tuner_fc0012: use new cleaned-up driver

The driver was taken from http://git.linuxtv.org/ and adapted
for librtlsdr. Manual gain will be added in a follow-up commit.

Signed-off-by: Steve Markgraf <steve@steve-m.de>
This commit is contained in:
Steve Markgraf 2012-05-29 03:31:49 +02:00
parent 92d936568c
commit 4031d6ed04
3 changed files with 274 additions and 278 deletions

View File

@ -1,25 +1,36 @@
#ifndef __TUNER_FC0012_H
#define __TUNER_FC0012_H
/*
* Fitipower FC0012 tuner driver
*
* Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
*
* modified for use in librtlsdr
* Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#define FC0012_OK 0
#define FC0012_ERROR 1
#ifndef _FC0012_H_
#define _FC0012_H_
#define FC0012_I2C_ADDR 0xc6
#define FC0012_CHECK_ADDR 0x00
#define FC0012_CHECK_VAL 0xa1
#define FC0012_BANDWIDTH_6MHZ 6
#define FC0012_BANDWIDTH_7MHZ 7
#define FC0012_BANDWIDTH_8MHZ 8
#define FC0012_LNA_GAIN_LOW 0x00
#define FC0012_LNA_GAIN_MID 0x08
#define FC0012_LNA_GAIN_HI 0x17
#define FC0012_LNA_GAIN_MAX 0x10
int FC0012_Open(void *pTuner);
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte);
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte);
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth);
int fc0012_init(void *dev);
int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth);
int fc0012_set_gain(void *dev, int gain);
#endif

View File

@ -122,17 +122,17 @@ int e4000_set_gain_mode(void *dev, int manual) {
return 0;
}
int fc0012_init(void *dev) { return FC0012_Open(dev); }
int _fc0012_init(void *dev) { return fc0012_init(dev); }
int fc0012_exit(void *dev) { return 0; }
int fc0012_set_freq(void *dev, uint32_t freq) {
/* select V-band/U-band filter */
rtlsdr_set_gpio_bit(dev, 6, (freq > 300000000) ? 1 : 0);
return FC0012_SetFrequency(dev, freq/1000, 6);
return fc0012_set_params(dev, freq, 6000000);
}
int fc0012_set_bw(void *dev, int bw) {
return FC0012_SetFrequency(dev, ((rtlsdr_dev_t *) dev)->freq/1000, 6);
int fc0012_set_bw(void *dev, int bw) { return 0; }
int _fc0012_set_gain(void *dev, int gain) {
return fc0012_set_gain(dev, gain);
}
int fc0012_set_gain(void *dev, int gain) { return 0; }
int fc0012_set_gain_mode(void *dev, int manual) { return 0; }
int _fc0013_init(void *dev) { return fc0013_init(dev); }
@ -173,8 +173,8 @@ static rtlsdr_tuner_t tuners[] = {
e4000_set_gain_mode
},
{
fc0012_init, fc0012_exit,
fc0012_set_freq, fc0012_set_bw, fc0012_set_gain,
_fc0012_init, fc0012_exit,
fc0012_set_freq, fc0012_set_bw, _fc0012_set_gain,
fc0012_set_gain_mode
},
{

