/* * fc0012 tuner support for rtl-sdr * * Based on tuner_fc0012.c found as part of the (seemingly GPLed) * rtl2832u Linux DVB driver. * * Rewritten and hacked into rtl-sdr by David Basden */ #include #include #include "rtlsdr_i2c.h" #include "tuner_fc0012.h" #define CRYSTAL_FREQ 28800000 #define FC0012_LNAGAIN FC0012_LNA_GAIN_HI /* Incomplete list of register settings: * * Name Reg Bits Desc * CHIP_ID 0x00 0-7 Chip ID (constant 0xA1) * RF_A 0x01 0-3 Number of count-to-9 cycles in RF * divider (suggested: 2..9) * RF_M 0x02 0-7 Total number of cycles (to-8 and to-9) * in RF divider * RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider * RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider * RF_OUTDIV_A 0x05 3-7 Power of two required? * LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp * RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the * RF output divider * VCO_SPEED 0x06 3 Select tuning range of VCO: * 0 = Low range, (ca. 1.1 - 1.5GHz) * 1 = High range (ca. 1.4 - 1.8GHz) * BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40 * 8MHz=0x00 * XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input * or 0 for 36MHz * 0x08 0-7 * EN_CAL_RSSI 0x09 4 Enable calibrate RSSI * (Receive Signal Strength Indicator) * LNA_FORCE 0x0d 0 * AGC_FORCE 0x0d ? * LNA_GAIN 0x13 3-4 Low noise amp gain * LNA_COMPS 0x15 3 ? * VCO_CALIB 0x0e 7 Set high then low to calibrate VCO * (fast lock?) * VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO * (big value -> low freq) */ /* glue functions to rtl-sdr code */ int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte) { uint8_t data[2]; data[0] = RegAddr; data[1] = Byte; if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, data, 2) < 0) return FC0012_ERROR; return FC0012_OK; } int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte) { uint8_t data = RegAddr; if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0) return FC0012_ERROR; if (rtlsdr_i2c_read_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0) return FC0012_ERROR; *pByte = data; return FC0012_OK; } #ifdef DEBUG #define DEBUGF printf #else #define DEBUGF(...) () #endif #if 0 void FC0012_Dump_Registers() { #ifdef DEBUG unsigned char regBuf; int ret; int i; DEBUGF("\nFC0012 registers:\n"); for (i=0; i<=0x15; ++i) { ret = FC0012_Read(pTuner, i, ®Buf); if (ret) DEBUGF("\nCouldn't read register %02x\n", i); DEBUGF("R%x=%02x ",i,regBuf); } DEBUGF("\n"); FC0012_Read(pTuner, 0x06, ®Buf); DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down"); DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed"); DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz"); FC0012_Read(pTuner, 0x07, ®Buf); DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ"); FC0012_Read(pTuner, 0x09, ®Buf); DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS" : "Disabled"); FC0012_Read(pTuner, 0x0d, ®Buf); DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced"); FC0012_Read(pTuner, 0x13, ®Buf); DEBUGF("LNA Gain:\t"); switch (regBuf & 0x18) { case (0x00): DEBUGF("Low\n"); break; case (0x08): DEBUGF("Middle\n"); break; case (0x10): DEBUGF("High\n"); break; default: DEBUGF("unknown gain value 0x18\n"); } #endif } #endif int FC0012_Open(void *pTuner) { // DEBUGF("FC0012_Open start"); if (FC0012_Write(pTuner, 0x01, 0x05)) return -1; if (FC0012_Write(pTuner, 0x02, 0x10)) return -1; if (FC0012_Write(pTuner, 0x03, 0x00)) return -1; if (FC0012_Write(pTuner, 0x04, 0x00)) return -1; if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1; if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8 if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency //if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1; if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1; if (FC0012_Write(pTuner, 0x10, 0x00)) return -1; if (FC0012_Write(pTuner, 0x11, 0x00)) return -1; if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1; if (FC0012_Write(pTuner, 0x14, 0x00)) return -1; if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS /* Black magic from nim_rtl2832_fc0012.c in DVB driver. Even though