/* * Rafael Micro R820T/R828D driver * * Copyright (C) 2013 Mauro Carvalho Chehab * Copyright (C) 2013 Steve Markgraf * * This driver is a heavily modified version of the driver found in the * Linux kernel: * http://git.linuxtv.org/linux-2.6.git/history/HEAD:/drivers/media/tuners/r820t.c * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include "rtlsdr_i2c.h" #include "tuner_r82xx.h" #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #define MHZ(x) ((x)*1000*1000) #define KHZ(x) ((x)*1000) #define HF 1 #define VHF 2 #define UHF 3 /* * Static constants */ /* Those initial values start from REG_SHADOW_START */ static const uint8_t r82xx_init_array[NUM_REGS] = { 0x83, 0x32, 0x75, /* 05 to 07 */ 0xc0, 0x40, 0xd6, 0x6c, /* 08 to 0b */ 0xf5, 0x63, 0x75, 0x68, /* 0c to 0f */ 0x6c, 0x83, 0x80, 0x00, /* 10 to 13 */ 0x0f, 0x00, 0xc0, 0x30, /* 14 to 17 */ 0x48, 0xcc, 0x60, 0x00, /* 18 to 1b */ 0x54, 0xae, 0x4a, 0xc0 /* 1c to 1f */ }; /* Tuner frequency ranges */ static const struct r82xx_freq_range freq_ranges[] = { { /* .freq = */ 0, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0xdf, /* R27[7:0] band2,band0 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 50, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0xbe, /* R27[7:0] band4,band1 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 55, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x8b, /* R27[7:0] band7,band4 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 60, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x7b, /* R27[7:0] band8,band4 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 65, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x69, /* R27[7:0] band9,band6 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 70, /* Start freq, in MHz */ /* .open_d = */ 0x08, /* low */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x58, /* R27[7:0] band10,band7 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 75, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x44, /* R27[7:0] band11,band11 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 80, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x44, /* R27[7:0] band11,band11 */ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 90, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x34, /* R27[7:0] band12,band11 */ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 100, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x34, /* R27[7:0] band12,band11 */ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 110, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x24, /* R27[7:0] band13,band11 */ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 120, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x24, /* R27[7:0] band13,band11 */ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 140, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x14, /* R27[7:0] band14,band11 */ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */ /* .xtal_cap10p = */ 0x01, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 180, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x13, /* R27[7:0] band14,band12 */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 220, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x13, /* R27[7:0] band14,band12 */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 250, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x11, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 280, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 310, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 450, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 588, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, }, { /* .freq = */ 650, /* Start freq, in MHz */ /* .open_d = */ 0x00, /* high */ /* .rf_mux_ploy = */ 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */ /* .xtal_cap10p = */ 0x00, /* .xtal_cap0p = */ 0x00, } }; static int r82xx_xtal_capacitor[][2] = { { 0x0b, XTAL_LOW_CAP_30P }, { 0x02, XTAL_LOW_CAP_20P }, { 0x01, XTAL_LOW_CAP_10P }, { 0x00, XTAL_LOW_CAP_0P }, { 0x10, XTAL_HIGH_CAP_0P }, }; /* * I2C read/write code and shadow registers logic */ static void shadow_store(struct r82xx_priv *priv, uint8_t reg, const uint8_t *val, int len) { int r = reg - REG_SHADOW_START; if (r < 0) { len += r; val -= r; r = 0; } if (len <= 0) return; if (len > NUM_REGS - r) len = NUM_REGS - r; memcpy(&priv->regs[r], val, len); } static bool shadow_equal(struct r82xx_priv *priv, uint8_t reg, const uint8_t *val, int len) { int r = reg - REG_SHADOW_START; if (r < 0 || len < 0 || len > NUM_REGS - r) return false; if (memcmp(&priv->regs[r], val, len) == 0) return true; return false; } static int r82xx_write(struct r82xx_priv *priv, uint8_t reg, const uint8_t *val, unsigned int len) { int rc, size, pos = 0; /* Avoid setting registers unnecessarily since it's slow */ if (shadow_equal(priv, reg, val, len)) return 0; /* Store the shadow registers */ shadow_store(priv, reg, val, len); do { if (len > priv->cfg->max_i2c_msg_len - 1) size = priv->cfg->max_i2c_msg_len - 1; else size = len; /* Fill I2C buffer */ priv->buf[0] = reg; memcpy(&priv->buf[1], &val[pos], size); rc = rtlsdr_i2c_write_fn(priv->rtl_dev, priv->cfg->i2c_addr, priv->buf, size + 1); if (rc != size + 1) { fprintf(stderr, "%s: i2c wr failed=%d reg=%02x len=%d\n", __FUNCTION__, rc, reg, size); if (rc < 0) return rc; return -1; } reg += size; len -= size; pos += size; } while (len > 0); return 0; } static int r82xx_write_reg(struct r82xx_priv *priv, uint8_t reg, uint8_t val) { return r82xx_write(priv, reg, &val, 1); } static int r82xx_read_cache_reg(struct r82xx_priv *priv, int reg) { reg -= REG_SHADOW_START; if (reg >= 0 && reg < NUM_REGS) return priv->regs[reg]; else return -1; } static int r82xx_write_reg_mask(struct r82xx_priv *priv, uint8_t reg, uint8_t val, uint8_t bit_mask) { int rc = r82xx_read_cache_reg(priv, reg); if (rc < 0) return rc; val = (rc & ~bit_mask) | (val & bit_mask); return r82xx_write(priv, reg, &val, 1); } static uint8_t r82xx_bitrev(uint8_t byte) { const uint8_t lut[16] = { 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf }; return (lut[byte & 0xf] << 4) | lut[byte >> 4]; } static int r82xx_read(struct r82xx_priv *priv, uint8_t reg, uint8_t *val, int len) { int rc, i; uint8_t *p = &priv->buf[1]; priv->buf[0] = reg; rc = rtlsdr_i2c_write_fn(priv->rtl_dev, priv->cfg->i2c_addr, priv->buf, 1); if (rc != 1) { fprintf(stderr, "%s: i2c wr failed=%d reg=%02x len=%d\n", __FUNCTION__, rc, reg, 1); if (rc < 0) return rc; return -1; } rc = rtlsdr_i2c_read_fn(priv->rtl_dev, priv->cfg->i2c_addr, p, len); if (rc != len) { fprintf(stderr, "%s: i2c rd failed=%d reg=%02x len=%d\n", __FUNCTION__, rc, reg, len); if (rc < 0) return rc; return -1; } /* Copy data