View File

@ -1,21 +1,57 @@
/*
* fc0012 tuner support for rtl-sdr
* Fitipower FC0012 tuner driver
*
* Based on tuner_fc0012.c found as part of the (seemingly GPLed)
* rtl2832u Linux DVB driver.
* Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
*
* Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to>
* modified for use in librtlsdr
* Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdint.h>
#include "rtlsdr_i2c.h"
#include "tuner_fc0012.h"
#define CRYSTAL_FREQ 28800000
static int fc0012_writereg(void *dev, uint8_t reg, uint8_t val)
{
uint8_t data[2];
data[0] = reg;
data[1] = val;
#define FC0012_LNAGAIN FC0012_LNA_GAIN_HI
if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, data, 2) < 0)
return -1;
return 0;
}
static int fc0012_readreg(void *dev, uint8_t reg, uint8_t *val)
{
uint8_t data = reg;
if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
return -1;
if (rtlsdr_i2c_read_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
return -1;
*val = data;
return 0;
}
/* Incomplete list of register settings:
*
@ -30,7 +66,7 @@
* RF_OUTDIV_A 0x05 3-7 Power of two required?
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
* RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the
* RF output divider
* RF output divider
* VCO_SPEED 0x06 3 Select tuning range of VCO:
* 0 = Low range, (ca. 1.1 - 1.5GHz)
* 1 = High range (ca. 1.4 - 1.8GHz)
@ -51,277 +87,226 @@
* (big value -> low freq)
*/
/* glue functions to rtl-sdr code */
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
int fc0012_init(void *dev)
{
uint8_t data[2];
int ret = 0;
unsigned int i;
uint8_t reg[] = {
0x00, /* dummy reg. 0 */
0x05, /* reg. 0x01 */
0x10, /* reg. 0x02 */
0x00, /* reg. 0x03 */
0x00, /* reg. 0x04 */
0x0f, /* reg. 0x05: may also be 0x0a */
0x00, /* reg. 0x06: divider 2, VCO slow */
0x00, /* reg. 0x07: may also be 0x0f */
0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
Loop Bw 1/8 */
0x6e, /* reg. 0x09: Disable LoopThrough, Enable LoopThrough: 0x6f */
0xb8, /* reg. 0x0a: Disable LO Test Buffer */
0x82, /* reg. 0x0b: Output Clock is same as clock frequency,
may also be 0x83 */
0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
0x02, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, 0x02 for DVB-T */
0x00, /* reg. 0x0e */
0x00, /* reg. 0x0f */
0x00, /* reg. 0x10: may also be 0x0d */
0x00, /* reg. 0x11 */
0x1f, /* reg. 0x12: Set to maximum gain */
0x08, /* reg. 0x13: Set to Middle Gain: 0x08,
Low Gain: 0x00, High Gain: 0x10, enable IX2: 0x80 */
0x00, /* reg. 0x14 */
0x04, /* reg. 0x15: Enable LNA COMPS */
};
data[0] = RegAddr;
data[1] = Byte;
if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, data, 2) < 0)
return FC0012_ERROR;
return FC0012_OK;
}
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
{
uint8_t data = RegAddr;
if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
return FC0012_ERROR;
if (rtlsdr_i2c_read_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
return FC0012_ERROR;
*pByte = data;
return FC0012_OK;
}
#ifdef DEBUG
#define DEBUGF printf
#else
#define DEBUGF(...) ()
#endif
#if 0
void FC0012_Dump_Registers()
{
#ifdef DEBUG
unsigned char regBuf;
int ret;
int i;
DEBUGF("\nFC0012 registers:\n");
for (i=0; i<=0x15; ++i)
{
ret = FC0012_Read(pTuner, i, &regBuf);
if (ret) DEBUGF("\nCouldn't read register %02x\n", i);
DEBUGF("R%x=%02x ",i,regBuf);
}
DEBUGF("\n");
FC0012_Read(pTuner, 0x06, &regBuf);
DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down");
DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed");
DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz");
FC0012_Read(pTuner, 0x07, &regBuf);
DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>");
FC0012_Read(pTuner, 0x09, &regBuf);
DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled");
FC0012_Read(pTuner, 0x0d, &regBuf);
DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced");
FC0012_Read(pTuner, 0x13, &regBuf);
DEBUGF("LNA Gain:\t");
switch (regBuf & 0x18) {
case (0x00): DEBUGF("Low\n"); break;
