Features
e Core
— ARM® Cortex®-M3 revision 2.0 running at up to 96 MHz
— Memory Protection Unit (MPU)
— Thumb®-2 instruction set
* Memories
— From 64 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,
dual bank
— From 16 to 48 Kbytes embedded SRAM with dual banks
— 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines
— Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash
controller with 4 Kbytes RAM buffer and ECC
¢ System
— Embedded voltage regulator for single supply operation
— POR, BOD and Watchdog for safe reset
— Quartz or resonator oscillators: 3 to 20 MHz main and optional low power 32.768
kHz for RTC or device clock.
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default
Frequency for fast device startup
— Slow Clock Internal RC oscillator as permanent clock for device clock in low power
mode
— One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Device
— Up to 17 peripheral DMA (PDC) channels and 4-channel central DMA
* Low Power Modes
— Sleep and Backup modes, down to 2.5 pyA in Backup mode
— Backup domain: VDDBU pin, RTC, 32 backup registers
— Ultra low power RTC: 0.6 pA
* Peripherals
— USB 2.0 Device: 480 Mbps, 4-kbyte FIFO, up to 7 bidirectional Endpoints,
dedicated DMA
- Up to 4 USARTSs (ISO7816, IrDA®, Flow Control, SPI, Manchester support) and one
UART
— Up to 2 TWI (I12C compatible), 1 SPI, 1 SSC (12S), 1 HSMCI (SDIO/SD/MMC)
— 3-Channel 16-bit Timer/Counter (TC) for capture, compare and PWM
— 4-channel 16-bit PWM (PWMC)
— 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features
— 8-channel 12-bit 1IMSPS ADC with differential input mode and programmable gain
stage, 8-channel 10-bit ADC
e 1/0
— Up to 96 /O lines with external interrupt capability (edge or level sensitivity),
debouncing, glitch filtering and on-die Series Resistor Termination
— Three 32-bit Parallel Input/Outputs (PI1O)
* Packages
— 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm
— 100-ball LFBGA, 9 x 9 mm, pitch 0.8 mm
— 144-lead LQFP, 20 x 20 mm, pitch 0.5 mm
— 144-ball LFBGA, 10 x 10 mm, pitch 0.8 mm

ATMEL

Y ()

AT91SAM
ARM-based
Flash MCU

SAM3U Series

6430E-ATARM-29-Aug-11

ATMEL

1. SAMB3U Description

Atmel's SAM3U series is a member of a family of Flash microcontrollers based on the high per-
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 96 MHz
and features up to 256 Kbytes of Flash and up to 52 Kbytes of SRAM. The peripheral set
includes a High Speed USB Device port with embedded transceiver, a High Speed MCI for
SDIO/SD/MMC, an External Bus Interface with NAND Flash controller, up to 4xUSARTSs
(SAM3U1C/2C/4C have 3), up to 2xTWIs (SAM3U1C/2C/4C have 1), up to 5xSPIs
SAM3U1C/2C/4C have 4), as well as 4xPWM timers, 3xgeneral purpose 16-bit timers, an RTC,
a 12-bit ADC and a 10-bit ADC.

The SAMB3U architecture is specifically designed to sustain high speed data transfers. It includes
a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that enable it
to run tasks in parallel and maximize data throughput.

It can operate from 1.62V to 3.6V and comes in 100-pin and 144-pin LQFP and BGA packages.

The SAM3U device is particularly well suited for USB applications: data loggers, PC peripherals
and any high speed bridge (USB to SDIO, USB to SPI, USB to External Bus Interface).

1.1 Configuration Summary

The SAM3U series differ in memory sizes, package and features list. Table 1-1 summarizes the
configurations of the six devices.

Table 1-1. Configuration Summary
Number FWUP, HSMCI
Flash Number | of Number | SHDN External Bus data
Device Flash | Organization | SRAM |of PIOs |USARTs |of TWI pins Interface size Package ADC
8 or 16 bits
’ LQFP144
SAMBU4E i)g i?s dual plane izb tes 96 4 2 Yes 4 chip selects, 8 bits BGA ih(::n?als)
Y Y 24-bit address GA144
8 or 16 bits
’ LQFP144
SAM3U2E I1(l2381es single plane ie’b s |9 4 2 Yes 4chipselects |8 bits | ih(::nils)
4 Y 24-bit address GA144
8 or 16 bits
’ LQFP144
SAM3U1E ﬁ‘é s | SNGle plane iob s |9 4 2 Yes 4 chip selects, |8 bits | ih(::nils)
v Y 24-bit address GA144
8 bits
’ LQFP100
SAM3U4C it))(26238 dual plane ii tes 57 3 1 FWUP 2 chip selects, 4 bits BGA ih(::ntls)
4 Y 8-bit address GA100
8 bits
’ LQFP100
SAM3U2C I1(i81es single plane iﬁ tes 57 3 1 FWUP 2 chip selects, 8- | 4 bits BGA ih(::ntls)
Y Y bit address GA100
8 bits
LQFP100
SAM3U1C ﬁ?} tes single plane i?) tes 57 3 1 FWUP 2 chip selects, 4 bits BGA ih(::ntls)
Y Y 8-bit address GA100

Note: 1. The SRAM size takes into account the 4-Kbyte RAM buffer of the NAND Flash Controller (NFC) which can be used by the
core if not used by the NFC.

2 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

2. SAMB3U Block Diagram

Figure 2-1. 144-pin SAM3U4/2/1E Block Diagram

QO
(5%\%& » &
S L g S
S & SRS S §
QLRI N LIRS L«
B R F R
A
TST System Controller| | JTAG & Serial Wire | L Tgislélmler J)
PCKO <> * T * * T F‘Voltelagte EBI
-PCK2 PLLA In-Circuit Emulator USB egulator
|SysTick Counter| N Device
UPLL |—) | V HS
PMC Cortex-M3 Processor | NAND Flash
XIN—>»{ OSC Fmax 96 MHz c Cgr;ztrgger
XOUT <€—_3-20 MI > Ve, DMA (\/
RC Osc. D s [<—| [« NANDRDY
12/8/4 M [<— |—>» D0-D15
Fiash NAND Flash| [~ _>—> ﬁ?/NBSO
as ; > SRAM | [
IM; Unique 5-layer AHB Bus Matrix > (aKBytes) | F— > A2.A20
VDDUTMI | sM_| Identifier] NCSO
VDDCORE l l l l l T l T —— > NCSt
L —— —> NRD
FLASH SRAMO SRAM1 ROM Peripheral Peripheral 4-Channel —— [—> NWRONWE
| RC 32K 8 2x128 KBytes 32 KBytes| | 16 KBytes|| 16 kB DMA Bridge —— [—> NWR1/NBS1
6 KBytes g DMA
|| GPBREGS 1x128 KBytes || 16 KBytes| | 16 KBytes Controller e € > NWAIT
XIN32—3»| OSC 1x64 KBytes 8 KBytes ¢ ¢ Me;c')cr A23
xouTs2€— 32K RTT APB A vy 172 € A1/
¢ * * * * * * + Controller | > [€> NANDALE
SHON<—|| supc || RTC . — |3
FWUP —>»| PDC ppbc| |PDC PDC PDC NANDCLE
— —>]
VDDBU e-channel USARTO Tco | NCS3
NRSTB —> iotitane | [Tl fyarT USART1 pwm || TC1 SPI ssc HSMCI —>| <> NCS2
ERASE —>] RSTC || 0.0t ADG Wi USART2 TC2
NRST <€ > USART3 L5 |l mﬁsg‘?vi
PIOA |[PiOB YWy \J
F A4 T[T [T [T 1T 00 [0 0001 11
| PIOCI 8

BN

LT 38 38 9080900 40 330 9333 $93038 4

T L3S S K AR SRRRARURE PP G Bk DO QK Fr)
& O POCORIROKS oo+oo%9’\§§§ QV{\\o,\\o QQ@QO@%\% XELC S

Fok
o
A& RN N ORRORXYA A0
Q> IO R A RNAIN A S
P O Fo R SAN) SN o N3 Q
SIS S XSO AR SISO
© <3 QO @Q [ONRNNS X OARNKIS)
& & YOS T O
& © ¥ <
S

ATMEL ;

6430E-ATARM-29-Aug-11

ATMEL

Figure 2-2. 100-pin SAM3U4/2/1C Block Diagram

o
OQ’%jood- S
SO & S Qe FOENS
NS & O, ST S Q
N O9 & ACH=I NN IO
QRO S LRI EFRY AN
MASTER — se—)y SLAVE ¢T¢¢ i li ¢¢¢
A
TST — System Controller | JTAG & Serial Wire | HS UTMI)
Transceiver EBI
PCKO vivv? — Voltage
-POK2 PLLA In-Circuit Emulator USB Regulator
| SysTick Counter] N Device
UPLL |—) | v HS
PMC Cortex-M3 Processor | NAND Flash
XIN—>] OSC Fmax 96 MHz c Controter
XOUT<€—_3-20 M vy DVA (\/
RC Osc. i €<—| [|<> NANDRDY
12/8/4 M l'/ b lS l «—{ |—> D007
NAND Flash| 1 [~ A0
WDT Flash . || srav [[—1 —=>A1
| Unque 5-layer AHB Bus Matrix > (4KBytes) | 1 > \0.A7
VDDUTMI | SM | Identifier| NGSO
VDDCORE—|[BOD l l l l l T l T — |—> nest
—— |—> NRD
| FLASH sraMo | [sRAM1 rom [Peripheral | [Peripheral 4-Channel — [\WE
RC 32K 8 2x128 KBytes || 32 KBytes| | 16 KBytes DMA Bridge DMA
I_I GPBREG 1x128 KBytes | | 16 kytes| | 16 kytes || '€ KEY'®S|| controlier s
3 0SC 1x64 KBytes 8 KBytes
onLI#gge 32K RTT . APB \ ¢ ¢ Memory
| ¢ * * * * * * + Controller | = [€> NANDALE
SHON<«—]| surc || RTC 2 EN D P
FWUP —>>| PDC eoc| Poc PDC PDC NANDCLE
VDDBU — TCO
4-channel USARTO
NRSTB —>> 1201t ADG wi | luart USARTH pwm || TC1 SPI SSC HSMCI
ERASE —>] RSTC) TC2
~ — - 10-bit ADC USART2 NANDOE,
NRST <€ > N NANDOE,
PIOA || PiOB A \J
[Fron] [eice] AT TT IT [T TT [T [T [T T

4

[TT 88§30 30883400 34§80 3995 $43434 H{

4 X LoD OO0 O VAU SUIORD® D2 B 2o¥ Pk MO &ALt w2 Xt
S ¥ L PP P A0, SUFHATURVRE R ¥V Pk D0 LRI & KT
@ioov,@é\oo’\;o@ S OQ\)/;Q«Cgo@?\’gQ%&OO 3 NS (ORKE” (W < 2@9 ©
O vy KOK BRSAIRSACS R

ST e ENOTIRE I EFRF &

S & S SV &C &

< 3 N ANIEN Q
& §& © Q\$Q <=

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

3. Signal Description
Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference |Comments
Power Supplies
VvDDIO Peripherals I/O Lines Power Supply Power 1.62V to 3.6V
VDDIN Voltage Regulator Input Power 1.8V to 3.6V
VDDOUT Voltage Regulator Output Power 1.8V
VDDUTMII USB UTMI+ Interface Power Supply Power 3.0V to 3.6V
GNDUTMII USB UTMI+ Interface Ground Ground
VDDBU Backup I/O Lines Power Supply Power 1.62V to 3.6V
GNDBU Backup Ground Ground
VDDPLL PLL A, UPLL and OSC 3-20 MHz Power Supply Power 1.62 V to 1.95V
GNDPLL PLL A, UPLL and OSC 3-20 MHz Ground Ground
VDDANA ADC Analog Power Supply Power 2.0V to 3.6V
GNDANA ADC Analog Ground Ground
VDDCORE gSIrD%I)II\/Iemories and Peripherals Chip Power Power 1.62V 0 1.95V
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input VDDPLL
XOuT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input VDDBU
X0UT32 Slow Clock Oscillator Output Output
VBG Bias Voltage Reference Analog
PCKO - PCK2 Programmable Clock Output Output VDDIO
Shutdown, Wakeup Logic

push/pull

0: The device is in
SHDN Shut-Down Control Output backup mode

VDDBU 1: The device is running

(not in backup mode)

FWUP Force Wake-Up Input Input Low Needs external pull-up
Serial Wire/JTAG Debug Port (SWJ-DP)

TCK/SWCLK Test Clock/Serial Wire Clock Input No pull-up resistor
TDI Test Data In Input VDDIO No pull-up resistor
TDO/TRACESWO | Test Data Out/Trace Asynchronous Data Out | Output®
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input No pull-up resistor
JTAGSEL JTAG Selection Input High VDDBU L”Jﬁ_rgg\'lvﬁerma“e”t

6430E-ATARM-29-Aug-11

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference |Comments
Flash Memory
ERASE Flash and NVM Configuration Bits Erase Input High VDDBU |Internal permanent 15K
Command pulldown
Reset/Test
NRST Microcontroller Reset 1/0 Low VvDDIO Lnjﬁl:r;al permanent
NRSTB Asynchronous Microcontroller Reset Input Low Lnljﬁ;r;al permanent
VDDBU
TST Test Select Input IantIﬁ(rjr;il\lmpermanent
Universal Asynchronous Receiver Transceiver - UART
URXD UART Receive Data Input
UTXD UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
*Schmitt Trigger ("
PAO - PA31 Parallel 10 Controller A Vo .Rpelzetlnsgjtte:
eInternal pullup enabled
*Schmitt Trigger @
PBO - PB31 Parallel 10 Controller B Vo VDDIO f{PeI?:tlnSptjtte:
eInternal pullup enabled
*Schmitt Trigger®
PCO - PC31 Parallel IO Controller C I/O I.:{Pels(,)etlnsptjtte:
eInternal pullup enabled
External Bus Interface
DO - D15 Data Bus I/0
AO - A23 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0 - NCS3 Chip Select Lines Output Low
NWRO - NWR1 Write Signal Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS1 Byte Mask Signal Output Low
NAND Flash Controller - NFC
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NANDRDY NAND Ready Input
6 SAM3U Series m——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference |Comments
High Speed Multimedia Card Interface - HSMCI
CK Multimedia Card Clock I/0
CDA Multimedia Card Slot A Command I/0
DAO - DA7 Multimedia Card Slot A Data I/0
Universal Synchronous Asynchronous Receiver Transmitter - USARTx
SCKx USARTX Serial Clock IO
TXDx USARTX Transmit Data I/0
RXDx USARTx Receive Data Input
RTSx USARTXx Request To Send Output
CTSx USARTX Clear To Send Input
DTRO USARTO Data Terminal Ready /0
DSRO USARTO Data Set Ready Input
DCDO USARTO Data Carrier Detect Input
RIO USARTO Ring Indicator Input
Synchronous Serial Controller - SSC
TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock I/0
RK SSC Receive Clock I/0
TF SSC Transmit Frame Sync I/0
RF SSC Receive Frame Sync I/0
Timer/Counter - TC

TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBx TC Channel x I/O Line B I/0

Pulse Width Modulation Controller- PWMC
PWMHXx PWM Waveform Output High for channel x Output

PWM Waveform Output Low for channel x only output in
P ol moce
insertion is enabled
PWMFI10-2 PWM Fault Input Input
Serial Peripheral Interface - SPI

MISO Master In Slave Out IO
MOSI Master Out Slave In I/0
SPCK SPI Serial Clock I/0
NPCS0 SPI Peripheral Chip Select 0 I/0 Low
NPCS1 - NPCS3 SPI Peripheral Chip Select Output Low

ATMEL 7

6430E-ATARM-29-Aug-11

ATMEL

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference |Comments
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data I/O
TWCKXx TWIx Two-wire Serial Clock 1/0
12-bit Analog-to-Digital Converter - ADC12B
AD12Bx Analog Inputs Analog
AD12BTRG ADC Trigger Input
AD12BVREF ADC Reference Analog
10-bit Analog-to-Digital Converter - ADC
ADx Analog Inputs Analog
ADTRG ADC Trigger Input
ADVREF ADC Reference Analog
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN2 |Programming Enabling Input
PGMMO-PGMM3 Programming Mode Input
PGMDO-PGMD15 |Programming Data IO
PGMRDY Programming Ready Output High
PGMNVALID Dati Directic?n Output Logw vbpio
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
USB High Speed Device - UDPHS
DFSDM USB Device Full Speed Data - Analog
DFSDP USB Device Full Speed Data + Analog
DHSDM USB Device High Speed Data - Analog VDDUTMI
DHSDP USB Device High Speed Data + Analog
Notes: 1. PIOA: Schmitt Trigger on all except PA14 on 100 and 144 packages.
2. PIOB: Schmitt Trigger on all except PB9 to PB16, PB25 to PB31 on 100 and 144 packages.
3. PIOC: Schmitt Trigger on all except PC20 to PC27 on 144 package.
4. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus an external pull-up (100 k&) must be
added to avoid current consumption due to floating input.
3.1 Design Considerations

In order to facilitate schematic capture when using a SAM3U design, Atmel provides a “Sche-
matics Checklist” Application note.