to the output buffer */ for (i = 0; i < len; i++) val[i] = r82xx_bitrev(p[i]); return 0; } /* * r82xx tuning logic */ static int r82xx_set_mux(struct r82xx_priv *priv, uint32_t freq) { const struct r82xx_freq_range *range; int rc; unsigned int i; uint8_t val; /* Get the proper frequency range */ freq = freq / 1000000; for (i = 0; i < ARRAY_SIZE(freq_ranges) - 1; i++) { if (freq < freq_ranges[i + 1].freq) break; } range = &freq_ranges[i]; /* Open Drain */ rc = r82xx_write_reg_mask(priv, 0x17, range->open_d, 0x08); if (rc < 0) return rc; /* RF_MUX,Polymux */ rc = r82xx_write_reg_mask(priv, 0x1a, range->rf_mux_ploy, 0xc3); if (rc < 0) return rc; /* TF BAND */ rc = r82xx_write_reg(priv, 0x1b, range->tf_c); if (rc < 0) return rc; /* XTAL CAP & Drive */ switch (priv->xtal_cap_sel) { case XTAL_LOW_CAP_30P: case XTAL_LOW_CAP_20P: val = range->xtal_cap20p | 0x08; break; case XTAL_LOW_CAP_10P: val = range->xtal_cap10p | 0x08; break; case XTAL_HIGH_CAP_0P: val = range->xtal_cap0p | 0x00; break; default: case XTAL_LOW_CAP_0P: val = range->xtal_cap0p | 0x08; break; } rc = r82xx_write_reg_mask(priv, 0x10, val, 0x0b); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x08, 0x00, 0x3f); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x09, 0x00, 0x3f); return rc; } static inline uint8_t mask_reg8(uint8_t reg, uint8_t val, uint8_t mask) { return (reg & ~mask) | (val & mask); } static int r82xx_set_pll(struct r82xx_priv *priv, uint32_t freq) { int rc, i; unsigned sleep_time = 10000; uint64_t vco_freq; uint64_t vco_div; uint32_t vco_min = 1770000; /* kHz */ uint32_t vco_max = vco_min * 2; /* kHz */ uint32_t freq_khz, pll_ref; uint32_t sdm = 0; uint8_t mix_div = 2; uint8_t div_buf = 0; uint8_t div_num = 0; uint8_t vco_power_ref = 2; uint8_t refdiv2 = 0; uint8_t ni, si, nint, vco_fine_tune, val; uint8_t data[5]; uint8_t regs[7]; /* Frequency in kHz */ freq_khz = (freq + 500) / 1000; pll_ref = priv->cfg->xtal; /* set pll autotune = 128kHz */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x0c); if (rc < 0) return rc; /* regs 0x10 to 0x16 */ memcpy(regs, &priv->regs[0x10 - REG_SHADOW_START], 7); regs[0] = mask_reg8(regs[0], refdiv2, 0x10); /* set VCO current = 100 */ regs[2] = mask_reg8(regs[2], 0x80, 0xe0); /* Calculate divider */ while (mix_div <= 64) { if (((freq_khz * mix_div) >= vco_min) && ((freq_khz * mix_div) < vco_max)) { div_buf = mix_div; while (div_buf > 2) { div_buf = div_buf >> 1; div_num++; } break; } mix_div = mix_div << 1; } rc = r82xx_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; if (priv->cfg->rafael_chip == CHIP_R828D) vco_power_ref = 1; vco_fine_tune = (data[4] & 0x30) >> 4; if (vco_fine_tune > vco_power_ref) div_num = div_num - 1; else if (vco_fine_tune < vco_power_ref) div_num = div_num + 1; regs[0] = mask_reg8(regs[0], div_num << 5, 0xe0); vco_freq = (uint64_t)freq * (uint64_t)mix_div; /* We want to approximate: * vco_freq / (2 * pll_ref) * * in the form: * nint + sdm/65536 * * where nint,sdm are integers and 0 < nint, 0 <= sdm < 65536 * * Scaling to fixed point and rounding: * * vco_div = 65536*(nint + sdm/65536) = int( 0.5 + 65536 * vco_freq / (2 * pll_ref) ) * vco_div = 65536*nint + sdm = int( (pll_ref + 65536 * vco_freq) / (2 * pll_ref) ) */ vco_div = (pll_ref + 65536 * vco_freq) / (2 * pll_ref); nint = (uint32_t) (vco_div / 65536); sdm = (uint32_t) (vco_div % 65536); if (nint > ((128 / vco_power_ref) - 1)) { fprintf(stderr, "[R82XX] No valid PLL values for %u Hz!