case (0x08): DEBUGF("Middle\n"); break;
case (0x10): DEBUGF("High\n"); break;
default: DEBUGF("unknown gain value 0x18\n");
switch (rtlsdr_get_tuner_clock(dev)) {
case FC_XTAL_27_MHZ:
case FC_XTAL_28_8_MHZ:
reg[0x07] |= 0x20;
break;
case FC_XTAL_36_MHZ:
default:
break;
}
#endif
}
#endif
reg[0x07] |= 0x20;
int FC0012_Open(void *pTuner)
{
// DEBUGF("FC0012_Open start");
if (FC0012_Write(pTuner, 0x01, 0x05)) return -1;
if (FC0012_Write(pTuner, 0x02, 0x10)) return -1;
if (FC0012_Write(pTuner, 0x03, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x04, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1;
if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
//if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x10, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1;
if (FC0012_Write(pTuner, 0x14, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
// if (priv->dual_master)
reg[0x0c] |= 0x02;
/* Black magic from nim_rtl2832_fc0012.c in DVB driver.
Even though we've set 0x11 to 0x00 above, this needs to happen to have
it go back
*/
if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1;
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1;
for (i = 1; i < sizeof(reg); i++) {
ret = fc0012_writereg(dev, i, reg[i]);
if (ret)
break;
}
// DEBUGF("FC0012_Open SUCCESS");
return FC0012_OK;
return ret;
}
# if 0
// Frequency is in kHz. Bandwidth is in MHz
// This is pseudocode to set GPIO6 for VHF/UHF filter switching.
// Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth)
int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth)
{
if( Frequency < 260000 && Frequency > 150000 )
{
// set GPIO6 = low
int i, ret = 0;
uint8_t reg[7], am, pm, multi, tmp;
uint64_t f_vco;
uint32_t xtal_freq_div_2;
uint16_t xin, xdiv;
int vco_select = 0;
// 1. Set tuner frequency
// 2. if the program quality is not good enough, switch to frequency + 500kHz
// 3. if the program quality is still no good, switch to frequency - 500kHz
}
else
{
// set GPIO6 = high
xtal_freq_div_2 = rtlsdr_get_tuner_clock(dev) / 2;
// set tuner frequency
}
}
#endif
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
{
int VCO_band = 0;
unsigned long doubleVCO;
unsigned short xin, xdiv;
unsigned char reg[21], am, pm, multi;
unsigned char read_byte;
unsigned long CrystalFreqKhz;
// DEBUGF("FC0012_SetFrequency start");
CrystalFreqKhz = (rtlsdr_get_tuner_clock(pTuner) + 500) / 1000;
//===================================== Select frequency divider and the frequency of VCO
if (Frequency * 96 < 3560000)
{
multi = 96; reg[5] = 0x82; reg[6] = 0x00;
}
else if (Frequency * 64 < 3560000)
{
multi = 64; reg[5] = 0x82; reg[6] = 0x02;
}
else if (Frequency * 48 < 3560000)
{
multi = 48; reg[5] = 0x42; reg[6] = 0x00;
}
else if (Frequency * 32 < 3560000)
{
multi = 32; reg[5] = 0x42; reg[6] = 0x02;
}
else if (Frequency * 24 < 3560000)
{
multi = 24; reg[5] = 0x22; reg[6] = 0x00;
}
else if (Frequency * 16 < 3560000)
{
multi = 16; reg[5] = 0x22; reg[6] = 0x02;
}
else if (Frequency * 12 < 3560000)
{
multi = 12; reg[5] = 0x12; reg[6] = 0x00;
}
else if (Frequency * 8 < 3560000)
{
multi = 8; reg[5] = 0x12; reg[6] = 0x02;
}
else if (Frequency * 6 < 3560000)
{
multi = 6; reg[5] = 0x0A; reg[6] = 0x00;
}
else
{
multi = 4; reg[5] = 0x0A; reg[6] = 0x02;
}
doubleVCO = Frequency * multi;
reg[6] = reg[6] | 0x08;
VCO_band = 1;
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2));
if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) )
xdiv = xdiv + 1;
pm = (unsigned char)( xdiv / 8 );
am = (unsigned char)( xdiv - (8 * pm));
if (am < 2) {
reg[1] = am + 8;
reg[2] = pm - 1;
/* select frequency divider and the frequency of VCO */
if (freq < 37084000) { /* freq * 96 < 3560000000 */
multi = 96;
reg[5] = 0x82;
reg[6] = 0x00;
} else if (freq < 55625000) { /* freq * 64 < 3560000000 */
multi = 64;
reg[5] = 0x82;
reg[6] = 0x02;
} else if (freq < 74167000) { /* freq * 48 < 3560000000 */
multi = 48;
reg[5] = 0x42;
reg[6] = 0x00;
} else if (freq < 111250000) { /* freq * 32 < 3560000000 */
multi = 32;
reg[5] = 0x42;