Please visit http://www.atmel.com/products/AT91/ for additional documentation.

8 SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

http://www.atmel.com/products/AT91/

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

4. Package and Pinout
The SAM3U4/2/1E is available in 144-lead LQFP and 144-ball LFBGA packages.

The SAM3U4/2/1C is available in 100-lead LQFP and 100-ball LFBGA packages.

41 SAM3U4/2/1E Package and Pinout

411 144-ball LFBGA Package Outline
The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimen-
sions are 10 x 10 x 1.4 mm.

Figure 4-1. Orientation of the 144-ball LFBGA Package
TOP VIEW

Q00000000000
Q00000000000
Q00000000000
Q00000000000
Q000000000
Q000000000
Q000000000
Q000000000
[eXe]

[e}e]

o

o =N

Q0000000

Q0000000

Q00000000
.OOOOOOOOOO

“NWh,HrOTON ©©O©

[e}e]
[e}e]
[e}e]
[e}e]
[e}e]
[eXe}
[e}e]
[eXe}

M

ABCDEFGHJ KL
BALLAT1 /

41.2 144-lead LQFP Package Outline

Figure 4-2. Orientation of the 144-lead LQFP Package

108 73

0 0
1095 b 72
144+ P 37

u u

1 36

ATMEL ;

6430E-ATARM-29-Aug-11

ATMEL

413 144-lead LQFP Pinout

Table 4-1. 144-pin SAM3U4/2/1E Pinout
1 TDI 37 DHSDP 73 VDDANA 109 PAO/PGMNCMD
2 VDDOUT 38 DHSDM 74 ADVREF 110 PCO
3 VDDIN 39 VBG 75 GNDANA 111 PA1/PGMRDY
4 TDO/TRACESWO 40 VDDUTMI 76 AD12BVREF 112 PC1
5 PB31 41 DFSDM 77 PA22/PGMD14 113 PA2/PGMNOE
6 PB30 42 DFSDP 78 PA30 114 PC2
7 TMS/SWDIO 43 GNDUTMI 79 PB3 115 PA3/PGMNVALID
8 PB29 44 VDDCORE 80 PB4 116 PC3
9 TCK/SWCLK 45 PA28 81 PC15 117 PA4/PGMMO
10 PB28 46 PA29 82 PC16 118 PC4
1 NRST 47 PC22 83 PC17 119 PA5/PGMMA1
12 PB27 48 PA31 84 PC18 120 PC5
13 PB26 49 PC23 85 VDDIO 121 PA6/PGMM2
14 PB25 50 VDDCORE 86 VDDCORE 122 PC6
15 PB24 51 VDDIO 87 PA13/PGMD5 123 PA7/PGMM3
16 VDDCORE 52 GND 88 PA14/PGMD6 124 PC7
17 VDDIO 53 PBO 89 PC10 125 VDDCORE
18 GND 54 PC24 90 GND 126 GND
19 PB23 55 PB1 91 PA15/PGMD7 127 VDDIO
20 PB22 56 PC25 92 PC11 128 PA8/PGMDO
21 PB21 57 PB2 93 PA16/PGMD8 129 PC8
22 PC21 58 PC26 94 PC12 130 PA9/PGMD1
23 PB20 59 PB11 95 PA17/PGMD9 131 PC9
24 PB19 60 GND 96 PB16 132 PA10/PGMD2
25 PB18 61 PB12 97 PB15 133 PA11/PGMD3
26 PB17 62 PB13 98 PC13 134 PA12/PGMD4
27 VDDCORE 63 PC27 99 PA18/PGMD10 135 FWUP
28 PC14 64 PA27 100 PA19/PGMD11 136 SHDN
29 PB14 65 PB5 101 PA20/PGMD12 137 ERASE
30 PB10 66 PB6 102 PA21/PGMD13 138 TST
31 PB9 67 PB7 103 PA23/PGMD15 139 VDDBU
32 PC19 68 PB8 104 VDDIO 140 GNDBU
33 GNDPLL 69 PC28 105 PA24 141 NRSTB
34 VDDPLL 70 PC29 106 PA25 142 JTAGSEL
35 XOouT 71 PC30 107 PA26 143 XOUT32
36 XIN 72 PC31 108 PC20 144 XIN32

10 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

41.4 144-ball LFBGA Pinout

Table 4-2. 144-ball SAM3U4/2/1E Pinout
A1l VBG D1 DFSDM G1 PBO K1 PB7
A2 VDDUTMI D2 DHSDM G2 PC26 K2 PC31
A3 PB9 D3 GNDPLL G3 PB2 K3 PC29
A4 PB10 D4 PC14 G4 PC25 K4 PB3
A5 PB19 D5 PB21 G5 PB1 K5 PB4
A6 PC21 D6 PB23 G6 GND K6 PA14/PGMD6
A7 PB26 D7 PB24 G7 GND K7 PA16/PGMD8
A8 TCK/SWCLK D8 PB28 G8 VDDCORE K8 PA18/PGMD10
A9 PB30 D9 TDI G9 PC4 K9 PC20
A10 TDO/TRACESWO D10 VDDBU G10 PA6/PGMM2 K10 PA1/PGMRDY
A11 XIN32 D11 PA10/PGMD2 G11 PA7/PGMM3 K11 PC1
A12 XOuUT32 D12 PA11/PGMD3 G12 PC6 K12 PC2
B1 VDDCORE E1 pC22 H1 PC24 L1 PC30
B2 GNDUTMI E2 PA28 H2 pPC27 L2 ADVREF
B3 XOuT E3 PC19 H3 PA27 L3 AD12BVREF
B4 PB14 E4 VDDCORE H4 PB12 L4 PA22/PGMD14
B5 PB17 E5 GND H5 PB11 L5 PC17
B6 PB22 E6 VDDIO H6 GND L6 PC10
B7 PB25 E7 GNDBU H7 VDDCORE L7 PC12
B8 PB29 E8 NRST H8 PB16 L8 PA19/PGMD11
B9 VDDIN E9 PB31 H9 PB15 L9 PA23/PGMD15
B10 JTAGSEL E10 PA12/PGMD4 H10 PC3 L10 PAO/PGMNCMD
B11 ERASE E11 PA8/PGMDO H11 PA5/PGMM1 L11 PA26
B12 SHDN E12 PC8 H12 PC5 L12 PCO
C1 DFSDP F1 PA31 J1 PB5 M1 VDDANA
Cc2 DHSDP F2 PA29 J2 PB6 M2 GNDANA
C3 XIN F3 PC23 J3 PC28 M3 PA30
C4 VDDPLL Fa VDDCORE J4 PB8 M4 PC15
C5 PB18 F5 VDDIO J5 PB13 M5 PC16
C6 PB20 F6 GND J6 VDDIO M6 PC18
C7 PB27 F7 GND J7 PA13/PGMD5 M7 PA15/PGMD7
C8 TMS/SWDIO F8 VDDIO J8 PA17/PGMD9 M8 PC11
C9 VDDOUT F9 PC9 J9 PC13 M9 PA20/PGMD12
C10 NRSTB F10 PA9/PGMD1 J10 PA2/PGMNOE M10 PA21/PGMD13
C11 TST F11 VDDCORE J11 PA3/PGMNVALID M11 PA24
Cc12 FWUP F12 PC7 J12 PA4/PGMMO M12 PA25

6430E-ATARM-29-Aug-11

ATMEL

11

ATMEL

4.2 SAM3U4/2/1C Package and Pinout
4.21 100-lead LQFP Package Outline

Figure 4-3. Orientation of the 100-lead LQFP Package

75 51
0 0
76 9 B 50
10049 P 26
U U
1 25

42.2 100-ball LFBGA Package Outline

Figure 4-4. Orientation of the 100-ball LFBGA Package

TOP VIEW

12345678910

°
Al coooooooo0o0
Bl coooooooo0o
C|l cooooooo0o0o0
D| cooooooo0o0o
E| cocoooooo0o0o0
F|] ocooooo0o0oo000
G| cocoooooo0o0o0
Hl coooooooo0o
J| ocooooooooo
K| cooooooooo

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

4.2.3 100-lead LQFP Pinout

Table 4-3. 100-pin SAM3U4/2/1C1 Pinout

1 VDDANA 26 PAO/PGMNCMD 51 TDI 76 DHSDP
2 ADVREF 27 PA1/PGMRDY 52 VDDOUT 77 DHSDM
3 GNDANA 28 PA2/PGMNOE 53 VDDIN 78 VBG

4 AD12BVREF 29 PA3/PGMNVALID 54 TDO/TRACESWO 79 VDDUTMI
5 PA22/PGMD14 30 PA4/PGMMO 55 TMS/SWDIO 80 DFSDM
6 PA30 31 PA5/PGMM1 56 TCK/SWCLK 81 DFSDP
7 PB3 32 PA6/PGMM2 57 NRST 82 GNDUTMI
8 PB4 33 PA7/PGMM3 58 PB24 83 VDDCORE
9 VDDCORE 34 VDDCORE 59 VDDCORE 84 PA28
10 PA13/PGMD5 35 GND 60 VDDIO 85 PA29
11 PA14/PGMD6 36 VDDIO 61 GND 86 PA31
12 PA15/PGMD7 37 PA8/PGMDO 62 PB23 87 VDDCORE
13 PA16/PGMD8 38 PA9/PGMD1 63 PB22 88 VDDIO
14 PA17/PGMD9 39 PA10/PGMD2 64 PB21 89 GND
15 PB16 40 PA11/PGMD3 65 PB20 90 PBO
16 PB15 41 PA12/PGMD4 66 PB19 91 PB1

17 PA18/PGMD10 42 FWUP 67 PB18 92 PB2
18 PA19/PGMD11 43 ERASE 68 PB17 93 PB11
19 PA20/PGMD12 44 TST 69 PB14 94 PB12
20 PA21/PGMD13 45 VDDBU 70 PB10 95 PB13
21 PA23/PGMD15 46 GNDBU 71 PB9 96 PA27
22 VvDDIO 47 NRSTB 72 GNDPLL 97 PB5
23 PA24 48 JTAGSEL 73 VDDPLL 98 PB6
24 PA25 49 XOuT32 74 XOUT 99 PB7
25 PA26 50 XIN32 75 XIN 100 PB8

ATMEL 1

6430E-ATARM-29-Aug-11

ATMEL

4.24 100-ball LFBGA Pinout

Table 4-4. 100-ball SAM3U4/2/1C Pinout

A1 VBG C6 PB22 F1 PB1 He PA15/PGMD7
A2 XIN c7 | TMs/swpio F2 PB12 H7 | PA18/PGMD10
A3 XOUT cs NRSTB F3 VDDIO H8 PA24
A4 PB17 Co JTAGSEL F4 PA31 Ho | PA1/PGMRDY
A5 PB21 c10 VDDBU F5 VDDIO H10 | PA2/PGMNOE
A6 PB23 D1 DFSDM F6 GND 1 PB6
A7 TCK/SWCLK D2 DHSDM F7 PB16 J2 PB8
A8 VDDIN D3 VDDPLL F8 PA6/PGMM2 J3 ADVREF
A9 VDDOUT D4 VDDCORE Fo VDDCORE J4 PA30
A10 XING2 D5 PB20 F10 PA7/PGMM3 J5 PB3
B1 VDDCORE D6 ERASE G1 PB11 J6 PA16/PGMDS
B2 GNDUTMI D7 TST G2 PB2 J7 | PA19/PGMD11
B3 VDDUTMI D8 FWUP G3 PBO J8 | PA21/PGMD13
B4 PB10 D9 | PA11/PGMD3 G4 PB13 J9 PA26
B5 PB18 D10 | PA12/PGMD4 G5 VDDCORE J10 | PAO/PGMNCMD
B6 PB24 E1 PA29 G6 GND KA1 PB7
B7 NRST E2 GND G7 PB15 K2 VDDANA
B8 | TDO/TRACESWO E3 PA28 G8 | PA3/PGMNVALID K3 GNDANA
B9 TDI E4 PB9 Go PAS/PGMM1 K4 AD12BVREF
B10 XOUT32 E5 GNDBU G10 PA4/PGMMO K5 PB4
C1 DFSDP E6 VDDIO H1 VDDCORE K6 PA14/PGMD6
c2 DHSDP E7 VDDCORE H2 PBS5 K7 PA17/PGMD9
c3 GNDPLL E8 | PA10/PGMD2 H3 PA27 K8 | PA20/PGMD12
c4 PB14 E9 PA9/PGMD1 H4 PA22/PGMD14 K9 | PA23/PGMD15
cs PB19 E10 | PA8/PGMDO H5 PA13/PGMD5 K10 PA25

14 SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5. Power Considerations

5.1 Power Supplies
The SAM3U product has several types of power supply pins:
* VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage
ranges from 1.62V to 1.95V.
* VDDIO pins: Power the Peripherals /O lines; voltage ranges from 1.62V to 3.6V.
¢ VDDIN pin: Powers the Voltage regulator
* VDDOUT pin: It is the output of the voltage regulator.

* VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.62V to 3.6V. VDDBU must be supplied before or at the same time than VDDIO
and VDDCORE.

¢ VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V
to 1.95V.
e VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
* VDDANA pin: Powers the ADC cells; voltage ranges from 2.0V to 3.6V.
Ground pins GND are common to VDDCORE and VDDIO pins power supplies.

Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These
ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.

5.2 Voltage Regulator
The SAM3U embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3U but can be used to sup-
ply other parts in the application. It features two different operating modes:

* In Normal mode, the voltage regulator consumes less than 700 pA static current and draws
150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode or when the output current is low,
quiescent current is only 7pA.

* In Shutdown mode, the voltage regulator consumes less than 1 pA while its output is driven
internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal
mode is inferior to 400 ps.

For adequate input and output power supply decoupling/bypassing, refer to “Voltage Regulator”
in the “Electrical Characteristics” section of the product datasheet.

5.3 Typical Powering Schematics
The SAMS3U supports a 1.8V-3.6V single supply mode. The internal regulator input connected to
the source and its output feed VDDCORE. Figure 5-1, Figure 5-2, Figure 5-3 show the power
schematics.

ATMEL 1

6430E-ATARM-29-Aug-11

ATMEL

Figure 5-1. Single Supply

VDDBU
——

VDDUTMI
]
VDDANA
.—»E]
VDDIO
—1{]

Main Supply (1.8V-3.6V) VDDIN Di
l Voltage
! Regulator
VDDOUT —

VDDCOREE

VDDPLL

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

SAM3U Series m——
6430E—ATARM-29-Aug-11

6430E-ATARM-29-Aug-11

Figure 5-2. Core Externally Supplied

VDDBU :
— L]

VDDUTMI
L]

VDDANA
+——{]
VDDIO
o——[]

Main Supply (1.62V-3.6V)

T

SAM3U Series

VDDOUT [i]

Voltage
Regulator

VDDCORE Supply (1.62V-1.95V) \,ppcoRg

VDDPLL

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

ATMEL

17

ATMEL

Figure 5-3. Backup Batteries Used
FWUP |I|
SHDN E:l

S S VOORU
| VDDUTMI E:I

——
VDDANA
o]

VDDIO '
+——L]
/ VDDIN |I|
Main Supply (1.62V-3.6V) ‘t 5 Voltage
i Regulator

VDDOUT

I

VDDCORE m

VDDPLL El

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLLA. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

5.5 Low Power Modes
The various low power modes of the SAM3U are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system
which is performing periodic wake-ups to perform tasks but not requiring fast startup time
(<0.5ms).