we've set 0x11 to 0x00 above, this needs to happen to have it go back */ if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1; if (FC0012_Write(pTuner, 0x11, 0x00)) return -1; if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // DEBUGF("FC0012_Open SUCCESS"); return FC0012_OK; } # if 0 // Frequency is in kHz. Bandwidth is in MHz // This is pseudocode to set GPIO6 for VHF/UHF filter switching. // Trying to do this in reality leads to fail currently. I'm probably doing it wrong. void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth) { if( Frequency < 260000 && Frequency > 150000 ) { // set GPIO6 = low // 1. Set tuner frequency // 2. if the program quality is not good enough, switch to frequency + 500kHz // 3. if the program quality is still no good, switch to frequency - 500kHz } else { // set GPIO6 = high // set tuner frequency } } #endif int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth) { int VCO_band = 0; unsigned long doubleVCO; unsigned short xin, xdiv; unsigned char reg[21], am, pm, multi; unsigned char read_byte; unsigned long CrystalFreqKhz; // DEBUGF("FC0012_SetFrequency start"); CrystalFreqKhz = (rtlsdr_get_tuner_clock(pTuner) + 500) / 1000; //===================================== Select frequency divider and the frequency of VCO if (Frequency * 96 < 3560000) { multi = 96; reg[5] = 0x82; reg[6] = 0x00; } else if (Frequency * 64 < 3560000) { multi = 64; reg[5] = 0x82; reg[6] = 0x02; } else if (Frequency * 48 < 3560000) { multi = 48; reg[5] = 0x42; reg[6] = 0x00; } else if (Frequency * 32 < 3560000) { multi = 32; reg[5] = 0x42; reg[6] = 0x02; } else if (Frequency * 24 < 3560000) { multi = 24; reg[5] = 0x22; reg[6] = 0x00; } else if (Frequency * 16 < 3560000) { multi = 16; reg[5] = 0x22; reg[6] = 0x02; } else if (Frequency * 12 < 3560000) { multi = 12; reg[5] = 0x12; reg[6] = 0x00; } else if (Frequency * 8 < 3560000) { multi = 8; reg[5] = 0x12; reg[6] = 0x02; } else if (Frequency * 6 < 3560000) { multi = 6; reg[5] = 0x0A; reg[6] = 0x00; } else { multi = 4; reg[5] = 0x0A; reg[6] = 0x02; } doubleVCO = Frequency * multi; reg[6] = reg[6] | 0x08; VCO_band = 1; xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2)); if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) ) xdiv = xdiv + 1; pm = (unsigned char)( xdiv / 8 ); am = (unsigned char)( xdiv - (8 * pm)); if (am < 2) { reg[1] = am + 8; reg[2] = pm - 1; } else { reg[1] = am; reg[2] = pm; } // From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV). xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2)); xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2)); if( xin >= (unsigned short) 16384 ) xin = xin + (unsigned short) 32768; reg[3] = (unsigned char)(xin >> 8); reg[4] = (unsigned char)(xin & 0x00FF); // DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin); switch(Bandwidth) { case 6: reg[6] = 0x80 | reg[6]; break; case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break; case 8: default: reg[6] = ~0xC0 & reg[6]; break; } if (FC0012_Write(pTuner, 0x01, reg[1])) return -1; if (FC0012_Write(pTuner, 0x02, reg[2])) return -1; if (FC0012_Write(pTuner, 0x03, reg[3])) return -1; if (FC0012_Write(pTuner, 0x04, reg[4])) return -1; //reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there? if (FC0012_Write(pTuner, 0x05, reg[5])) return -1; if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; // VCO Calibration if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; // Read resulting VCO control voltage if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1; reg[14] = 0x3F & read_byte; // Adjust VCO range if control voltage is at the limit if (VCO_band) { // high-band VCO hitting low frequency bound if (reg[14] > 0x3C) { // select low-band VCO reg[6] = ~0x08 & reg[6]; if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; } } else { // low-band VCO hitting high frequency bound if (reg[14] < 0x02) { // select high-band VCO reg[6] = 0x08 | reg[6]; if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; } } // DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers(); return FC0012_OK; }