\n", freq); return -1; } ni = (nint - 13) / 4; si = nint - 4 * ni - 13; regs[4] = ni + (si << 6); /* pw_sdm */ if (sdm == 0) val = 0x08; else val = 0x00; regs[2] = mask_reg8(regs[2], val, 0x08); regs[5] = sdm & 0xff; regs[6] = sdm >> 8; rc = r82xx_write(priv, 0x10, regs, 7); if (rc < 0) return rc; for (i = 0; i < 2; i++) { // usleep_range(sleep_time, sleep_time + 1000); /* Check if PLL has locked */ rc = r82xx_read(priv, 0x00, data, 3); if (rc < 0) return rc; if (data[2] & 0x40) break; if (!i) { /* Didn't lock. Increase VCO current */ rc = r82xx_write_reg_mask(priv, 0x12, 0x60, 0xe0); if (rc < 0) return rc; } } if (!(data[2] & 0x40)) { fprintf(stderr, "[R82XX] PLL not locked!\n"); priv->has_lock = 0; return 0; } priv->has_lock = 1; /* set pll autotune = 8kHz */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x08, 0x08); return rc; } static int r82xx_sysfreq_sel(struct r82xx_priv *priv, uint32_t freq, enum r82xx_tuner_type type, uint32_t delsys) { int rc; uint8_t mixer_top, lna_top, cp_cur, div_buf_cur, lna_vth_l, mixer_vth_l; uint8_t air_cable1_in, cable2_in, pre_dect, lna_discharge, filter_cur; switch (delsys) { case SYS_DVBT: if ((freq == 506000000) || (freq == 666000000) || (freq == 818000000)) { mixer_top = 0x14; /* mixer top:14 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ cp_cur = 0x28; /* 101, 0.2 */ div_buf_cur = 0x20; /* 10, 200u */ } else { mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ } lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; filter_cur = 0x40; /* 10, low */ break; case SYS_DVBT2: mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; case SYS_ISDBT: mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x75; /* lna vth 1.04 , vtl 0.84 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; default: /* DVB-T 8M */ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; } if (priv->cfg->use_predetect) { rc = r82xx_write_reg_mask(priv, 0x06, pre_dect, 0x40); if (rc < 0) return rc; } rc = r82xx_write_reg_mask(priv, 0x1d, lna_top, 0xc7); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0xf8); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x0d, lna_vth_l); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x0e, mixer_vth_l); if (rc < 0) return rc; priv->input = air_cable1_in; /* Air-IN only for Astrometa */ rc = r82xx_write_reg_mask(priv, 0x05, air_cable1_in, 0x60); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x06, cable2_in, 0x08); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x11, cp_cur, 0x38); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x17, div_buf_cur, 0x30); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x0a, filter_cur, 0x60); if (rc < 0) return rc; /* * Set LNA */ if (type != TUNER_ANALOG_TV) { /* LNA TOP: lowest */ rc = r82xx_write_reg_mask(priv, 0x1d, 0, 0x38); if (rc < 0) return rc; /* 0: normal mode */ rc = r82xx_write_reg_mask(priv, 0x1c, 0, 0x04); if (rc < 0) return rc; /* 0: PRE_DECT off */ rc = r82xx_write_reg_mask(priv, 0x06, 0, 0x40); if (rc < 0) return rc; /* agc clk 250hz */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x30, 0x30); if (rc < 0) return rc; // msleep(250); /* write LNA TOP = 3 */ rc = r82xx_write_reg_mask(priv, 0x1d, 0x18, 0x38); if (rc < 0) return rc; /* * write discharge mode * FIXME: IMHO, the mask