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running.
The regulator and the core supply are off.

Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.

The SAM3U Series can be awakened from this mode through the Force Wake-Up pin (FWUP),
and Wake-Up input pins WKUPO to WKUP15, Supply Monitor, RTT or RTC wake-up event. Cur-
rent Consumption is 2.5 pA typical on VDDBU.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-
trol Register of the Cortex-M3 set to 1. (See the “Power Management” description in The “ARM
Cortex M3 Processor” section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

* FWUP pin (low level, configurable debouncing)

* WKUPENO-15 pins (level transition, configurable debouncing)
e SM alarm

¢ RTC alarm

* RTT alarm

5.5.2 Wait Mode
The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 ps.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in

PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to
wake-up the core (WFE). This is done by configuring the external lines WKUPO-15 as fast
startup wake-up pins (refer to Section 5.7 “Fast Start-Up”). RTC or RTT Alarm and USB wake-up
events can be used to wake up the CPU (exit from WFE).

Current Consumption in Wait mode is typically 15 pA on VDDIN if the internal voltage regulator
is used or 8 pA on VDDCORE if an external regulator is used.

ATMEL 1

6430E-ATARM-29-Aug-11

ATMEL

Entering Wait Mode:

¢ Select the 4/8/12 MHz Fast RC Oscillator as Main Clock
¢ Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
¢ Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, Waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

5.5.3 Sleep Mode
The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This
mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM =0 in
PMC_FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or
from an event if the WFE instruction is used to enter this mode.

20 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low power modes. Each part can be set to on or off sep-
arately and wake up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low power modes.
Table 5-1. Low Power Mode Configuration Summary
SUPC,
32 kHz
Oscillator
RTC RTT
Backup
Registers,
POR Core PIO State
(vDDBU Memory Potential Wake Up | Core at |whilein Low | PIO State | Consumption | Wake-up
Mode Region) |Regulator |Peripherals| Mode Entry Sources Wake Up |Power Mode |at Wake Up @ Time™"
FWUP pin PIOA &
WFE WKUPO-15 pins . PIOB &
OFF OFF
’\BA?)%ILUp ON s _ +SLEEPDEEP [BOD alarm Reset :t:)t\g(::/ed PIOC 25pAtyp® |<0.5ms
HDN =0 |(Not powered)| ~ =% 1"~ |RTC alarm Inputs with
RTT alarm pull ups
Any Event from: Fast
WFE startup through
Wait ON Powered | +SLEEPDEEP |WKUPO0-15 pins Clocked |Previous ®)
Mode ON SHDN =1 | (Not clocked) bit=0 RTC alarm back state saved Unchanged |13 A/20 pA ™)< 10 ps
+LPMbit=1 |RTT alarm
USB wake-up
Entry mode =WFI
Interrupt Only; Entry
mode =WFE Any
WEFEE or WFI Enabled Interrupt
Sleep ON Powered”) | +SLEEPDEEP and/(?r Any Event Clocked |Previous ®) ®)
Mode ON S _ bit = 0 from: Fast start-up back state saved Unchanged
HDN =1 | (Not clocked) = through WKUPO-15
+LPMbit=0 |oing
RTC alarm
RTT alarm
USB wake-up
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works

with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up
time is defined as the time taken for wake up until the first instruction is fetched.

A A

BOD current consumption is not included.
Current consumption on VDDBU.
13 pA total current consumption - without using internal voltage regulator.

The external loads on PIOs are not taken into account in the calculation.

20 pA total current consumption - using internal voltage regulator.

o

Depends on MCK frequency.
In this mode the core is supplied and not clocked but some peripherals can be clocked.

6430E-ATARM-29-Aug-11

ATMEL

21

ATMEL

5.6 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power

supply.

Figure 5-4. Wake-up Source

]
sm_int -
e
rtc_alarm
Core
RTTEN N
rtt_alarm)} gUptP'Vt
estar
SLCK
NS FWUP
Falling —\ Debouncer
| I Edge ®
FWUP Detector _/
[wkuPENo | | wkuPIso
Falling/Rising |_
WKUPO D— Edge
Detector
[wkuPENT | | wkupist | SLIili>
Falling/Rising - Debouncer ®
WKUP1 | |— Edge
| Detector
I
' [wKkuPEN15[| wKuPIS1s|
I
Falling/Rising I_
WKUP15 D— Edge
Detector
22 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.7 Fast Start-Up
The SAM3U device allows the processor to restart in a few microseconds while the processor is
in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up
inputs.

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the mas-
ter clock on this 4/8/12 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

usb_wakeup____———— |
rtc_alarm ___ —————— |
rtt_alarm _ —————— |
FSTTO
High/Low
WKUPO Di Level
Detector ——— fast_restart
FSTTA
High/Low
WKUP1 Di Level
Detector
I
1
1
| FSTT15
1

High/Low
WKUP15 Di Level

Detector

ATMEL 2

6430E-ATARM-29-Aug-11

6.

6.1

6.2

6.3

24

ATMEL

Input/Output Lines

The SAM3U has different kinds of input/output (I/O) lines, such as general purpose 1/0Os (GPIO)
and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities of the
PIO controllers. The same GPIO line can be used whether it is in IO mode or used by the multi-
plexed peripheral. System I/Os are pins such as test pin, oscillators, erase pin, analog inputs or
debug pins.

With a few exceptions, the I/Os have input schmitt triggers. Refer to the footnotes associated
with “PIO Controller - PIOA - PIOB - PIOC” on page 6 within Table 3-1, “Signal Description List”.

General Purpose I/O Lines (GPIO)

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such
as, pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input
change interrupt. Programming of these modes is performed independently for each 1/O line
through the PIO controller user interface. For more details, refer to the “PIO Controller” section
of the product datasheet.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3U embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock
lines and 35 MHz on other lines. See “AC Characteristics” of the product datasheet for more
details. Typical pull-up value is 100 kQ for all 1/0Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists
of an internal series resistor termination scheme for impedance matching between the driver
output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor
helps to reduce 1/Os switching current (di/dt) thereby reducing in turn, EMI. It also decreases
overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. In conclusion, ODT helps reducing signal integrity issues.

Figure 6-1. On-Die Termination schematic

”””””””””””””””” Z0 ~ Zout + Rodt

| 1
| |
| |
oDT
! 36 Ohms Typ. !
! :
ol SS . M T (O
E Rodt i
i — —
E E Receiver
! SAMS3 Driver with ! PCB Trace
E Zout ~ 10 Ohms E 70 ~ 50 Ohms

System I/O Lines

System 1/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name
but a few.

Serial Wire JTAG Debug Port (SWJ-DP)

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1, “Signal Description List”

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

6.4

6.5

6.6

6.7

Test Pin

NRST Pin

NRSTB Pin

ERASE Pin

6430E-ATARM-29-Aug-11

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kQto GNDBU, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP.

All the JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.

The TST pin is used for JTAG Boundary Scan Manufacturing Test or fast flash programming
mode of the SAM3U series. The TST pin integrates a permanent pull-down resistor of about 15
kQto GND, so that it can be left unconnected for normal operations. To enter fast programming
mode, see the “Fast Flash Programming Interface” section of the product datasheet. For more
on the manufacturing and test mode, refer to the “Debug and Test” section of the product
datasheet.

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals, except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length.

The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k<

The NRSTB pin is input only and enables asynchronous reset of the SAM3U when asserted low.
The NRSTB pin integrates a permanent pull-up resistor of about 15 kQ. This allows connection
of a simple push button on the NRSTB pin as a system-user reset. In all modes, this pin will
reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as the
Power-on reset. It can be used as an external system reset source. In harsh environments, it is
recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filtering
values refer to “I/O Characteristics” in the “Electrical Characteristics” section of the product
datasheet.)

It embeds an anti-glitch filter.

The ERASE pin is used to reinitialize the Flash content and some of its NVM bits. It integrates a
permanent pull-down resistor of about 15 kQ2to GND, so that it can be left unconnected for nor-
mal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform the reinitialization of the Flash.

ATMEL 2

ATMEL

Even in all low power modes, asserting the pin will automatically start-up the chip and erase the
Flash.

7. Processor and Architecture

7.1 ARM Cortex-M3 Processor
¢ Version 2.0
e Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
e Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
* Three-stage pipeline.
* Single cycle 32-bit multiply.
e Hardware divide.
e Thumb and Debug states.
¢ Handler and Thread modes.
* Low latency ISR entry and exit.

7.2 APB/AHB Bridges
The SAM3U product embeds two separated APB/AHB bridges:

* low speed bridge
¢ high speed bridge
This architecture enables to make concurrent accesses on both bridges.
All the peripherals are on the low-speed bridge except SPI, SSC and HSMCI.

The UART, 10-bit ADC (ADC), 12-bit ADC (ADC12B), TWI0O-1, USARTO0-3, PWM have dedicated
channels for the Peripheral DMA Channels (PDC). These peripherals can not use the DMA
Controller.

The high speed bridge regroups the SSC, SPI and HSMCI. These three peripherals do not have
PDC channels but can use the DMA with the internal FIFO for Channel buffering.

Note that the peripherals of the two bridges are clocked by the same source: MCK.

7.3 Matrix Masters

The Bus Matrix of the SAM3U device manages 5 masters, which means that each master can
perform an access concurrently with others to an available slave.

Each master has its own decoder and specifically defined bus. In order to simplify the address-
ing, all the masters have the same decoding.

Table 7-1. List of Bus Matrix Masters

Master 0 Cortex-M3 Instruction/Data
Master 1 Cortex-M3 System
Master 2 Peripheral DMA Controller (PDC)
Master 3 USB Device High Speed DMA
Master 4 DMA Controller
26 SAM3U Series

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

7.4 Matrix Slaves
The Bus Matrix of the SAM3U manages 10 slaves. Each slave has its own arbiter, allowing a dif-
ferent arbitration per slave.
Table 7-2. List of Bus Matrix Slaves
Slave 0 Internal SRAMO
Slave 1 Internal SRAM1
Slave 2 Internal ROM
Slave 3 Internal Flash 0
Slave 4 Internal Flash 1
Slave 5 USB Device High Speed Dual Port RAM (DPR)
Slave 6 NAND Flash Controller RAM
Slave 7 External Bus Interface
Slave 8 Low Speed Peripheral Bridge
Slave 9 High Speed Peripheral Bridge
7.5 Master to Slave Access
All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the USB Device High speed DMA to the Internal Peripherals.
Thus, these paths are forbidden or simply not wired, and shown as “—” in Table 7-3 below.
Table 7-3. SAM3U Master to Slave Access
0 1 2 3 4
USB Device
Cortex-M3 | Cortex-M3 S High Speed DMA
Slaves Masters I/D Bus Bus PDC DMA Controller
0 Internal SRAMO - X X X X
1 Internal SRAM1 - X X X X
2 Internal ROM X - X X X
3 Internal Flash O X - - - -
4 Internal Flash 1 X - - - -
5 USB Device High Speed Dual Port RAM (DPR) - X - - -
6 NAND Flash Controller RAM - X X X X
7 External Bus Interface - X X X X
8 Low Speed Peripheral Bridge - X X - -
9 High Speed Peripheral Bridge - X X - -

6430E-ATARM-29-Aug-11

ATMEL

27

7.6

7.7

28

DMA Controller

ATMEL

¢ Acting as one Matrix Master

* Embeds 4 channels:

— 3 channels with 8 bytes/FIFO for Channel Buffering
— 1 channel with 32 bytes/FIFO for Channel Buffering
e Linked List support with Status Write Back operation at End of Transfer
* Word, HalfWord, Byte transfer support.
* Handles high speed transfer of SPI, SSC and HSMCI (peripheral to memory, memory to

peripheral)

¢ Memory to memory transfer
¢ Can be triggered by PWM and T/C which enables to generate waveforms though the

External Bus Interface

The DMA controller can handle the transfer between peripherals and memory and so receives
the triggers from the peripherals listed below. The hardware interface numbers are also given in

Table 7-4 below.

Table 7-4. DMA Controller

Instance name

DMA Channel HW interface

Channel T/R Number
HSMCI Transmit/Receive 0
SPI Transmit 1
SPI Receive 2
SSC Transmit 3
SSC Receive 4
PWM Event Line 0 Trigger 5
PWM Event Line 1 Trigger 6
7

Peripheral DMA Controller

¢ Handles data transfer between peripherals and memories

* Nineteen channels
— Two for each USART
— Two for the UART
— Two for each Two Wire
— One for the PWM

Interface

— One for each Analog-to-digital Converter
* Low bus arbitration overhead

— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
¢ Next Pointer management for reducing interrupt latency requirement

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 7-5. Peripheral DMA Controller

Instance name Channel T/R
TWH Transmit
TWIO Transmit
PWM Transmit
UART Transmit

USART3 Transmit
USART2 Transmit
USART1 Transmit
USARTO Transmit
TWIO Receive
TWIH Receive
UART Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive
ADC Receive
ADC12B Receive

7.8 Debug and Test Features

¢ Debug access to all memory and registers in the system, including Cortex-M3 register bank
when the core is running, halted, or held in reset.

¢ Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
¢ Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches

e Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and
system profiling

¢ Instrumentation Trace Macrocell (ITM) for support of printf style debugging
« IEEE® 1149.1 JTAG Boundary-scan on all digital pins

ATMEL 2

6430E-ATARM-29-Aug-11

ATMEL

8. Product Mapping

Figure 8-1. SAM3U Memory Mapping

Code Address memory space Peripherals
0%00000000 ... 0x000006060- 0x40000000 , .
Boot Memory L MCI '
0%00080000 Code owooqgo’oo 17 \
Internal Flash O s SSC Y
0%00100000 0%20000000- oy’éoosooo 21
Internal Flash 1 ',"f' "' SPI Y
0%00180000 Internal SRAM ,+* 0x4000C000 20 \
Internal ROM ',"/' R Reserved ‘-‘
0x00200000 ,+* 0340000000, 0x40080000 | -
Reserved L ',' S TCO Y
0x1FFFFFFF . o ,'ll Peripherals AR T - |
Internal SRAM , el 23
0x20000000, 0x60090000 ‘ +0x80 f— \
1MByte _.--=""" SRAMO R | TC2 y
bitband ~ 0x20080000 S, /| ExternalsRAM |, 0x40084000 24 .
region " T=<._ .. SRAM1 ." "' “‘ TWIO “‘
0%20100000" Io'onooqboo Y 0x40088000 18 A\
NFC (SRAM) ;oo ' TWI
0%20180000 K Reserved 1 0x4008C000 19 '
UDPHS (DMA)) | PWM
0%20200000 omﬁoooog.b % 0x40090000 25
Undefined ,'l ," ; “‘ USARTO . 1 MByte
0x22000000 32 MBytes "l ;! System :‘Ox40094000 - bit bland
' region
0x24000000 bit band alias I'E)XFFFFF'FFF 040098000 14 3
Undefined v USART2 B
0x40000000 ," 0x40650000 System Controller 0%4009C000 15 :'
; ’,' SMC ‘\‘ '.‘ USART3 N
," 0x4(0E0200 ', 0x%00A0000 16 ,"
K K MATRIX kN v Reserved !
External SRAM ; 0x£00£0400 ", 0%4Q044000
0x60000000 ' H PMC oo UDPHS N
Chip Select 0 0%400E0600 5 340828000 29 ;
0x61000000 ! UART NN ADC12B K
Chip Select 1 {0x400£0740 8 0x46,0AC000 26 ;
0%62000000 |——] ! CHIPID S ADC
Chip Select 2 7 0x400£0800 0x40088000 =
0x63000000 : EFCO “ DMAC !
Chip Select 3 ¢ 0x400E0800 6 0x4OOB3F‘.:R‘F 28 J
0x64000000 ! EFC1 -‘“‘ Reserved N
reserved ! 0x400E0C00 7 0x400E000p '
068000000 : PIOA * | system Controller [
NFC B 0%400E0E00 10 0x400E2600', | i
0x69000000 i PIOB - Reserved ;
reserved K 0x400E1000 11 0x40100000
0x9FFFFFFF : PIOC ," Reserved
0x400E1200 12 042000900
e e RSTC bit band alas
peripheral o +0x10 1 0x44000000
SUPC ," Reserved
030 0%69000000
.
RTT ;
+0x50 3 /
WDT
+0%60 4
RTC ;
+0x90 2
Y5 GPBR K
0x400E1400
reserved ‘.
0x4007FFFF !

