription(m_deviceDescription);
message->completed();
} else if(DSPGetErrorMessage::match(message)) {
((DSPGetErrorMessage*)message)->setErrorMessage(m_errorMessage);
message->completed();
} else if(DSPSetSource::match(message)) {
handleSetSource(DSPSetSource::cast(message)->getSampleSource());
message->completed();
} else if(DSPAddSink::match(message)) {
SampleSink* sink = DSPAddSink::cast(message)->getSampleSink();
if(m_state == StRunning) {
DSPSignalNotification* signal = DSPSignalNotification::create(m_sampleRate, 0);
signal->submit(&m_messageQueue, sink);
sink->start();
}
m_sampleSinks.push_back(sink);
message->completed();
} else if(DSPRemoveSink::match(message)) {
SampleSink* sink = ((DSPAddSink*)message)->getSampleSink();
if(m_state == StRunning)
sink->stop();
m_sampleSinks.remove(sink);
message->completed();
} else if(DSPAddAudioSource::match(message)) {
m_audioOutput.addFifo(DSPAddAudioSource::cast(message)->getAudioFifo());
message->completed();
} else if(DSPRemoveAudioSource::match(message)) {
m_audioOutput.removeFifo(((DSPAddAudioSource*)message)->getAudioFifo());
message->completed();
} else if(DSPConfigureAudioOutput::match(message)) {
DSPConfigureAudioOutput* conf = DSPConfigureAudioOutput::cast(message);
m_audioOutput.configure(conf->getAudioOutputDevice(), conf->getAudioOutputRate());
} else if(DSPConfigureCorrection::match(message)) {
DSPConfigureCorrection* conf = DSPConfigureCorrection::cast(message);
m_iqImbalanceCorrection = conf->getIQImbalanceCorrection();
if(m_dcOffsetCorrection != conf->getDCOffsetCorrection()) {
m_dcOffsetCorrection = conf->getDCOffsetCorrection();
m_iOffset = 0;
m_qOffset = 0;
}
if(m_iqImbalanceCorrection != conf->getIQImbalanceCorrection()) {
m_iqImbalanceCorrection = conf->getIQImbalanceCorrection();
m_iRange = 1 << 16;
m_qRange = 1 << 16;
m_imbalance = 65536;
}
message->completed();
} else {
if(!distributeMessage(message))
message->completed();
}
}
}