here is wrong, but it matches * what's there at the original driver */ rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0x04); if (rc < 0) return rc; /* LNA discharge current */ rc = r82xx_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f); if (rc < 0) return rc; /* agc clk 60hz */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x20, 0x30); if (rc < 0) return rc; } else { /* PRE_DECT off */ rc = r82xx_write_reg_mask(priv, 0x06, 0, 0x40); if (rc < 0) return rc; /* write LNA TOP */ rc = r82xx_write_reg_mask(priv, 0x1d, lna_top, 0x38); if (rc < 0) return rc; /* * write discharge mode * FIXME: IMHO, the mask here is wrong, but it matches * what's there at the original driver */ rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0x04); if (rc < 0) return rc; /* LNA discharge current */ rc = r82xx_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f); if (rc < 0) return rc; /* agc clk 1Khz, external det1 cap 1u */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x30); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x10, 0x00, 0x04); if (rc < 0) return rc; } return 0; } static int r82xx_set_tv_standard(struct r82xx_priv *priv, unsigned bw, enum r82xx_tuner_type type, uint32_t delsys) { int rc, i; uint32_t if_khz, filt_cal_lo; uint8_t data[5]; uint8_t filt_gain, img_r, filt_q, hp_cor, ext_enable, loop_through; uint8_t lt_att, flt_ext_widest, polyfil_cur; int need_calibration; /* BW < 6 MHz */ if_khz = 3570; filt_cal_lo = 56000; /* 52000->56000 */ filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x6b; /* 1.7m disable, +2cap, 1.0mhz */ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x01; /* r5[7], lt off */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ /* Initialize the shadow registers */ memcpy(priv->regs, r82xx_init_array, sizeof(r82xx_init_array)); /* Init Flag & Xtal_check Result (inits VGA gain, needed?)*/ rc = r82xx_write_reg_mask(priv, 0x0c, 0x00, 0x0f); if (rc < 0) return rc; /* version */ rc = r82xx_write_reg_mask(priv, 0x13, VER_NUM, 0x3f); if (rc < 0) return rc; /* for LT Gain test */ if (type != TUNER_ANALOG_TV) { rc = r82xx_write_reg_mask(priv, 0x1d, 0x00, 0x38); if (rc < 0) return rc; // usleep_range(1000, 2000); } priv->int_freq = if_khz * 1000; /* Check if standard changed. If so, filter calibration is needed */ /* as we call this function only once in rtlsdr, force calibration */ need_calibration = 1; if (need_calibration) { for (i = 0; i < 2; i++) { /* Set filt_cap */ rc = r82xx_write_reg_mask(priv, 0x0b, hp_cor, 0x60); if (rc < 0) return rc; /* set cali clk =on */ rc = r82xx_write_reg_mask(priv, 0x0f, 0x04, 0x04); if (rc < 0) return rc; /* X'tal cap 0pF for PLL */ rc = r82xx_write_reg_mask(priv, 0x10, 0x00, 0x03); if (rc < 0) return rc; rc = r82xx_set_pll(priv, filt_cal_lo * 1000); if (rc < 0 || !priv->has_lock) return rc; /* Start Trigger */ rc = r82xx_write_reg_mask(priv, 0x0b, 0x10, 0x10); if (rc < 0) return rc; // usleep_range(1000, 2000); /* Stop Trigger */ rc = r82xx_write_reg_mask(priv, 0x0b, 0x00, 0x10); if (rc < 0) return rc; /* set cali clk =off */ rc = r82xx_write_reg_mask(priv, 0x0f, 0x00, 0x04); if (rc < 0) return rc; /* Check if calibration worked */ rc = r82xx_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; priv->fil_cal_code = data[4] & 0x0f; if (priv->fil_cal_code && priv->fil_cal_code != 0x0f) break; } /* narrowest */ if (priv->fil_cal_code == 0x0f) priv->fil_cal_code = 0; } rc = r82xx_write_reg_mask(priv, 0x0a, filt_q | priv->fil_cal_code, 0x1f); if (rc < 0) return rc; /* Set BW, Filter_gain, & HP corner */ rc = r82xx_write_reg_mask(priv, 0x0b, hp_cor, 0xef); if (rc < 0) return rc; /* Set Img_R */ rc = r82xx_write_reg_mask(priv, 0x07, img_r, 0x80); if (rc < 0) return rc; /* Set filt_3dB, V6MHz */ rc = r82xx_write_reg_mask(priv, 0x06, filt_gain, 0x30); if (rc < 0) return rc; /* channel filter extension */ rc = r82xx_write_reg_mask(priv, 0x1e, ext_enable, 0x60); if (rc < 0) return rc; /* Loop through */ rc = r82xx_write_reg_mask(priv, 0x05, loop_through, 0x80); if (rc < 0) return rc; /* Loop through attenuation */ rc = r82xx_write_reg_mask(priv, 0x1f, lt_att, 0x80); if (rc < 0) return rc; /* filter extension widest */ rc = r82xx_write_reg_mask(priv, 0x0f, flt_ext_widest, 0x80); if (rc < 0) return rc; /* RF poly filter current */ rc = r82xx_write_reg_mask(priv, 0x19, polyfil_cur, 0x60); if (rc < 0) return rc; /* Store current standard. If it changes, re-calibrate the tuner */ priv->delsys = delsys; priv->type = type; priv->bw = bw; return 0; } static int r82xx_read_gain(struct r82xx_priv *priv) { uint8_t data[4]; int rc; rc = r82xx_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; return ((data[3] & 0x0f) << 1) + ((data[3] & 0xf0) >> 4); } /* measured with a Racal 6103E GSM test set at 928 MHz with -60 dBm * input power, for raw results see: * http://steve-m.de/projects/rtl-sdr/gain_measurement/r820t/ */ #define VGA_BASE_GAIN -47 static const int r82xx_vga_gain_steps[] = { 0, 26, 26, 30, 42, 35, 24, 13, 14, 32, 36, 34, 35, 37, 35, 36 }; static const int r82xx_lna_gain_steps[] = { 0, 9, 13, 40, 38, 13, 31, 22, 26, 31, 26, 14, 19, 5, 35, 13 }; static const int r82xx_mixer_gain_steps[] = { 0, 5, 10, 10, 19, 9, 10, 25, 17, 10, 8, 16, 13, 6, 3, -8 }; int r82xx_set_gain(struct r82xx_priv *priv, int set_manual_gain, int gain) { int rc; if (set_manual_gain) { int i, total_gain = 0; uint8_t mix_index = 0, lna_index = 0; uint8_t data[4]; /* LNA auto off */ rc = r82xx_write_reg_mask(priv, 0x05, 0x10, 0x10); if (rc < 0) return rc; /* Mixer auto off */ rc = r82xx_write_reg_mask(priv, 0x07, 0, 0x10); if (rc < 0) return rc; rc = r82xx_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; /* set fixed VGA gain for now (16.3 dB) */ rc = r82xx_write_reg_mask(priv, 0x0c, 0x08, 0x9f); if (rc < 0) return rc; for (i = 0; i < 15; i++) { if (total_gain >= gain) break; total_gain += r82xx_lna_gain_steps[++lna_index]; if (total_gain >= gain) break; total_gain += r82xx_mixer_gain_steps[++mix_index]; } /* set LNA gain */ rc = r82xx_write_reg_mask(priv, 0x05, lna_index, 0x0f); if (rc < 0) return rc; /* set Mixer gain */ rc = r82xx_write_reg_mask(priv, 0x07, mix_index, 0x0f); if (rc < 0) return rc; } else { /* LNA */ rc = r82xx_write_reg_mask(priv, 0x05, 0, 0x10); if (rc < 0) return rc; /* Mixer */ rc = r82xx_write_reg_mask(priv, 0x07, 0x10, 0x10); if (rc < 0) return rc; /* set fixed VGA gain for now (26.5 dB) */ rc = r82xx_write_reg_mask(priv, 0x0c, 0x0b, 0x9f); if (rc < 0) return rc; } return 0; } /* Bandwidth contribution by low-pass filter. */ static const int r82xx_if_low_pass_bw_table[] = { 1700000, 1600000, 1550000, 1450000, 1200000, 900000, 700000, 550000, 450000, 350000 }; #define FILT_HP_BW1 350000 #define FILT_HP_BW2 380000 int