reg[6] = 0x02;
} else if (freq < 148334000) { /* freq * 24 < 3560000000 */
multi = 24;
reg[5] = 0x22;
reg[6] = 0x00;
} else if (freq < 222500000) { /* freq * 16 < 3560000000 */
multi = 16;
reg[5] = 0x22;
reg[6] = 0x02;
} else if (freq < 296667000) { /* freq * 12 < 3560000000 */
multi = 12;
reg[5] = 0x12;
reg[6] = 0x00;
} else if (freq < 445000000) { /* freq * 8 < 3560000000 */
multi = 8;
reg[5] = 0x12;
reg[6] = 0x02;
} else if (freq < 593334000) { /* freq * 6 < 3560000000 */
multi = 6;
reg[5] = 0x0a;
reg[6] = 0x00;
} else {
reg[1] = am;
reg[2] = pm;
multi = 4;
reg[5] = 0x0a;
reg[6] = 0x02;
}
// From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2));
xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2));
if( xin >= (unsigned short) 16384 )
xin = xin + (unsigned short) 32768;
f_vco = freq * multi;
reg[3] = (unsigned char)(xin >> 8);
reg[4] = (unsigned char)(xin & 0x00FF);
// DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
switch(Bandwidth)
{
case 6: reg[6] = 0x80 | reg[6]; break;
case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break;
case 8: default: reg[6] = ~0xC0 & reg[6]; break;
if (f_vco >= 3060000000U) {
reg[6] |= 0x08;
vco_select = 1;
}
if (FC0012_Write(pTuner, 0x01, reg[1])) return -1;
if (FC0012_Write(pTuner, 0x02, reg[2])) return -1;
if (FC0012_Write(pTuner, 0x03, reg[3])) return -1;
if (FC0012_Write(pTuner, 0x04, reg[4])) return -1;
//reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
if (FC0012_Write(pTuner, 0x05, reg[5])) return -1;
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
if (freq >= 45000000) {
/* From divided value (XDIV) determined the FA and FP value */
xdiv = (uint16_t)(f_vco / xtal_freq_div_2);
if ((f_vco - xdiv * xtal_freq_div_2) >= (xtal_freq_div_2 / 2))
xdiv++;
// VCO Calibration
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
pm = (uint8_t)(xdiv / 8);
am = (uint8_t)(xdiv - (8 * pm));
// Read resulting VCO control voltage
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1;
reg[14] = 0x3F & read_byte;
// Adjust VCO range if control voltage is at the limit
if (VCO_band)
{
// high-band VCO hitting low frequency bound
if (reg[14] > 0x3C)
{
// select low-band VCO
reg[6] = ~0x08 & reg[6];
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
if (am < 2) {
reg[1] = am + 8;
reg[2] = pm - 1;
} else {
reg[1] = am;
reg[2] = pm;
}
} else {
/* fix for frequency less than 45 MHz */
reg[1] = 0x06;
reg[2] = 0x11;
}
else
{
// low-band VCO hitting high frequency bound
if (reg[14] < 0x02) {
// select high-band VCO
reg[6] = 0x08 | reg[6];
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
/* fix clock out */
reg[6] |= 0x20;
/* From VCO frequency determines the XIN ( fractional part of Delta
Sigma PLL) and divided value (XDIV) */
xin = (uint16_t)((f_vco - (f_vco / xtal_freq_div_2) * xtal_freq_div_2) / 1000);
xin = (xin << 15) / (xtal_freq_div_2 / 1000);
if (xin >= 16384)
xin += 32768;
reg[3] = xin >> 8; /* xin with 9 bit resolution */
reg[4] = xin & 0xff;
reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
switch (bandwidth) {
case 6000000:
reg[6] |= 0x80;
break;
case 7000000:
reg[6] |= 0x40;
break;
case 8000000:
default:
break;
}
/* modified for Realtek demod */
reg[5] |= 0x07;
for (i = 1; i <= 6; i++) {
ret = fc0012_writereg(dev, i, reg[i]);
if (ret)
goto exit;
}
/* VCO Calibration */
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
/* VCO Re-Calibration if needed */
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
if (!ret) {
// msleep(10);
ret = fc0012_readreg(dev, 0x0e, &tmp);
}
if (ret)
goto exit;
/* vco selection */
tmp &= 0x3f;
if (vco_select) {
if (tmp > 0x3c) {
reg[6] &= ~0x08;
ret = fc0012_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
}
} else {
if (tmp < 0x02) {
reg[6] |= 0x08;
ret = fc0012_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
}
}
// DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
return FC0012_OK;
exit:
return ret;
}
int fc0012_set_gain(void *dev, int gain)
{
/* TODO add gain regulation */
return 0;
}