30 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

9. Memories
The embedded and external memories are described below.

9.1 Embedded Memories

9.1.1 Internal SRAM
The SAM3U4 (256 KBytes internal Flash version) embeds a total of 48 Kbytes high-speed
SRAM (32 Kbytes SRAMO and 16 Kbytes SRAM1).

The SAM3U2 (128 KBytes internal Flash version) embeds a total of 32 Kbytes high-speed
SRAM (16 Kbytes SRAMO and 16 Kbytes SRAM1).

The SAM3U1 (64 KBytes internal Flash version) embeds a total of 16 Kbytes high-speed SRAM
(8 Kbytes SRAMO and 8 Kbytes SRAM1).

The SRAMO is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at
address 0x2008 0000. The user can see the SRAM as contiguous at 0x20078000-0x20083FFF
(SAM3U4), 0x2007C000-0x20083FFFF (SAM3U2) or 0x2007E000-0x20081FFFF (SAM3U1).

The SRAMO and SRAM1 are in the bit band region. The bit band alias region is from 0x2200
0000 and 0x23FF FFFF.

The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller
is not used, these 4224 bytes of SRAM can be used as general purpose. It can be seen at
address 0x2010 0000.

9.1.2 Internal ROM
The SAM3U product embeds an Internal ROM, which contains the SAM-BA Boot and FFPI
program.

At any time, the ROM is mapped at address 0x0018 0000.
9.1.3 Embedded Flash

9.1.3.1 Flash Overview
The Flash of the SAM3U4 (256 KBytes internal Flash version) is organized in two banks of 512
pages (dual plane) of 256 bytes.

The Flash of the SAM3U2 (128 KBytes internal Flash version) is organized in one bank of 512
pages (single plane) of 256 bytes.
The Flash of the is SAM3U1 (256 KBytes internal Flash version) organized in one bank of 256
pages (single plane) of 256 bytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply
The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a
User Interface, mapped within the Memory Controller on the APB.

ATMEL s

6430E-ATARM-29-Aug-11

ATMEL

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-
bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking
sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

The SAM3U4 (256 KBytes internal Flash version) embeds two EEFC (EEFCO for FlashO and
EEFC1 for Flash1) whereas the SAM3U2/1 embeds one EEFC.

9.1.34 Lock Regions
In the SAM3U4 (256 KBytes internal Flash version) two Enhanced Embedded Flash Controllers
each manage 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or
programming commands.

The SAM3U4 (256 KBytes internal Flash version) contains 32 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

The SAM3U2 (128 KBytes internal Flash version) Enhanced Embedded Flash Controller man-
ages 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or
programming commands.

The SAM3U2 (128 KBytes internal Flash version) contains 16 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

The SAM3U1(64 KBytes internal Flash version) Embedded Flash Controller manages 8 lock bits
to protect 8 regions of the flash against inadvertent flash erasing or programming commands.

The SAM3U1(64 KBytes internal Flash version) contains 8 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.5 Security Bit Feature
The SAM3U features a security bit, based on a specific General Purpose NVM bit (GPNVM bit
0). When the security is enabled, any access to the Flash, SRAM, Core Registers and Internal
Peripherals either through the ICE interface or through the Fast Flash Programming Interface, is
forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of

the EEFC User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,
all accesses to the Flash, SRAM, Core Registers and Internal Peripherals either through the ICE
interface or through the Fast Flash Programming Interface are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal

32 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

9.1.3.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.8 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-
ming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered
when TST, NRSTB and FWUP pins are tied high during power up sequence and if all supplies
are provided externally (do not use internal regulator for VDDCORE). Please note that since the
FFPI is a part of the SAM-BA Boot Application, the device must boot from the ROM.

9.1.3.9 SAM-BA® Boot

9.1.3.10 GPNVM Bits

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set
to 0.

The SAM3U features three GPNVM bits that can be cleared or set respectively through the com-
mands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The SAM3U4 is equipped with two EEFC, EEFCO and EEFC1. EEFC1 does not feature the
GPNVM bits. The GPNVM embedded on EEFCO applies to the two blocks in the SAM3U4.

Table 9-1. General-purpose Non-volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
o Flash selef:tion (Flash 0 or Flash 1) Only on SAM3U4 (256 Kbytes internal
Flash version)

| AWEL@ 33

6430E-ATARM-29-Aug-11

9.1.4

9.2

9.2.1

9.2.2

9.2.3

34

ATMEL

Boot Strategies
The system always boots at address 0x0. To ensure a maximum boot possibilities the memory
layout can be changed via GPNVM.

A general purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by
default.

GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot. Setting the GPNVM2 bit
selects the boot from Flash 1, clearing it selects the boot from Flash 0.

External Memories

The SAMB3U offers an interface to a wide range of external memories and to any parallel
peripheral.

Static Memory Controller
¢ 8- or 16- bit Data Bus
¢ Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
¢ Up to 4 chips selects, Configurable Assignment
¢ Multiple Access Modes supported
— Byte Write or Byte Select Lines
¢ Multiple device adaptability
— Control signals programmable setup, pulse and hold time for each Memory Bank
e Multiple Wait State Management
— Programmable Wait State Generation
— External Wait Request
— Programmable Data Float Time
¢ Slow Clock mode supported

NAND Flash Controller
* Handles automatic Read/Write transfer through 4224 bytes SRAM buffer
¢ DMA support
e Supports SLC NAND Flash technology
* Programmable timing on a per chip select basis
* Programmable Flash Data width 8-bit or 16-bit

NAND Flash Error Corrected Code Controller
* Integrated in the NAND Flash Controller
* Single bit error correction and 2-bit Random detection.
* Automatic Hamming Code Calculation while writing
— ECC value available in a register
* Automatic Hamming Code Calculation while reading

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

— Error Report, including error flag, correctable error flag and word address being
detected erroneous

— Supports 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte
pages

ATMEL s

6430E-ATARM-29-Aug-11

ATMEL

10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...

The System Controller User Interface also embeds the registers used to configure the Matrix.

See the system controller block diagram in Figure 10-1 on page 37.

36 SAM3U Series m——
6430E—ATARM-29-Aug-11

SAM3U Series

Figure 10-1. System Controller Block Diagram

VDDBU VDDIN

vr_standby VDDOUT
Software Controlled
FWUP Voltage Regulator | I- mEE_—————
1
SHDN 1
< WKUPO - WKUP15 :
NRSTB Supply 1
Controller VDDIO 1
1
PIOAB/IC 1
Input/ Output Bufiers FiOx 1
Zero-Power 1
Power-on Reset
VDDANA 1
1
I—D p
General Purpose !
u
' —| | ADVREF 1
Backup Registers ADC (front-end) 1
1
SLCK rtc_alarm
RT! .
¢ REdDUDRI VDDUTMI !
Supply 1
bodbup_on Monitor I 1
1
SLCK rtt_alarm 1
RTT usB —D USBx 1
1
1
osc32k_xtal_en 1
vddcore_nreset VDDCORE 1
XTALSEL 1
XIN32 Xtal 32 kH] |_| | Ty pp———
Oscillator
X0uT32 bodcore_on Brownout
Embedded bodcore_in Detector
32 kHz RC| 55c32k rc_en supc_interrupt
Oscillator
<€ SRAV [
Backup Power Supply
Peripherals [
—> t
vddcore_nreset Reset RICCSTESE)
] Contiofler [Pperiph_nreset Cortex-M3 |«@=P»{ Matrix
—> ice_nreset
NRST D‘—’ - | Perheral
Bridge
FSTTO- FSTT150 [} > €| Flash [
Embedded SLCK_, |
12/8/4 MHz 5
RC Main Clock " Clock
Oscillator MAINCK Power as't\:(r:K ocl
. > Controller
XOUT D XTAL Oscillator
MAINCK PLLACK Watchdog
—
PLLA B == Timer
MAINCK UPLLCK c P Supol
—> uPLL ore Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

ATMEL s

6430E-ATARM-29-Aug-11

10.1

ATMEL

System Controller and Peripheral Mapping

Please refer to Figure 8-1“SAM3U Memory Mapping” on page 30 .

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

10.2.1

10.2.2

10.2.3

The SAM3U embeds three features to monitor, warn and/or reset the chip:
¢ Power-on-Reset on VDDBU

¢ Brownout Detector on VDDCORE
e Supply Monitor on VDDUTMI

Power-on-Reset on VDDBU

The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up
but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset.
For more information, refer to the “Electrical Characteristics” section of the datasheet.

Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the “Supply Controller” and “Electrical Characteristics” sections of the product
datasheet.

Supply Monitor on VDDUTMI

The Supply Monitor monitors VDDUTMI. It is not active by default. It can be activated by soft-
ware and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is
controlled by the Supply Controller. A sample mode is possible. It allows to divide the supply
monitor power consumption by a factor of up to 2048. For more information, refer to the “Supply
Controller” and “Electrical Characteristics” sections of the product datasheet.

10.3 Reset Controller

The Reset Controller is capable to return to the software the source of the last reset, either a
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin output. It is
capable to shape a reset signal for the external devices, simplifying to a minimum connection of
a push-button on the NRST pin to implement a manual reset.

10.4 Supply Controller

38

The Supply Controller controls the power supplies of each section of the processor and the
peripherals (via Voltage regulator control).

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock
generator.

The reset circuitry is based on a zero-power power-on reset cell. The zero-power power-on reset
allows the Supply Controller to start properly.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal
oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by enabling the Voltage Regulator, then it generates
the proper reset signals to the core power supply.

It also enables to set the system in different low power modes and to wake it up from a wide
range of events.

10.5 Clock Generator

6430E-ATARM-29-Aug-11

The Clock Generator is made up of:

* One Low Power 32768 Hz Slow Clock Oscillator with bypass mode
* One Low Power RC Oscillator
¢ One 3 to 20 MHz Crystal Oscillator, which can be bypassed

¢ One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12
MHz. By default 4 MHz is selected. 8 MHz and 12 MHz output are factory calibrated.

* One 480 MHz UPLL providing a clock for the USB High Speed Device Controller. Input
frequency is 12 MHz (only).

* One 96 to 192 MHz programmable PLL (PLL A), capable to provide the clock MCK to the
processor and to the peripherals. The input frequency of the PLL A is between 8 and 16 MHz.

Figure 10-2. Clock Generator Block Diagram

Clock Generator
— XTALSEL
On Chip
32k RC OSC [
|, Slow Clock
XIN32 | I SLCK
Slow Clock [—>|
Oscillator
XOuUT32 | I
XIN D 12M Main
Oscillator [
XOUT | I Main Clock
” MAINCK
On Chip
12/8/4 MHz ||
RC OSC
MAINSEL
* PLL B » HSCK
Divider UPLL Clock
/6 /8 UPLLCK
—| PLL and PLLA Clock
Divider A PLLACK

l Status T Control

Power
Management
Controller

ATMEL 5

ATMEL

10.6 Power Management Controller
The Power Management Controller provides all the clock signals to the system. It provides:
¢ the Processor Clock HCLK
e the Free running processor clock FCLK
* the Cortex SysTick external clock
¢ the Master Clock MCK, in particular to the Matrix and the memory interfaces
¢ the USB Device HS Clock UDPCK
¢ independent peripheral clocks, typically at the frequency of MCK
* three programmable clock outputs: PCKO, PCK1 and PCK2
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running
at 4 MHz.

Figure 10-3. Power Management Controller Block Diagram

Processor
Clock > HCK
Controller

< int

Sleep Mod¢

Divider .
— /8 —— > SystTick

FCLK

Master Clock Controller

SLCK] —
MAINCK — rescaler
PLLACK — 1,/2,/4,.../64 MCK
PLLBCK]

Peripherals
|_,| Clock Controller periph_clk[..]
ON/OFF
Programmable Clock Controller
SLCK — ON/OFF
MAINCK — Prescaler | -~ | = ekl
PLLACK — /1,/2,/4,...,/64
PLLBCK —
USB Clock Controller
ON/OFF
HSCK UDPCK

The SysTick calibration value is fixed at 10500, which allows the generation of a time base of
1 ms with SystTick clock to 10.5 MHz (max HCLK/8).

40 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

10.7 Watchdog Timer
* 16-bit key-protected once-only Programmable Counter
* Windowed, prevents the processor from being in a dead-lock on the watchdog access

10.8 SysTick Timer
¢ 24-bit down counter
» Self-reload capability
* Flexible system timer

10.9 Real-time Timer
¢ Real-time Timer, allowing backup of time with different accuracies
— 32-bit Free-running back-up Counter
— Integrates a 16-bit programmable prescaler running on slow clock
— Alarm Register capable to generate a wake-up of the system

10.10 Real-time Clock
e Low power consumption
* Full asynchronous design
¢ Two hundred year calendar
* Programmable Periodic Interrupt
e Alarm and update parallel load
¢ Control of alarm and update Time/Calendar Data In

10.11 General-Purpose Back-up Registers
¢ Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller
* Thirty maskable interrupts
* Sixteen priority levels
* Dynamic reprioritization of interrupts
* Priority grouping
— selection of preempting interrupt levels and non preempting interrupt levels.
* Support for tail-chaining and late arrival of interrupts.

— back-to-back interrupt processing without the overhead of state saving and
restoration between interrupts.

¢ Processor state automatically saved on interrupt entry, and restored on
— interrupt exit, with no instruction overhead.

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

10.13 Chip Identification
* Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Table 10-1. SAMB3U Chip IDs Register - Engineering Samples

Flash Size
Chip Name KByte Pin Count CHIPID_CIDR CHIPID_EXID
SAM3U4C 256 100 0x28000960 0x0
SAM3U2C 128 100 0x280A0760 0x0
SAM3U1C 64 100 0x28090560 0x0
SAM3U4E 256 144 0x28100960 0x0
SAM3U2E 128 144 0x281A0760 0x0
SAM3U1E 64 144 0x28190560 0x0

* JTAG ID: 0x0582A03F

Table 10-2. SAMB3U Chip IDs Register - Revision A Parts

Flash Size
Chip Name KByte Pin Count CHIPID_CIDR CHIPID_EXID
SAM3UA4C (Rev A) 256 100 0x28000961 0x0
SAM3U2C (Rev A) 128 100 0x280A0761 0x0
SAM3U1C (Rev A) 64 100 0x28090561 0x0
SAM3UA4E (Rev A) 256 144 0x28100961 0x0
SAMS3U2E (Rev A) 128 144 0x281A0761 0x0
SAM3U1E (Rev A) 64 144 0x28190561 0x0

* JTAG ID: 0x0582A03F

10.14 PIO Controllers
¢ 3 PIO Controllers, PIOA, PIOB, and PIOC, controlling a maximum of 96 I/O Lines
e Each PIO Controller controls up to 32 programmable I/O Lines
— PIOA has 32 1/O Lines
— PIOB has 32 I/O Lines
— PIOC has 32 I/O Lines
* Fully programmabile through Set/Clear Registers
* Multiplexing of two peripheral functions per 1/O Line
¢ For each /O Line (whether assigned to a peripheral or used as general purpose I/O)
— Input change, rising edge, falling edge, low level and level interrupt
— Debouncing and Gilitch filter
— Multi-drive option enables driving in open drain
— Programmable pull up on each I/O line
— Pin data status register, supplies visibility of the level on the pin at any time
¢ Synchronous output, provides Set and Clear of several I/O lines in a single write

42 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM3U. A peripheral identifier is required for
the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and for the
control of the peripheral clock with the Power Management Controller.