r82xx_set_bandwidth(struct r82xx_priv *priv, int bw, uint32_t rate) { int rc; unsigned int i; int real_bw = 0; uint8_t reg_0a; uint8_t reg_0b; if (bw > 7000000) { // BW: 8 MHz reg_0a = 0x10; reg_0b = 0x0b; priv->int_freq = 4570000; } else if (bw > 6000000) { // BW: 7 MHz reg_0a = 0x10; reg_0b = 0x2a; priv->int_freq = 4570000; } else if (bw > r82xx_if_low_pass_bw_table[0] + FILT_HP_BW1 + FILT_HP_BW2) { // BW: 6 MHz reg_0a = 0x10; reg_0b = 0x6b; priv->int_freq = 3570000; } else { reg_0a = 0x00; reg_0b = 0x80; priv->int_freq = 2300000; if (bw > r82xx_if_low_pass_bw_table[0] + FILT_HP_BW1) { bw -= FILT_HP_BW2; priv->int_freq += FILT_HP_BW2; real_bw += FILT_HP_BW2; } else { reg_0b |= 0x20; } if (bw > r82xx_if_low_pass_bw_table[0]) { bw -= FILT_HP_BW1; priv->int_freq += FILT_HP_BW1; real_bw += FILT_HP_BW1; } else { reg_0b |= 0x40; } // find low-pass filter for(i = 0; i < ARRAY_SIZE(r82xx_if_low_pass_bw_table); ++i) { if (bw > r82xx_if_low_pass_bw_table[i]) break; } --i; reg_0b |= 15 - i; real_bw += r82xx_if_low_pass_bw_table[i]; priv->int_freq -= real_bw / 2; } rc = r82xx_write_reg_mask(priv, 0x0a, reg_0a, 0x10); if (rc < 0) return rc; rc = r82xx_write_reg_mask(priv, 0x0b, reg_0b, 0xef); if (rc < 0) return rc; return priv->int_freq; } #undef FILT_HP_BW1 #undef FILT_HP_BW2 int r82xx_set_freq(struct r82xx_priv *priv, uint32_t freq) { int rc = -1; int is_rtlsdr_blog_v4; uint32_t upconvert_freq; uint32_t lo_freq; uint8_t air_cable1_in; uint8_t open_d; uint8_t band; uint8_t cable_2_in; uint8_t cable_1_in; uint8_t air_in; is_rtlsdr_blog_v4 = rtlsdr_check_dongle_model(priv->rtl_dev, "RTLSDRBlog", "Blog V4"); /* if it's an RTL-SDR Blog V4, automatically upconvert by 28.8 MHz if we tune to HF * so that we don't need to manually set any upconvert offset in the SDR software */ upconvert_freq = is_rtlsdr_blog_v4 ? ((freq < MHZ(28.8)) ? (freq + MHZ(28.8)) : freq) : freq; lo_freq = upconvert_freq + priv->int_freq; rc = r82xx_set_mux(priv, lo_freq); if (rc < 0) goto err; rc = r82xx_set_pll(priv, lo_freq); if (rc < 0 || !priv->has_lock) goto err; if (is_rtlsdr_blog_v4) { /* determine if notch filters should be on or off notches are turned OFF * when tuned within the notch band and ON when tuned outside the notch band. */ open_d = (freq <= MHZ(2.2) || (freq >= MHZ(85) && freq <= MHZ(112)) || (freq >= MHZ(172) && freq <= MHZ(242))) ? 0x00 : 0x08; rc = r82xx_write_reg_mask(priv, 0x17, open_d, 0x08); if (rc < 0) return rc; /* select tuner band based on frequency and only switch if there is a band change *(to avoid excessive register writes when tuning rapidly) */ band = (freq <= MHZ(28.8)) ? HF : ((freq > MHZ(28.8) && freq < MHZ(250)) ? VHF : UHF); /* switch between tuner inputs on the RTL-SDR Blog V4 */ if (band != priv->input) { priv->input = band; /* activate cable 2 (HF input) */ cable_2_in = (band == HF) ? 0x08 : 0x00; rc = r82xx_write_reg_mask(priv, 0x06, cable_2_in, 0x08); if (rc < 0) goto err; /* Control upconverter GPIO switch on newer batches */ rc = rtlsdr_set_bias_tee_gpio(priv->rtl_dev, 5, !cable_2_in); if (rc < 0) goto err; /* activate cable 1 (VHF input) */ cable_1_in = (band == VHF) ? 0x40 : 0x00; rc = r82xx_write_reg_mask(priv, 0x05, cable_1_in, 0x40); if (rc < 0) goto err; /* activate air_in (UHF input) */ air_in = (band == UHF) ? 