sdrangelove/include-gpl/dsp/inthalfbandfilter.h

314 lines
8.5 KiB
C++

#ifndef INCLUDE_INTHALFBANDFILTER_H
#define INCLUDE_INTHALFBANDFILTER_H
#include <QtGlobal>
#include "dsp/dsptypes.h"
#include "util/export.h"
// uses Q1.14 format internally, input and output are S16
/*
* supported filter orders: 64, 48, 32
*/
#define HB_FILTERORDER 32
#define HB_SHIFT 14
class SDRANGELOVE_API IntHalfbandFilter {
public:
IntHalfbandFilter();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
{
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
switch(m_state) {
case 0:
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return edges of spectrum rotated into center
bool workDecimateFullRotate(Sample* sample)
{
switch(m_state) {
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->real();
m_samples[m_ptr][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(Sample* sample)
{
switch(m_state) {
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->imag();
m_samples[m_ptr][1] = sample->real();
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->real();
m_samples[m_ptr][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->imag();
m_samples[m_ptr][1] = -sample->real();
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
switch(m_state) {
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->imag();
m_samples[m_ptr][1] = -sample->real();
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->real();
m_samples[m_ptr][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->imag();
m_samples[m_ptr][1] = sample->real();
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
protected:
qint16 m_samples[HB_FILTERORDER + 1][2];
int m_ptr;
int m_state;
void doFIR(Sample* sample)
{
// coefficents
#if HB_FILTERORDER == 64
static const qint32 COEFF[16] = {
-0.001114417441601693505720538368564120901 * (1 << HB_SHIFT),
0.001268007827185253051302527005361753254 * (1 << HB_SHIFT),
-0.001959831378850490895410230152151598304 * (1 << HB_SHIFT),
0.002878308307661380308073439948657323839 * (1 << HB_SHIFT),
-0.004071361818258721100571850826099762344 * (1 << HB_SHIFT),
0.005597288494657440618973431867289036745 * (1 << HB_SHIFT),
-0.007532345003308904551886371336877346039 * (1 << HB_SHIFT),
0.009980346844667375288961963519795972388 * (1 << HB_SHIFT),
-0.013092614174300500062830820979797863401 * (1 << HB_SHIFT),
0.01710934914871829748417297878404497169 * (1 << HB_SHIFT),
-0.022443558692997273018576720460259821266 * (1 << HB_SHIFT),
0.029875811511593811098386197500076377764 * (1 << HB_SHIFT),
-0.041086352085710403647667021687084343284 * (1 << HB_SHIFT),
0.060465467462665789533104998554335907102 * (1 << HB_SHIFT),
-0.104159517495977321788203084906854201108 * (1 << HB_SHIFT),
0.317657589850154464805598308885237202048 * (1 << HB_SHIFT),
};
#elif HB_FILTERORDER == 48
static const qint32 COEFF[12] = {
-0.004102576237611492253332112767338912818 * (1 << HB_SHIFT),
0.003950551047979387886410762575906119309 * (1 << HB_SHIFT),
-0.005807875789391703583164350277456833282 * (1 << HB_SHIFT),
0.00823497890520805998770814682075069868 * (1 << HB_SHIFT),
-0.011372226513199541059195851744334504474 * (1 << HB_SHIFT),
0.015471557140973646315984524335362948477 * (1 << HB_SHIFT),
-0.020944996398689276484450516591095947661 * (1 << HB_SHIFT),
0.028568078132034283034279553703527199104 * (1 << HB_SHIFT),
-0.040015143905614086738964374490024056286 * (1 << HB_SHIFT),
0.059669519431831075095828964549582451582 * (1 << HB_SHIFT),
-0.103669138691865420076609893840213771909 * (1 << HB_SHIFT),
0.317491986549921390015072120149852707982 * (1 << HB_SHIFT)
};
#elif HB_FILTERORDER == 32
static const qint32 COEFF[8] = {
-0.015956912844043127236437484839370881673 * (1 << HB_SHIFT),
0.013023031678944928940522274274371739011 * (1 << HB_SHIFT),
-0.01866942273717486777684371190844103694 * (1 << HB_SHIFT),
0.026550887571157304190005987720724078827 * (1 << HB_SHIFT),
-0.038350314277854319344740474662103224546 * (1 << HB_SHIFT),
0.058429248652825838128421764849917963147 * (1 << HB_SHIFT),
-0.102889802028955756885153505209018476307 * (1 << HB_SHIFT),
0.317237706405931241260276465254719369113 * (1 << HB_SHIFT)
};
#else
#error unsupported filter order
#endif
// init read-pointer
int a = (m_ptr + 1) % (HB_FILTERORDER + 1);
int b = (m_ptr + (HB_FILTERORDER - 1)) % (HB_FILTERORDER + 1);
// go through samples in buffer
qint32 iAcc = 0;
qint32 qAcc = 0;
for(int i = 0; i < HB_FILTERORDER / 4; i++) {
// do multiply-accumulate
qint32 iTmp = m_samples[a][0] + m_samples[b][0];
qint32 qTmp = m_samples[a][1] + m_samples[b][1];
iAcc += iTmp * COEFF[i];
qAcc += qTmp * COEFF[i];
// update read-pointer
a = (a + 2) % (HB_FILTERORDER + 1);
b = (b + (HB_FILTERORDER - 1)) % (HB_FILTERORDER + 1);
}
a = (a + HB_FILTERORDER) % (HB_FILTERORDER + 1);
iAcc += m_samples[a][0] * (qint32)(0.5 * (1 << HB_SHIFT));
qAcc += m_samples[a][1] * (qint32)(0.5 * (1 << HB_SHIFT));
// done, save result
sample->setReal((iAcc + (qint32)(0.5 * (1 << HB_SHIFT))) >> HB_SHIFT);
sample->setImag((qAcc + (qint32)(0.5 * (1 << HB_SHIFT))) >> HB_SHIFT);
}
};
#endif // INCLUDE_INTHALFBANDFILTER_H