Note that some Peripherals are always clocked. Please refer to the table below.

Table 11-1. Peripheral Identifiers

NVIC PMC
Instance ID Instance Name Interrupt Clock Control Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real Time Clock
3 RTT X Real Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFCO X Enhanced Embedded Flash Controller O
7 EEFC1 X Enhanced Embedded Flash Controller 1
8 UART X X Universal Asynchronous Receiver Transmitter
9 SMC X X Static Memory Controller
10 PIOA X X Parallel 1/0 Controller A,
11 PIOB X X Parallel I/O Controller B
12 PIOC X X Parallel I/O Controller C
13 USARTO X X USART 0
14 USART1 X X USART 1
15 USART2 X X USART 2
16 USART3 X X USART 3
17 HSMCI X X High Speed Multimedia Card Interface
18 TWIO X X Two-Wire Interface 0
19 TWNH X X Two-Wire Interface 1
20 SPI X X Serial Peripheral Interface
21 SSC X X Synchronous Serial Controller
22 TCO X X Timer Counter 0
23 TC1 X X Timer Counter 1
24 TC2 X X Timer Counter 2
25 PWM X X Pulse Width Modulation Controller
26 ADC12B X X 12-bit ADC Controller
27 ADC X X 10-bit ADC Controller
28 DMAC X X DMA Controller
29 UDPHS X X USB Device High Speed

ATMEL i

6430E-ATARM-29-Aug-11

ATMEL

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM3U features 3 PI1O controllers, PIOA, PIOB and PIOC that multiplex the I/O lines of the
peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The multiplexing tables in the following pages define how the I/O lines of
peripherals A and B are multiplexed on the PIO Controllers. The two columns “Extra Function”
and “Comments” have been inserted in this table for the user's own comments, they may be
used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

44 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on P1O Controller A (PIOA)

I/0 Line Peripheral A Peripheral B Extra Function Comments
PAO TIOBO NPCS1 WKUPO™M®
PA1 TIOAOQ NPCS2 WKUP1M@)
PA2 TCLKO ADTRG WKUP2(@)
PA3 MCCK PCKA1
PA4 MCCDA PWMHO
PA5 MCDAO PWMH1
PAG6 MCDA1 PWMH2
PA7 MCDA2 PWMLO
PA8 MCDA3 PWMLA1
PA9 TWDO PWML2 WKUP3(M®)
PA10 TWCKO PWML3 WKUP4"@)
PA11 URXD PWMFIO
PA12 UTXD PWMFI1
PA13 MISO
PA14 MOSI
PA15 SPCK PWMH2
PA16 NPCSO0 NCS1 WKUP5()@)
PA17 SCKO AD12BTRG WKUP6()@
PA18 TXDO PWMFI2 WKUP7M@
PA19 RXDO NPCS3 WKUP8™M@
PA20 TXDA PWMH3 WKUP9(®)
PA21 RXD1 PCKO WKUP100@
PA22 TXD2 RTS1 AD12B0
PA23 RXD2 CTS1
PA24 TWD1® SCK1 WKUP110@
PA25 TWCK1® SCK2 WKUP12(0(@)
PA26 TD TCLK2
PA27 RD PCKO
PA28 TK PWMHO
PA29 RK PWMH1
PA30 TF TIOA2 AD12B1
PA31 RF TIOB2

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).

2. Fast Start-Up source in Wait mode (managed by the PMC).
3. Only on 144-pin version

6430E-ATARM-29-Aug-11

ATMEL

45

ATMEL

11.2.2 PIO Controller B Multiplexing

Table 11-3. Multiplexing on P1O Controller B (PIOB)

I/0 Line Peripheral A Peripheral B Extra Function Comments
PBO PWMHO A2 WKUP13M@
PB1 PWMH1 A3 WKUP14M@
PB2 PWMH2 A4 WKUP15M"@
PB3 PWMH3 A5 AD12B2
PB4 TCLK1 A6 AD12B3
PB5 TIOA1 A7 ADO
PB6 TIOB1 D15 AD1
PB7 RTSO AO/NBS0 AD2
PB8 CTS0 A1 AD3
PB9 DO DTRO
PB10 D1 DSRO
PB11 D2 DCDO
PB12 D3 RIO
PB13 D4 PWMHO
PB14 D5 PWMH1
PB15 D6 PWMH2
PB16 D7 PWMH3
PB17 NANDOE PWMLO
PB18 NANDWE PWMLA
PB19 NRD PWML2
PB20 NCS0 PWML3
PB21 A21/NANDALE RTS2
PB22 A22/NANDCLE CTS2
PB23 NWRO/NWE PCK2
PB24 NANDRDY PCK1
PB25 D8 PWMLO Only on 144-pin version
PB26 D9 PWMLA Only on 144-pin version
PB27 D10 PWML2 Only on 144-pin version
PB28 D11 PWML3 Only on 144-pin version
PB29 D12 Only on 144-pin version
PB30 D13 Only on 144-pin version
PB31 D14 Only on 144-pin version

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).
2. Fast Start-Up source in Wait mode (managed by the PMC).

46 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

1/0 Line Peripheral A Peripheral B Extra function Comments
PCO A2 Only on 144-pin version
PC1 A3 Only on 144-pin version
PC2 A4 Only on 144-pin version
PC3 A5 NPCS1 Only on 144-pin version
PC4 A6 NPCS2 Only on 144-pin version
PC5 A7 NPCS3 Only on 144-pin version
PC6 A8 PWMLO Only on 144-pin version
PC7 A9 PWMLA1 Only on 144-pin version
PC8 A10 PWML2 Only on 144-pin version
PC9 A1 PWML3 Only on 144-pin version
PC10 A12 CTS3 Only on 144-pin version
PC11 A13 RTS3 Only on 144-pin version
PC12 NCSH1 TXD3 Only on 144-pin version
PC13 A2 RXD3 Only on 144-pin version
PC14 A3 NPCS2 Only on 144-pin version
PC15 NWR1/NBS1 AD12B4 Only on 144-pin version
PC16 NCS2 PWML3 AD12B5 Only on 144-pin version
PC17 NCS3 AD12B6 Only on 144-pin version
PC18 NWAIT AD12B7 Only on 144-pin version
PC19 SCK3 NPCS1 Only on 144-pin version
PC20 Al14 Only on 144-pin version
PC21 A15 Only on 144-pin version
PC22 A16 Only on 144-pin version
PC23 A17 Only on 144-pin version
PC24 A18 PWMHO Only on 144-pin version
PC25 A19 PWMHA1 Only on 144-pin version
PC26 A20 PWMH2 Only on 144-pin version
PC27 A23 PWMH3 Only on 144-pin version
PC28 MCDA4 AD4 Only on 144-pin version
PC29 PWMLO MCDA5 AD5 Only on 144-pin version
PC30 PWML1 MCDA®6 AD6 Only on 144-pin version
PC31 PWML2 MCDA7 AD7 Only on 144-pin version

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).
2. Fast Start-Up source in Wait mode (managed by the PMC).

6430E-ATARM-29-Aug-11

ATMEL

47

ATMEL

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)
¢ Supports communication with serial external devices

— Four chip selects with external decoder support allow communication with up to 15
peripherals

— Serial memories, such as DataFlash and 3-wire EEPROMSs

— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

— External co-processors

¢ Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select

— Programmable transfer delays between consecutive transfers and between clock
and data per chip select

— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device

12.2 Two Wire Interface (TWI)

* Master, Multi-Master and Slave Mode Operation

 Compatibility with Atmel two-wire interface, serial memory and 1°C compatible devices

¢ One, two or three bytes for slave address

* Sequential read/write operations

* Bit Rate: Up to 400 kbit/s

¢ General Call Supported in Slave Mode

¢ Connecting to PDC channel capabilities optimizes data transfers in Master Mode only
— One channel for the receiver, one channel for the transmitter
— Next buffer support

12.3 Universal Asynchronous Receiver Transceiver (UART)
* Two-pin UART
— Implemented features are 100% compatible with the standard Atmel USART

— Independent receiver and transmitter with a common programmable Baud Rate
Generator

— Even, Odd, Mark or Space Parity Generation

— Parity, Framing and Overrun Error Detection

— Automatic Echo, Local Loopback and Remote Loopback Channel Modes
— Support for two PDC channels with connection to receiver and transmitter

48 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

12.4 Universal Synchronous Asynchronous Receiver Transmitter (USART)
* Programmable Baud Rate Generator
¢ 5- to 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first
— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Hardware handshaking RTS-CTS
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
* RS485 with driver control signal
¢ |SO7816, T =0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
* SPI Mode
— Master or Slave
— Serial Clock programmable Phase and Polarity
— SPI Serial Clock (SCK) Frequency up to MCK/6
¢ IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
¢ Test Modes
— Remote Loopback, Local Loopback, Automatic Echo

12.5 Serial Synchronous Controller (SSC)

* Provides serial synchronous communication links used in audio and telecom applications
(with CODECs in Master or Slave Modes, 1°S, TDM Buses, Magnetic Card Reader, ...)

¢ Contains an independent receiver and transmitter and a common clock divider
» Offers a configurable frame sync and data length

* Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal

12.6 Timer Counter (TC)
* Three 16-bit Timer Counter Channels
* Wide range of functions including:
— Frequency Measurement
— Event Counting
— Interval Measurement

ATMEL 1

6430E-ATARM-29-Aug-11

— Pulse Generation
— Delay Timing
— Pulse Width Modulation
— Up/Down Capabilities
— Quadrature Decoder Logic
* Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels

12.7 Pulse Width Modulation Controller (PWM)

* 4 channels, one 16-bit counter per channel

* Common clock generator, providing Thirteen Different Clocks
— A Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
— High Frequency Asynchronous clocking mode

* Independent channel programming
— Independent Enable Disable Commands
— Independent Clock Selection
— Independent Period and Duty Cycle, with Double Buffering
— Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform
— Independent Output Override for each channel

— Independent complementary Outputs with 12-bit dead time generator for each
channel

— Independent Enable Disable Commands

— Independent Clock Selection

— Independent Period and Duty Cycle, with Double Buffering
¢ Synchronous Channel mode

— Synchronous Channels share the same counter

— Mode to update the synchronous channels registers after a programmable number
of periods

¢ Connection to one PDC channel

— Offers Buffer transfer without Processor Intervention, to update duty cycle of
synchronous channels

¢ Two independent event lines which can send up to 8 triggers on ADC within a period
e Four programmable Fault Inputs providing asynchronous protection of outputs

50 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

12.8 High Speed Multimedia Card Interface (HSMCI)
¢ Compatibility with MultiMedia Card Specification Version 4.3
e Compatibility with SD Memory Card Specification Version 2.0
¢ Compatibility with SDIO Specification Version V2.0.
¢ Compatibility with CE-ATA Specification 1.1
* Cards clock rate up to Master Clock divided by 2
¢ Boot Operation Mode support
* High Speed mode support
* Embedded power management to slow down clock rate when not used
* HSMCI has one slot supporting
— One MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
— One SDIO Card
¢ Support for stream, block and multi-block data read and write
¢ Supports Connection to DMA controller
— Minimizes Processor intervention for large buffer transfers
* Built in FIFO (32 bytes) with large Memory Aperture Supporting Incremental access
e Support for CE-ATA Completion Signal Disable Command

12.9 USB High Speed Device Port (UDPHS)

* USB V2.0 high-speed compliant, 480 MBits per second

e Embedded USB V2.0 UTMI+ high-speed transceiver

* Embedded 4-Kbyte dual-port RAM for endpoints

* Embedded 6 channels DMA controller

e Suspend/Resume logic

* Up to 2 or 3 banks for isochronous and bulk endpoints

» Seven endpoints, configurable by software

* Maximum configuration: seven endpoints:
— Endpoint 0: 64 bytes, 1 bank mode
— Endpoint 1 & 2: 512 bytes, 2 banks mode, HS isochronous capable
— Endpoint 3 & 4:64 bytes, 3 banks mode
— Endpoint 5 & 6: 1024 bytes, 3 banks mode, HS isochronous capable

12.10 Analog-to-Digital Converter (ADC)
Two ADCs are embedded in the product.

12.10.1 12-bit High Speed ADC
¢ 8-channel ADC
¢ 12-bit 1 Msamples/sec. Cyclic Pipeline ADC
* Integrated 8-to-1 multiplexer
¢ 12-bit resolution

ATMEL 2

6430E-ATARM-29-Aug-11

ATMEL

* Selectable single ended or differential input voltage
* Programmable gain for maximum full scale input range
* External voltage reference for better accuracy on low voltage inputs
* Individual enable and disable of each channel
* Multiple trigger sources
— Hardware or software trigger
— External trigger pin
— Timer Counter 0 to 2 outputs TIOAO to TIOA2 trigger
— PWM trigger
* Sleep Mode and conversion sequencer

— Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels

12.10.2 10-bit Low Power ADC
¢ 8-channel ADC

* 10-bit 384 Ksamples/sec. or 8-bit 533 Ksamples/sec. Successive Approximation Register
ADC

» -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity
¢ Integrated 8-to-1 multiplexer
» External voltage reference for better accuracy on low voltage inputs
¢ Individual enable and disable of each channel
* Multiple trigger sources

— Hardware or software trigger

— External trigger pin

— Timer Counter 0 to 2 outputs TIOAO to TIOA2 trigger

— PWM trigger
* Sleep Mode and conversion sequencer

— Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels

52 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13. ARM Cortex® M3 Processor

13.1 About this section
This section provides the information required for application and system-level software devel-
opment. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have
no experience of ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by
ARM Ltd. in terms of Atmel’s license for the ARM Cortex " -M3 processor core. This information
is copyright ARM Ltd., 2008 - 2009.

13.2 About the Cortex-M3 processor and core peripherals

¢ The Cortex-M3 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:

* outstanding processing performance combined with fast interrupt handling
* enhanced system debug with extensive breakpoint and trace capabilities
* efficient processor core, system and memories

e ultra-low power consumption with integrated sleep modes

* platform security, with integrated memory protection unit (MPU).

Figure 13-1. Typical Cortex-M3 implementation

Cortex-M3
Processor

NVIC | Processor
— Core

Debug Memory Serial
< Pr Access Protection Unit Wire >
Port X K Viewer
Flash Data
Patch Watchpoint
Bus Matrix
Code SRAM and
InteArface Periphera] Interface
A A
\ \

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-

ATMEL s

6430E-ATARM-29-Aug-11

13.2.1

13.2.2

13.2.3

54

ATMEL

mized design, providing high-end processing hardware including single-cycle 32x32
multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M3 processor implements a version of the
Thumb® instruction set, ensuring high code density and reduced program memory requirements.
The Cortex-M83 instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC provides up to 16 interrupt priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple opera-
tions. Interrupt handlers do not require any assembler stubs, removing any code overhead from
the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down.

System level interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine grain memory
control, enabling applications to implement security privilege levels, separating code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded
applications.

Integrated configurable debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

Cortex-M3 processor features and benefits summary

* tight integration of system peripherals reduces area and development costs

e Thumb instruction set combines high code density with 32-bit performance

* code-patch ability for ROM system updates

¢ power control optimization of system components

* integrated sleep modes for low power consumption

« fast code execution permits slower processor clock or increases sleep mode time
¢ hardware division and fast multiplier

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ deterministic, high-performance interrupt handling for time-critical applications
e memory protection unit (MPU) for safety-critical applications
* extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging and tracing.

13.24 Cortex-M3 core peripherals
These are:

13.2.4.1 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that sup-
ports low latency interrupt processing.

13.2.4.2 System control block

The System control block (SCB) is the programmers model interface to the processor. It pro-
vides system implementation information and system control, including configuration, control,
and reporting of system exceptions.