0x00 : 0x20; rc = r82xx_write_reg_mask(priv, 0x05, air_in, 0x20); if (rc < 0) goto err; } } else /* Standard R828D dongle*/ { /* switch between 'Cable1' and 'Air-In' inputs on sticks with * R828D tuner. We switch at 345 MHz, because that's where the * noise-floor has about the same level with identical LNA * settings. The original driver used 320 MHz. */ air_cable1_in = (freq > MHZ(345)) ? 0x00 : 0x60; if ((priv->cfg->rafael_chip == CHIP_R828D) && (air_cable1_in != priv->input)) { priv->input = air_cable1_in; rc = r82xx_write_reg_mask(priv, 0x05, air_cable1_in, 0x60); } } err: if (rc < 0) fprintf(stderr, "%s: failed=%d\n", __FUNCTION__, rc); return rc; } /* * r82xx standby logic */ int r82xx_standby(struct r82xx_priv *priv) { int rc; /* If device was not initialized yet, don't need to standby */ if (!priv->init_done) return 0; rc = r82xx_write_reg(priv, 0x06, 0xb1); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x05, 0xa0); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x07, 0x3a); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x08, 0x40); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x09, 0xc0); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x0a, 0x36); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x0c, 0x35); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x0f, 0x68); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x11, 0x03); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x17, 0xf4); if (rc < 0) return rc; rc = r82xx_write_reg(priv, 0x19, 0x0c); /* Force initial calibration */ priv->type = -1; return rc; } /* * r82xx device init logic */ static int r82xx_xtal_check(struct r82xx_priv *priv) { int rc; unsigned int i; uint8_t data[3], val; /* Initialize the shadow registers */ memcpy(priv->regs, r82xx_init_array, sizeof(r82xx_init_array)); /* cap 30pF & Drive Low */ rc = r82xx_write_reg_mask(priv, 0x10, 0x0b, 0x0b); if (rc < 0) return rc; /* set pll autotune = 128kHz */ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x0c); if (rc < 0) return rc; /* set manual initial reg = 111111; */ rc = r82xx_write_reg_mask(priv, 0x13, 0x7f, 0x7f); if (rc < 0) return rc; /* set auto */ rc = r82xx_write_reg_mask(priv, 0x13, 0x00, 0x40); if (rc < 0) return rc; /* Try several xtal capacitor alternatives */ for (i = 0; i < ARRAY_SIZE(r82xx_xtal_capacitor); i++) { rc = r82xx_write_reg_mask(priv, 0x10, r82xx_xtal_capacitor[i][0], 0x1b); if (rc < 0) return rc; // usleep_range(5000, 6000); rc = r82xx_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; if (!(data[2] & 0x40)) continue; val = data[2] & 0x3f; if (priv->cfg->xtal == 16000000 && (val > 29 || val < 23)) break; if (val != 0x3f) break; } if (i == ARRAY_SIZE(r82xx_xtal_capacitor)) return -1; return r82xx_xtal_capacitor[i][1]; } int r82xx_init(struct r82xx_priv *priv) { int rc; /* TODO: R828D might need r82xx_xtal_check() */ priv->xtal_cap_sel = XTAL_HIGH_CAP_0P; /* Initialize registers */ memset(priv->regs, 0, NUM_REGS); rc = r82xx_write(priv, 0x05, r82xx_init_array, sizeof(r82xx_init_array)); rc = r82xx_set_tv_standard(priv, 3, TUNER_DIGITAL_TV, 0); if (rc < 0) goto err; rc = r82xx_sysfreq_sel(priv, 0, TUNER_DIGITAL_TV, SYS_DVBT); priv->init_done = 1; err: if (rc < 0) fprintf(stderr, "%s: failed=%d\n", __FUNCTION__, rc); return rc; } #if 0 /* Not used, for now */ static int r82xx_gpio(struct r82xx_priv *priv, int enable) { return r82xx_write_reg_mask(priv, 0x0f, enable ? 1 : 0, 0x01); } #endif