13.2.4.3 System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating Sys-
tem (RTOS) tick timer or as a simple counter.

13.2.4.4 Memory protection unit
The Memory protection unit (MPU) improves system reliability by defining the memory attributes
for different memory regions. It provides up to eight different regions, and an optional predefined
background region.

13.3 Programmers model

This section describes the Cortex-M3 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

13.3.1 Processor mode and privilege levels for software execution
The processor modes are:

13.3.1.1 Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of
reset.

13.3.1.2 Handler mode

Used to handle exceptions. The processor returns to Thread mode when it has finished excep-
tion processing.

The privilege levels for software execution are:

13.3.1.3 Unprivileged
The software:

¢ has limited access to the MSR and MRS instructions, and cannot use the CPS instruction

ATMEL s

6430E-ATARM-29-Aug-11

13.3.1.4

13.3.2

56

Privileged

Stacks

ATMEL

¢ cannot access the system timer, NVIC, or system control block
* might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see “CONTROL register” on page 65. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supervisor call to transfer control to privileged software.

The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The proces-
sor implements two stacks, the main stack and the process stack, with independent copies of
the stack pointer, see “Stack Pointer” on page 58.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL register” on page 65. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

Table 13-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege level for
mode execute software execution Stack used
I Privileged or Main stack or process
Thread Applications unprivileged ™ stack(™
Exception o .
Handler handlers Always privileged Main stack
1. See “CONTROL register” on page 65.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3 Core registers

The processor core registers are:
e

Low registers

High registers

Stack Pointer
Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

pspP*

MsP* *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers

Special registers

CONTROL register

Table 13-2. Core register set summary
Required
Type | privilege Reset
Name (U] @ value Description
RO-R12 RW Either Unknown “General-purpose registers” on page 58
. See “ "
MSP RW Privileged - Stack Pointer” on page 58
description
PSP RW Either Unknown “Stack Pointer” on page 58
LR RW Either OxFFFFFFFF | “Link Register’ on page 58
. See « »
PC RW Either - Program Counter” on page 58
description
PSR RW Privileged | 0x01000000 “Program Status Register” on page 59
ASPR RW Either 0X00000000 Application Program Status Register” on
page 60
IPSR RO Privileged | 0x00000000 6I;ﬂerrupt Program Status Register” on page
EPSR RO Privileged | 0x01000000 6I52xecut|on Program Status Register” on page
PRIMASK RW Privileged | 0x00000000 “Priority Mask Register” on page 63

6430E-ATARM-29-Aug-11

ATMEL

57

13.3.3.1

13.3.3.2

13.3.3.3

13.3.3.4

58

ATMEL

Table 13-2. Core register set summary (Continued)

Required
Type | privilege Reset
Name M @ value Description
FAULTMASK | RW Privileged | 0x00000000 “Fault Mask Register” on page 63
BASEPRI RW Privileged | 0x00000000 “Base Priority Mask Register” on page 64
CONTROL RW Privileged | 0x00000000 “CONTROL register’ on page 65

1. Describes access type during program execution in thread mode and Handler mode. Debug
access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

General-purpose registers
R0O-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:
* 0 = Main Stack Pointer (MSP). This is the reset value.
¢ 1 = Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value OxFFFFFFFF.

Program Counter
The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is
always 0 because instruction fetches must be halfword aligned. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.5 Program Status Register
The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

¢ APSR:
31 30 29 28 27 26 25 24

| N | Z | C | \ | Q Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

¢ |IPSR:
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

e EPSR:
31 30 29 28 27 26 25 24

| Reserved ICIIT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICIT Reserved |
7 6 5 4 3 2 1 0

| Reserved |

ATMEL

6430E-ATARM-29-Aug-11

59

31

30

ATMEL

The PSR bit assignments are:

29

28

27

26

25

24

c I

v

ICI/IT

23

22

21

20

18

17

16

Reserved

15

14

13

12

10

9

8

ICI/IT

Reserved

ISR_NUMBER

4

3

1

0

ISR_NUMBER

13.3.3.6

* N

Negative or less than flag:

Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions.

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:

* read all of the registers using PSR with the MRS instruction
* write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 13-3.

PSR register combinations

Register

Type

Combination

PSR

Rw (. @

APSR, EPSR, and IPSR

IEPSR

RO

EPSR and IPSR

IAPSR

APSR and IPSR

EAPSR

APSR and EPSR

1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the proces-

See the instruction descriptions “MRS” on page 157 and “MSR” on page 158 for more informa-
tion about how to access the program status registers.

sor ignores writes to the these bits.

See the register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

0 = operation result was positive, zero, greater than, or equal

1 = operation result was negative or less than.

° Z

Zero flag:

0 = operation result was not zero

1 = operation result was zero.

60

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

e C
Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.
eV

Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

*Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssat or usat instruction results in saturation.

This bit is cleared to zero by software using an Mrs instruction.

13.3.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
See the register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

¢ ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
45 = 1RQ29

see “Exception types” on page 77 for more information.

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

13.3.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:
e [f-Then (IT) instruction

* Interruptible-Continuable Instruction (ICl) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 13-2 on page 57 for the EPSR attributes. The bit assign-
ments are:

e ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 62.

o IT
Indicates the execution state bits of the 1t instruction, see “IT” on page 147.

e T
Always set to 1.

Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application software
are ignored. Fault handlers can examine EPSR value in the stacked PSR to indicate the opera-
tion that is at fault. See “Exception entry and return” on page 82

13.3.3.9 Interruptible-continuable instructions
When an interrupt occurs during the execution of an LDM or STM instruction, the processor:

* stops the load multiple or store multiple instruction operation temporarily
* stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

e returns to the register pointed to by bits[15:12]
* resumes execution of the multiple load or store instruction.
When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

13.3.3.10 If-Then block

The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruc-
tion in the block is conditional. The conditions for the instructions are either all the same, or
some can be the inverse of others. See “IT” on page 147 for more information.

13.3.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” on page 157, “MSR” on page
158, and “CPS” on page 153 for more information.

62 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.12 Priority Mask Register
The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

¢ PRIMASK

0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

13.3.3.13 Fault Mask Register
The FAULTMASK register prevents activation of all exceptions. See the register summary in
Table 13-2 on page 57 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

e FAULTMASK
0 = no effect

1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

ATMEL e

6430E-ATARM-29-Aug-11

ATMEL

13.3.3.14 Base Priority Mask Register
The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is
set to a nonzero value, it prevents the activation of all exceptions with same or lower priority
level as the BASEPRI value. See the register summary in Table 13-2 on page 57 for its attri-
butes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved
23 22 21 20 19 18 17 16
| Reserved
15 14 13 12 11 10 9 8
| Reserved
7 6 5 4 3 2 1 0
| BASEPRI
e BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 172 for more information. Remember

that higher priority field values correspond to lower exception priorities.

64

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.15 CONTROL register
The CONTROL register controls the stack used and the privilege level for software execution
when the processor is in Thread mode. See the register summary in Table 13-2 on page 57 for
its attributes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
; Thread Mode
Active Stack o
Reserved Pointer PE\Q\I/% e

e Active stack pointer
Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.
¢ Thread mode privilege level

Defines the Thread mode privilege level:

0 = privileged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruc-
tion to set the Active stack pointer bit to 1, see “MSR” on page 158.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 156

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

13.3.4 Exceptions and interrupts

13.35 Data types

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses handler mode to handle all
exceptions except for reset. See “Exception entry” on page 83 and “Exception return” on page
84 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on
page 165 for more information.

The processor:

e supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
* supports 64-bit data transfer instructions.

* manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory regions, types and
attributes” on page 68 for more information.

13.3.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:
* a common way to:
— access peripheral registers
— define exception vectors
¢ the names of:
— the registers of the core peripherals
— the core exception vectors
* a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M3 processor. It also includes optional interfaces for middleware components comprising a
TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combi-
nation of CMSIS-compliant software components from various middleware vendors. Software
vendors can expand the CMSIS to include their peripheral definitions and access functions for
those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ
from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

* “Power management programming hints” on page 88

66 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

* “Intrinsic functions” on page 92
* “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 165
* “NVIC programming hints” on page 177.

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

13.4 Memory model

This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory. The memory map is:

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Pr|vatebpuesr|phera| 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OXS5FFFFFFF
Ox400FFFFE . . Peripheral 0.5GB
[1MB Bit band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x2200000 0x1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000. MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” on page 72.

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see “About the Cortex-M3 peripherals” on page 164.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

13.4.1 Memory regions, types and attributes

The memory map and the programming of the MPU split the memory map into regions. Each
region has a defined memory type, and some regions have additional memory attributes. The
memory type and attributes determine the behavior of accesses to the region.

The memory types are:

68 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.4.1.1 Normal

13.4.1.2 Device

The processor can re-order transactions for efficiency, or perform speculative reads.

The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

13.4.1.3 Strongly-ordered

13.4.1.4 Shareable

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include.

For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

13.4.1.5 Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an
XN region causes a memory management fault exception.

13.4.2 Memory system ordering of memory accesses

6430E-ATARM-29-Aug-11

For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, software must insert a memory barrier instruction between the memory access instruc-
tions, see “Software ordering of memory accesses” on page 71.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly:

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

ATMEL L

ATMEL

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

13.4.3 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

Table 13-4. Memory access behavior

Address Memory Memory
range region type XN Description
0x00000000- Executable region for program code. You can also put
M -
Ox{FFFFFFF | C°d8 Normal data here.
Executable region for data. You can also put code
0x20000000- here.
SRAM Normal® | -
Ox3FFFFFFF This region includes bit band and bit band alias areas,
see Table 13-6 on page 72.
0x40000000- | 5 ool | Device™ | XN This region includes bit band and bit band alias areas,
Ox5FFFFFFF P see Table 13-6 on page 72.
0x60000000- | External .
(1) -
OXOFFFFFFE | RAM Normal Executable region for data.
0xA0000000- | External . .
(1)
OXDFFFFFFF | device Device XN External Device memory
Private . . .
0xE0000000- Perioheral Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Busp ordered" system control block.
0xE0100000- .
(1)
OXFFFFFFFE Reserved Device XN Reserved
1. See “Memory regions, types and attributes” on page 68 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more
information, see “Memory protection unit” on page 210.

13.4.3.1 Ad(ditional memory access constraints for shared memory
When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 13-5 shows:

Table 13-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-)]

OX1FFFFFFF Code Normal

0x20000000-)]

OX3FFFFFFF SRAM Normal

0x40000000- . @))

OXSFFFFFFF Peripheral Device

70 SAM3U Serles |

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-5. Memory region share ability policies (Continued)

Address range Memory region Memory type Shareability
0x60000000-

(2
0x7FFFFFFF WBWA
External RAM Normal (" -

0x80000000-
)
O0x9FFFFFFF wT
0xA0000000-)
OXBFFFFFFF Shareable
External device Device" -

0xC0000000- Non-
OXDFFFFFFF shareable "
0xE0000000- Private Peripheral Strongly-) i
OXEQOFFFFF Bus ordered Shareable
0xE0100000- Vendor-specific Device ™ i i
OXFFFFFFFF device®

1. See “Memory regions, types and attributes” on page 68 for more information.

2. The Peripheral and Vendor-specific device regions have no additional access constraints.

13.4.4 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:

e the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.

* the processor has multiple bus interfaces

* memory or devices in the memory map have different wait states

* some memory accesses are buffered or speculative.

“Memory system ordering of memory accesses” on page 69 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of memory
accesses is critical, software must include memory barrier instructions to force that ordering. The
processor provides the following memory barrier instructions:

13.4.4.1 DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” on page 154.

13.4.4.2 DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” on page 155.

13.4.4.3 ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” on page 156.

Use memory barrier instructions in, for example:
* MPU programming:

— Use a DSB instruction to ensure the effect of the MPU takes place immediately at
the end of context switching.

ATMEL g

6430E-ATARM-29-Aug-11

ATMEL

— Use an ISB instruction to ensure the new MPU setting takes effect immediately after
programming the MPU region or regions, if the MPU configuration code was
accessed using a branch or call. If the MPU configuration code is entered using
exception mechanisms, then an ISB instruction is not required.

* Vector table. If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations. This ensures that if
the exception is taken immediately after being enabled the processor uses the new exception
vector.

¢ Self-modifying code. If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

* Memory map switching. If the system contains a memory map switching mechanism, use a
DSB instruction after switching the memory map in the program. This ensures subsequent
instruction execution uses the updated memory map.

* Dynamic exception priority change. When an exception priority has to change when the
exception is pending or active, use DSB instructions after the change. This ensures the
change takes effect on completion of the DSB instruction.

* Using a semaphore in multi-master system. If the system contains more than one bus
master, for example, if another processor is present in the system, each processor must use
a DMB instruction after any semaphore instructions, to ensure other bus masters see the
memory transactions in the order in which they were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require
the use of DMB instructions.

13.4.5 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

* accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown
in Table 13-6

¢ accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as
shown in Table 13-7.

Table 13-6. SRAM memory bit-banding regions

Address Memory
range region Instruction and data accesses
0x20000000- SRAM bit-band Direct accesses to this memory range behgve as SRAM
. memory accesses, but this region is also bit addressable

O0x200FFFFF region . .

through bit-band alias.
0x22000000- Data accesses to this region are remapped to bit band

SRAM bit-band alias | region. A write operation is performed as read-modify-write.

0x23FFFFFF X

Instruction accesses are not remapped.

72 SAM3U Serles |

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-7. Peripheral memory bit-banding regions

Address Memory
range region Instruction and data accesses

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x40000000- Peripheral bit-band
0x400FFFFF alias

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

0x42000000- Peripheral bit-band
O0x43FFFFFF region

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM
or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:

bit word offset = (byte offset x 32) + (bit number x 4)
bit word_addr = bit_band base + bit word offset
where:

* Bit word offset is the position of the target bit in the bit-band memory region.

* Bit word addr is the address of the word in the alias memory region that maps to the
targeted bit.

* Bit band base is the starting address of the alias region.
* Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
* Bit number is the bit position, 0-7, of the targeted bit.

Figure 13-2 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:

¢ The alias word at 0x23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ =
0x22000000 + (OXFFFFF*32) + (0*4).

¢ The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =
0x22000000 + (OxFFFFF*32) + (7*4).

* The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0 *4).

* The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

ATMEL 7

6430E-ATARM-29-Aug-11

ATMEL

Figure 13-2. Bit-band mapping

32MB alias region

| oxe3rrrrFC | oxe3FrFFFs | 0x2sFFFFF4 | 0x23FFFFFO | 0x23FFFFEC | 0x23FFFFES

0x23FFFFE4 | 0x23FFFFEO |

°
°
°

0x22000 0x22000008

0x22000004 | 0x22000000 |

/| 0x2200001C | 0x22000018 | 0x22000014 | 0x22000010

1MB SRAM bit-band region

\

2

\X‘? 6 5 4 3 2 1 07 6 3

1

0 7 6 5 4 3 2

1

0 7 6 5 4 3 2 10

[
0x200FFFFF
I —

T
0x200FFFFE
I —

[~~~

[

_—

T 1
0x200FFFFD
I —

T 1
0x200FFFFC
I —

°
°

°

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0

I | |
0x20000003
| | |

I | [
0x20000002
| | |

! | [
0x20000001
| | |

I | [
0x20000000
| | |

13.4.5.1 Directly accessing an alias region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to 0 writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing OxFF. Writing 0x00 has the same effect as writing 0xOE.

Reading a word in the alias region:

* 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
* 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

13.4.5.2 Directly accessing a bit-band region

“Behavior of memory accesses” on page 70 describes the behavior of direct byte, halfword, or
word accesses to the bit-band regions.

13.4.6 Memory endianness
The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored

word. or “Little-endian format” describes how words of data are stored in memory.

74 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.4.6.1 Little-endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

13.4.7 Synchronization primitives
The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

13.4.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

13.4.7.2 A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:

0: it indicates that the thread or process gained exclusive access to the memory, and the write
succeeds,

1: it indicates that the thread or process did not gain exclusive access to the memory, and no
write is performed,

The pairs of Load-Exclusive and Store-Exclusive instructions are:

¢ the word instructions LDREX and STREX

¢ the halfword instructions LDREXH and STREXH

* the byte instructions LDREXB and STREXB.
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.
To perform a guaranteed read-modify-write of a memory location, software must:

¢ Use a Load-Exclusive instruction to read the value of the location.
e Update the value, as required.

¢ Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location, and tests the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

ATMEL 7

6430E-ATARM-29-Aug-11

ATMEL

1: No write was performed. This indicates that the value returned the first step might be out
of date. The software must retry the read-modify-write sequence,

Software can use the synchronization primitives to implement a semaphores as follows:

¢ Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

* If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

¢ If the returned status bit from the second step indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the

system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:
* |t executes a CLREX instruction

* |t executes a Store-Exclusive instruction, regardless of whether the write succeeds.

¢ An exception occurs. This means the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

* executing a CLREX instruction removes only the local exclusive access tag for the processor

¢ executing a Store-Exclusive instruction, or an exception. removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX”
on page 114 and “CLREX” on page 116.

13.4.8 Programming hints for the synchronization primitives

ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide
intrinsic functions for generation of these instructions:

Table 13-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or . . . -

LDREXB unsigned int __Idrex(volatile void *ptr)
STREX, STREXH, or -
STREXB int __strex(unsigned int val, volatile void *ptr)
CLREX void __clrex(void)

The actual exclusive access instruction generated depends on the data type of the pointer

passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__ldrex((volatile char *) OxFF);

76 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5 Exception model
This section describes the exception model.

13.5.1 Exception states
Each exception is in one of the following states:

13.5.1.1 Inactive
The exception is not active and not pending.

13.5.1.2 Pending
The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

13.5.1.3 Active
An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both
exceptions are in the active state.

13.5.1.4 Active and pending

The exception is being serviced by the processor and there is a pending exception from the
same source.

13.5.2 Exception types
The exception types are:

13.56.2.1 Reset
Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-
vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

13.5.2.2 Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMiIs cannot be:

* Masked or prevented from activation by any other exception.
* Preempted by any exception other than Reset.

13.56.2.3 Hard fault
A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard faults have
a fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

ATMEL L

6430E-ATARM-29-Aug-11

ATMEL

13.5.2.4 Memory management fault
A memory management fault is an exception that occurs because of a memory protection
related fault. The MPU or the fixed memory protection constraints determines this fault, for both
instruction and data memory transactions. This fault is used to abort instruction accesses to
Execute Never (XN) memory regions, even if the MPU is disabled.

13.56.2.5 Bus fault
A bus fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

13.5.2.6 Usage fault
A usage fault is an exception that occurs because of a fault related to instruction execution. This
includes:
* an undefined instruction
¢ an illegal unaligned access
¢ invalid state on instruction execution
* an error on exception return.
The following can cause a usage fault when the core is configured to report them:

* an unaligned address on word and halfword memory access
e division by zero.

13.5.2.7 SVcCall
A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.

13.5.2.8 PendSV
PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

13.5.2.9 SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

78 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5.2.10

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

Table 13-9. Properties of the different exception types
IRQ
Exception | number! | Exception Vector address
number M | 1 type Priority or offset @ Activation
1 - Reset _3’ the 0x00000004 Asynchronous
highest
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
Memory)
4 -12 management C(:sc))nflgurable 0x00000010 Synchronous
fault
Synchronous when
5 -1 Bus fault Configurable | 4,00000014 preciss,
asynchronous when
imprecise
Configurable
6 -10 Usage fault @) 0x00000018 Synchronous
7-10 - - - Reserved -
Configurable
11 -5 SVCall @) 0x0000002C Synchronous
12-13 - - - Reserved -
14 2 PendSV Configurable | 4,00000038 Asynchronous
15 -1 SysTick Configurable | o, 0000003¢ Asynchronous
16 and 0and Configurable | 0x00000040 and
above above @ Interrupt (IRQ) ®) above © Asynchronous
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative

values for exceptions other than interrupts. The IPSR returns the Exception number, see
“Interrupt Program Status Register” on page 61.

See “Vector table” on page 81 for more information.
See “System Handler Priority Registers” on page 190.
See the “Peripheral Identifiers” section of the datasheet.
See “Interrupt Priority Registers” on page 172.
Increasing in steps of 4.

o o~ WD

For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 13-9 on page 79 shows as having con-
figurable priority, see:

* “System Handler Control and State Register” on page 193

ATMEL 7

6430E-ATARM-29-Aug-11

ATMEL

¢ “Interrupt Clear-enable Registers” on page 168.

For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault handling” on page 84.

13.5.3 Exception handlers
The processor handles exceptions using:

13.5.3.1 Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ29 are the exceptions handled by ISRs.

13.5.3.2 Fault handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the
fault handlers.

13.5.3.3 System handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are han-
dled by system handlers.

13.5.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 13-3 on page 81 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1, indi-
cating that the exception handler is Thumb code.

80 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Figure 13-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to Ox3FFFFF80, see “Vector Table Offset Register” on page 184.

13.5.5 Exception priorities
As Table 13-9 on page 79 shows, all exceptions have an associated priority, with:
* a lower priority value indicating a higher priority
* configurable priorities for all exceptions except Reset, Hard fault.
If software does not configure any priorities, then all exceptions with a configurable priority have
a priority of 0. For information about configuring exception priorities see
* “System Handler Priority Registers” on page 190
* “Interrupt Priority Registers” on page 172.

ATMEL o

6430E-ATARM-29-Aug-11

13.5.6

13.5.7

13.5.7.1

13.5.7.2

82

ATMEL

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and
NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1]
is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

* an upper field that defines the group priority
* a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” on page 185.

Exception entry and return

Preemption

Return

Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt pri-
ority grouping” on page 82 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception entry” on page 83 more information.

This occurs when the exception handler is completed, and:

* there is no pending exception with sufficient priority to be serviced
* the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception return” on page 84 for more information.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5.7.3 Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

13.5.7.4 Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

13.5.7.5 Exception entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

¢ the processor is in Thread mode

* the new exception is of higher priority than the exception being handled, in which case the
new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask regis-
ters, see “Exception mask registers” on page 62. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred as stack frame. The stack frame con-
tains the following information:

* RO-R3, R12

¢ Return address
* PSR

* LR.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the
STKALIGN bit of the Configuration Control Register (CCR) is set to 1, stack align adjustment is
performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the was processor was in before the entry occurred.

ATMEL .

6430E-ATARM-29-Aug-11

13.5.7.6

ATMEL

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the follow-
ing instructions to load the EXC_RETURN value into the PC:

* a POP instruction that includes the PC

* a BX instruction with any register.

¢ an LDR or LDM instruction with the PC as the destination.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est four bits of this value provide information on the return stack and processor mode. Table 13-
10 shows the EXC_RETURN][3:0] values with a description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC
it indicates to the processor that the exception is complete, and the processor initiates the
exception return sequence.

Table 13-10. Exception return behavior
EXC_RETURN[3:0] A Description

bXXX0 Reserved.
Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.
b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.

b1101 Exception return gets state from PSP.
Execution uses PSP after return.
b1X11 Reserved.

13.6 Fault handling

84

Faults are a subset of the exceptions, see “Exception model” on page 77. The following gener-
ate a fault:

— a bus error on:

— an instruction fetch or vector table load

— a data access

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ an internally-detected error such as an undefined instruction or an attempt to change state
with a BX instruction

* attempting to execute an instruction from a memory region marked as Non-Executable (XN).
e an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

13.6.1 Fault types
Table 13-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-
tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” on page 195 for more information about the fault status registers.

Table 13-11. Faults

Fault Handler Bit name Fault status register
Bus error on a vector read VECTTBL “Hard Fault Status
Hard fault Register”
Fault escalated to a hard fault FORCED egister” on page 201
MPU mismatch: - -
on instruction access IACCVIOL
Memory
on data access managem | DACCVIOL Memory Management
:) : ent fault Fault Address Register” on
during exception stacking MSTKERR page 202
during exception unstacking MUNSKERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR “Bus Fault Status Register”
Precise data bus error PRECISERR on page 197
. IMPRECISER
Imprecise data bus error R
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction
set state @ Usage INVSTATE “Usage Fault Status
fault Register” on page 199
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
1. Occurs on an access to an XN region even if the MPU is disabled.
2. Attempting to use an instruction set other than the Thumb instruction set.

13.6.2 Fault escalation and hard faults
All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” on page 190. Software can disable execution of the handlers for these
faults, see “System Handler Control and State Register” on page 193.

ATMEL L

6430E-ATARM-29-Aug-11

13.6.3

13.6.4

86

ATMEL

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler. as described in “Exception model” on page 77.

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault
occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself because it must have the same
priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.
¢ An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.
e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler

executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

Fault status registers and fault address registers

Lockup

The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 13-12.

Table 13-12. Fault status and fault address registers

Status register | Address register
Handler name name Register description

“Hard Fault Status Register” on page

Hard fault HFSR - 201

“Memory Management Fault Status

Register” 1
Memory MMESR MMFAR egister” on page 196
management fault “Memory Management Fault Address
Register” on page 202
“Bus Fault Status Register” on page 197
Bus fault BFSR BFAR “Bus Fault Address Register” on page
203
Usage fault UFSR) Usage Fault Status Register” on page

199

The processor enters a lockup state if a hard fault occurs when executing the hard fault han-
dlers. When the processor is in lockup state it does not execute any instructions. The processor
remains in lockup state until:

e it is reset

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.7 Power management
The Cortex-M3 processor sleep modes reduce power consumption:

e Backup Mode
¢ Wait Mode
¢ Sleep Mode
The SLEEPDEERP bit of the SCR selects which sleep mode is used, see “System Control Regis-

ter” on page 187. For more information about the behavior of the sleep modes see “Low Power
Modes” in the PMC section of the datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

13.7.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

13.7.1.1 Wait for interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
on page 163 for more information.

13.7.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

« if the register is 0 the processor stops executing instructions and enters sleep mode

* if the register is 1 the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” on page 162 for more information.

13.7.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

13.7.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

13.7.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1
and the FAULTMASK bit to O. If an interrupt arrives that is enabled and has a higher priority than
current exception priority, the processor wakes up but does not execute the interrupt handler

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK see “Exception mask registers” on page 62.

13.7.2.2 Wakeup from WFE
The processor wakes up if:

¢ it detects an exception with sufficient priority to cause exception entry

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry. For more information about the SCR see “System Control Register” on
page 187.

13.7.3 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the follow-
ing intrinsic functions for these instructions:

void _ WFE(void) // Wait for Event
void WFE(void) // Wait for Interrupt

88 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.8 Instruction set summary

The processor implements a version of the Thumb instruction set. Table 13-13 lists the sup-
ported instructions.

In Table 13-13:

6430E-ATARM-29-Aug-11

* angle brackets, <>, enclose alternative forms of the operand

* braces, {}, enclose optional operands

¢ the Operands column is not exhaustive

e Op2 is a flexible second operand that can be either a register or a constant

* most instructions can use an optional condition code sulffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 13-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS |{Rd,} Rn, Op2 Add with Carry N,Z,C,V |page 119
ADD, ADDS |{Rd,} Rn, Op2 Add N,Z,CV |page 119
ADD, ADDW |{Rd,} Rn, #imm12 Add N,Z,CV |page 119
ADR Rd, label Load PC-relative address - page 102
AND, ANDS |{Rd,} Rn, Op2 Logical AND N,Z,C page 122
ASR, ASRS |Rd, Rm, <Rsl#n> Arithmetic Shift Right N,Z,C page 124
B label Branch - page 144
BFC Rd, #lsb, #width Bit Field Clear - page 140
BFI Rd, Rn, #Isb, #width | Bit Field Insert - page 140
BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C page 122
BKPT #imm Breakpoint - page 152
BL label Branch with Link - page 144
BLX Rm Branch indirect with Link - page 144
BX Rm Branch indirect - page 144
CBNz Rn, label Compare and Branch if Non Zero - page 146
CBz Rn, label Compare and Branch if Zero - page 146
CLREX - Clear Exclusive - page 116
CLz Rd, Rm Count leading zeros - page 126
CMN, CMNS |Rn, Op2 Compare Negative N,Z,C\V page 127
CMP, CMPS | Rn, Op2 Compare N,Z,CV page 127
CPSID iflags ICrirtilrr:fj;st:’rocessor State, Disable i page 153
CPSIE iflags ICr):earr:SStsProcessor State, Enable i page 153
DMB - Data Memory Barrier - page 154
DSB - Data Synchronization Barrier - page 155
EOR, EORS |{Rd,} Rn, Op2 Exclusive OR N,Z,C page 122

ATMEL

89

90

ATMEL

Table 13-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
ISB - Instruction Synchronization Barrier - page 156
IT - If-Then condition block - page 147
LDM Rn{!}, reglist Load Multiple registers, increment after | - page 111
Il:gl\l\:gi Rn(1}, reglist It;z;dreMultiple registers, decrement page 111
II:BM:TAD Rn{!}, reglist Load Multiple registers, increment after | - page 111
LDR Rt, [Rn, #offset] Load Register with word - page 106
LDRB, Rt, [Rn, #offset] Load Register with byte - page 106
LDRBT

LDRD Rt, Rt2, [Rn, #offset] | Load Register with two bytes - page 106
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 106
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 106
LDREXH Rt, [Rn] Load Register Exclusive with halfword | - page 106
LDRH, Rt, [Rn, #offset] Load Register with halfword - page 106
LDRHT

tggggT Rt, [Rn, #offset] Load Register with signed byte - page 106
::ggg:.r Rt, [Rn, #offset] Load Register with signed halfword - page 106
LDRT Rt, [Rn, #offset] Load Register with word - page 106
LSL, LSLS Rd, Rm, <Rsl#n> Logical Shift Left N,Z,C page 124
LSR, LSRS Rd, Rm, <Rsl#n> Logical Shift Right N,Z,C page 124
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result |- page 134
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 134
MOV, MOVS |Rd, Op2 Move N,Z,C page 128
MOVT Rd, #imm16 Move Top - page 130
MOVW, MOV | Rd, #imm16 Move 16-bit constant N,Z,C page 128
MRS Rd, spec_reg lr\gz]\i/set ;:om special register to general | page 157
MSR spec_reg, Rm ?gc;\i/;;:om general register to special N.Z,C.V page 158
MUL, MULS |{Rd,} Rn, Rm Multiply, 32-bit result N,Z page 134
MVN, MVNS | Rd, Op2 Move NOT N,z,C page 128
NOP - No Operation - page 159
ORN, ORNS |{Rd,} Rn, Op2 Logical OR NOT N,Z,C page 122
ORR, ORRS |{Rd,} Rn, Op2 Logical OR N,Z,C page 122
POP reglist Pop registers from stack - page 113
PUSH reglist Push registers onto stack - page 113

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

6430E-ATARM-29-Aug-11

Table 13-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
RBIT Rd, Rn Reverse Bits - page 131
REV Rd, Rn Reverse byte order in a word - page 131
REV16 Rd, Rn Reverse byte order in each halfword - page 131
REVSH Rd, Rn gr?&/zr;i t;))/(tti:(;der in bottom halfword page 131
ROR, RORS |Rd, Rm, <Rsl#n> Rotate Right N,Z,C page 124
RRX, RRXS |Rd, Rm Rotate Right with Extend N,Z,C page 124
RSB, RSBS |{Rd,} Rn, Op2 Reverse Subtract N,Z,C,V page 119
SBC, SBCS |{Rd,} Rn, Op2 Subtract with Carry N,Z,C\V page 119
SBFX Rd, Rn, #Isb, #width | Signed Bit Field Extract - page 141
SDIV {Rd,} Rn, Rm Signed Divide - page 136
SEV - Send Event - page 160
SMLAL RdLo, RdHi, Rn, Rm giggz‘zci;\,"gﬁiﬂi’; ‘r’g:”fccum”'ate (82 x page 135
SMULL RdLo, RdHi, Rn, Rm | Signed Multiply (32 x 32), 64-bit result |- page 135
SSAT Rd, #n, Rm {,shift #s} | Signed Saturate Q page 137
STM Rn{!}, reglist Store Multiple registers, increment after | - page 111
2?\'\222 Rn(1}, reglist S;(:cr::eMultiple registers, decrement page 111
§¥M:ZD Rn{!}, reglist Store Multiple registers, increment after | - page 111
STR Rt, [Rn, #offset] Store Register word - page 106
§$SST Rt, [Rn, #offset] Store Register byte - page 106
STRD Rt, Rt2, [Rn, #offset] | Store Register two words - page 106
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 114
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 114
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 114
§$EET Rt, [Rn, #offset] Store Register halfword - page 106
STRT Rt, [Rn, #offset] Store Register word - page 106
SUB, SUBS | {Rd,} Rn, Op2 Subtract N,Z,C,V |page 119
SUB, SUBW |{Rd,} Rn, #imm12 Subtract N,Z,C,V page 119
SvC #imm Supervisor Call - page 161
SXTB {Rd,} Rm {,ROR #n} |Sign extend a byte - page 142
SXTH {Rd,} Rm {,ROR #n} |Sign extend a halfword - page 142
TBB [Rn, Rm] Table Branch Byte - page 149
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 149

ATMEL

91

ATMEL

Table 13-13. Cortex-M3 instructions (Continued)
Mnemonic Operands Brief description Flags Page
TEQ Rn, Op2 Test Equivalence N,Z,C page 132
TST Rn, Op2 Test N,Z,C page 132
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract - page 141
ubIv {Rd,} Rn, Rm Unsigned Divide - page 136
UMLAL RdLo, RdHi, Rn, Rm (Légsj(gggi“g:;t,i‘gz_‘t’)"iit”r‘eéﬁﬁ“m“'ate - page 135
UMULL RdLo, RdHi, Rn, Rm :Je’;iiﬁ’”ed Multiply (32 x 32), 64-bit | _ page 135
USAT Rd, #n, Rm {,shift #s} | Unsigned Saturate Q page 137
UXTB {Rd,} Bm {,ROR #n} |Zero extend a byte - page 142
UXTH {Rd,} Rm {,ROR #n} |Zero extend a halfword - page 142
WFE - Wait For Event - page 162
WFI - Wait For Interrupt - page 163
13.9 Intrinsic functions
ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic func-
tions that can generate these instructions, provided by the CMIS and that might be provided by a
C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to
use inline assembler to access some instructions.
The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot
directly access:
Table 13-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions
Instruction CMSIS intrinsic function
CPSIE | void __enable_irq(void)
CPSID | void __disable_irq(void)
CPSIEF void __enable_fault_irg(void)
CPSID F void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void __DSB(void)
DMB void ___DMB(void)
REV uint32_t __REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t __REVSH(uint32_t int value)
RBIT uint32_t __RBIT(uint32_t int value)
SEV void __SEV/(void)
WFE void __ WFE(void)
WFI void __WFI(void)
92 SAM3U Seri©:S

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

The CMSIS also provides a number of functions for accessing the special registers using MRS

and MSR instructions:

Table 13-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function
Read uint32_t __get_PRIMASK (void)
PRIMASK
Write void __set_PRIMASK (uint32_t value)
Read uint32_t __get_ FAULTMASK (void)
FAULTMASK
Write void __set_ FAULTMASK (uint32_t value)
Read uint32_t __get_BASEPRI (void)
BASEPRI
Write void __set_BASEPRI (uint32_t value)
Read uint32_t __get_ CONTROL (void)
CONTROL
Write void __set_ CONTROL (uint32_t value)
Read uint32_t __get_MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
PSP Read uint32_t __get_PSP (void)
Write void __set_PSP (uint32_t TopOfProcStack)

13.10 About the instruction descriptions

The following sections give more information about using the instructions:

¢ “Operands” on page 93

* “Restrictions when using PC or SP” on page 93

* “Flexible second operand” on page 94

¢ “Shift Operations” on page 95

* “Address alignment” on page 97

* “PC-relative expressions” on page 98

* “Conditional execution” on page 98

* “Instruction width selection” on page 100.

13.10.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See

“Flexible second operand”.

13.10.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more

information.

6430E-ATARM-29-Aug-11

ATMEL

93

ATMEL

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be
1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M3
processor only supports Thumb instructions.

13.10.3 Flexible second operand
Many general data processing instructions have a flexible second operand. This is shown as
Operand2 in the descriptions of the syntax of each instruction.

Operand?2 can be a:

* “Constant”
* “Register with optional shift” on page 94

13.10.3.1 Constant
You specify an Operand2 constant in the form:

#constant
where constant can be:
* any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word
¢ any constant of the form 0x00XY00XY
¢ any constant of the form 0xXYO00XYO00
* any constant of the form OxXYXYXYXY.

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand?2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

13.10.3.2 Instruction substitution
Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP
Rd, #O0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

13.10.3.3 Register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n <32.
LSL #n logical shift left n bits, 1 <n <31.

94 SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

LSR #n logical shift right n bits, 1 <n <32.
ROR #n rotate right n bits, 1 <n <31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For information
on the shift operations and how they affect the carry flag, see “Shift Operations”

13.10.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

« directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register
* during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift, see “Flexible second operand” on page 94. The result is used by the
instruction.
The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or “Flexible second operand” on page 94. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and nis the shift
length.

13.10.4.1 ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 13-4 on page 95.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 13-4. ASR #3

31 543210|:|

ATMEL s

6430E-ATARM-29-Aug-11

ATMEL

13.10.4.2 LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 13-5.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

¢ If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 13-5. LSR #3

b
L\ Flag

31 5/413(2[1]|0 |:|
| |A Af | |A;Af f
H 1

nm : ________ J

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 13-6 on page 96.

- —

13.104.3 LSL

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

* If nis 32 or more, then all the bits in the result are cleared to 0.
* If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 13-6. LSL #3

, , |]|
1 1 00 O
v I vV V¥
|:|31 5(4(3|2|1/0

Carry 4 4 A A

Flag ? | ? |

96 SAM3U Series mmssse——

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.10.4.4

13.10.4.5

ROR

RRX

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 13-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

e If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 13-7. ROR #3

Carry
yYY Flag
31 5/4|3|2|1|0 |:|

A A f | A;A f f
H }

H !

|, a

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 13-8 on page 97.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 13-8. RRX

Carry
Flag

31|3 110

Tl ... O T

13.10.5 Address alignment

6430E-ATARM-29-Aug-11

An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:
e LDR, LDRT
¢ LDRH, LDRHT
¢ LDRSH, LDRSHT
e STR, STRT
¢ STRH, STRHT

ATMEL o

ATMEL

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more information
about usage faults see “Fault handling” on page 84.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” on page 188.

13.10.6 PC-relative expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

¢ For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

¢ For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #number].

13.10.7 Conditional execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” on page 60. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction descriptions
for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either:

* immediately after the instruction that updated the flags

* after any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 13-16 on page 99 for a list of the suffixes to add to instructions
to make them conditional instructions. The condition code suffix enables the processor to test a
condition based on the flags. If the condition test of a conditional instruction fails, the instruction:

* does not execute

* does not write any value to its destination register
¢ does not affect any of the flags

* does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See “IT” on page 147 for more information and restrictions when using the IT instruction.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch
on the result.

98 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

This section describes:

¢ “The condition flags”
¢ “Condition code suffixes”.

13.10.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see “Program Status Register” on page 59.

A carry occurs:

« if the result of an addition is greater than or equal to 2%2

« if the result of a subtraction is positive or zero

¢ as the result of an inline barrel shifter operation in a move or logical instruction.
Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 23!, or
less than —23,

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

13.10.7.2 Condition code suffixes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 13-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code.

Table 13-16 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags.

Table 13-16. Condition code suffixes
Suffix Flags Meaning
EQ Z=1 Equal
NE Z=0 Not equal
gg or C=1 Higher or same, unsigned >
CCor .
LO Cc=0 Lower, unsigned <
Mi N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow

ATMEL o

6430E-ATARM-29-Aug-11

ATMEL

Table 13-16. Condition code suffixes (Continued)

Suffix Flags Meaning

VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0or Z=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN! =V | Lessthan or equal, signed <

AL Can have any AIwa_y_s. This is the default when no suffix is
value specified.

13.10.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
IT MI ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; If negative, RO = -R1

13.10.7.4 Compare and update value
The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = R5

13.10.8 Instruction width selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,
you can force a specific instruction size by using an instruction width suffix. The .W suffix forces
a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

13.10.8.1 Instruction width selection
To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The exam-
ple below shows instructions with the instruction width suffix.

BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W RO, RO, Rl ; creates a 32-bit instruction even though the same
; operation can be done by a 1l6-bit instruction

100 SANMSIU Seerie S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11 Memory access instructions

6430E-ATARM-29-Aug-11

Table 13-17 shows the memory access instructions:

Table 13-17. Memory access instructions

Mnemonic Brief description See
ADR Load PC-relative address “ADR” on page 102
CLREX Clear Exclusive “CLREX” on page 116
LDM{mode} Load Multiple registers “LDM and STM” on page 111
Load Register using immediate “LDR and STR, immediate offset” on
LDR{type} offset page 103
LDR{type} Load Register using register offset 1'6%R and STR, register offset” on page
LDR{type}T Load Register with unprivileged LDR and STR, unprivileged” on page
access 108
LDR Load Register using PC-relative “ DR, PC-relative” on page 109
address
LDREX{type} Load Register Exclusive “LDREX and STREX” on page 114
POP Pop registers from stack “PUSH and POP” on page 113
PUSH Push registers onto stack “PUSH and POP” on page 113
STM{mode} Store Multiple registers “LDM and STM” on page 111
Store Register using immediate “LDR and STR, immediate offset” on
STR{type} offset page 103
STR{type} Store Register using register offset 1'6%R and STR, register offset” on page
STRitype)T Store Register with unprivileged LDR and STR, unprivileged” on page
access 108
STREX({type} Store Register Exclusive “LDREX and STREX” on page 114

ATMEL

101

13.11.1 ADR
Load PC-relative address.
13.11.1.1 Syntax
ADR{cond} Rd, label
where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
label is a PC-relative expression. See “PC-relative expressions” on page 98.
13.11.1.2 Operation
ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.
ADR produces position-independent code, because the address is PC-relative.
If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that
bit[0] of the address you generate is set to1 for correct execution.
Values of label must be within the range of 4095 to +4095 from the address in the PC.
You might have to use the .W suffix to get the maximum offset range or to generate addresses
that are not word-aligned. See “Instruction width selection” on page 100.
13.11.1.3 Restrictions
Rd must not be SP and must not be PC.
13.11.1.4 Condition flags
This instruction does not change the flags.
13.11.1.5 Examples
ADR R1, TextMessage ; Write address value of a location labelled as
; TextMessage to R1
102 SAM3U Serles |

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.2 LDR and STR, immediate offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

13.11.2.1

13.11.2.2

13.11.2.3

13.11.2.4

offset.
Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation
LDR instructions load one or two registers with a value from memory.
STR instructions store one or two register values to memory.
Load and store instructions with immediate offset can use the following addressing modes:
Offset addressing

Pre-indexed addressing

6430E-ATARM-29-Aug-11

The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn,

#offset]

The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:

AImEl@ 103

ATMEL

[Rn, #offset]!

13.11.2.5 Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:
[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address alignment” on page 97.

Table 13-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 13-18. Offset ranges

Instruction type Immediate offset | Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed 255 to 4095 255 to 255 255 to 255
byte
multiple of 4 inthe | multiple of 4 inthe | multiple of 4 in the
Two words range 1020 to range 1020 to range 1020 to
1020 1020 1020

13.11.2.6 Restrictions
For load instructions:
¢ Rtcan be SP or PC for word loads only
¢ Rt must be different from Rt2 for two-word loads
¢ Rn must be different from Rtand Rt2 in the pre-indexed or post-indexed forms.
When Rtis PC in a word load instruction:

¢ bit[0] of the loaded value must be 1 for correct execution
¢ a branch occurs to the address created by changing bit[0] of the loaded value to 0
¢ if the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
* Rtcan be SP for word stores only
* Rt must not be PC
e Rn must not be PC
¢ Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

13.11.2.7 Condition flags
These instructions do not change the flags.

104 SAM3U Series m————————————
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.2.8 Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9, #const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the

; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store R1 to
; a word 4 bytes above the address in RS,
; and then decrement R8 by 16.

AImEl@ 105

6430E-ATARM-29-Aug-11

ATMEL

13.11.3 LDR and STR, register offset

13.11.3.1

13.11.3.2

13.11.3.3

106

Syntax

Operation

Restrictions

Load and Store with register offset.

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with nin the range 0 to 3.

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 97.

In these instructions:

* Rn must not be PC
* Rm must not be SP and must not be PC
* Rtcan be SP only for word loads and word stores
* Rtcan be PC only for word loads.
When Rtis PC in a word load instruction:
¢ bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.3.4 Condition flags

These instructions do not change the flags.

13.11.3.5 Examples
STR RO, [R5, R1]

LDRSB RO, [R5, R1, LSL #1]

STR RO, [R1, R2, LSL #2]

6430E-ATARM-29-Aug-11

Store value of RO into an address equal to

sum of R5 and R1
Read byte value from an
sum of R5 and two times
to a word value and put
Stores RO to an address
and four times R2

ATMEL

address equal to

R1, sign extended it
it in RO

equal to sum of RI1

107

ATMEL

13.11.4 LDR and STR, unprivileged
Load and Store with unprivileged access.

13.11.4.1 Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset

where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

13.11.4.2 Operation
These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, immediate offset” on page 103. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

13.11.4.3 Restrictions
In these instructions:

¢ Rn must not be PC
¢ Rt must not be SP and must not be PC.

13.11.4.4 Condition flags
These instructions do not change the flags.

13.11.4.5 Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access

108 SAM3U Series m——————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.5 LDR, PC-relative
Load register from memory.

13.11.5.1 Syntax
LDR{ type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 98.

13.11.5.2 Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 97.

label must be within a limited range of the current instruction. Table 13-19 shows the possible
offsets between label and the PC.

Table 13-19. Offset ranges

Instruction type Offset range
Word, halfword, signed halfword, byte, signed 4095 10 4095
byte

Two words -1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See “Instruction width
selection” on page 100.

13.11.6.3 Restrictions
In these instructions:
¢ Rtcan be SP or PC only for word loads
¢ Rt2 must not be SP and must not be PC
¢ Rt must be different from R{2.
When Rtis PC in a word load instruction:

AImEl@ 109

6430E-ATARM-29-Aug-11

ATMEL

* bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address

¢ if the instruction is conditional, it must be the last instruction in the IT block.

13.11.5.4 Condition flags
These instructions do not change the flags.

13.11.5.5 Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

; as localdata, sign extend it to a word
; value, and put it in R7

110 SAM3U Series m—
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.6 LDM and STM
Load and Store Multiple registers.

13.11.6.1 Syntax
op{addr mode}{cond} Rn{!}, reglist

where:

op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If Iis present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one register or reg-
ister range, see “Examples” on page 112.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

13.11.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rnto Rn + 4 * (n-1), where nis the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rnto Rn - 4 * (n-1), where n is the number of registers in reglist.

AImEl@ 111

6430E-ATARM-29-Aug-11

ATMEL

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest number register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page
113 for details.

13.11.6.3 Restrictions
In these instructions:
* Rn must not be PC
* reglist must not contain SP
e in any STM instruction, reglist must not contain PC

in any LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if you specify the writeback suffix.
When PC is in reglistin an LDM instruction:

¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

13.11.6.4 Condition flags
These instructions do not change the flags.

13.11.6.5 Examples
LDM R8, {RO,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!, {R3-R6,R11,R12}

13.11.6.6 Incorrect examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

13.11.7.1 Syntax
PUSH{cond} reglist

POP{cond} reglist

where:
cond is an optional condition code, see “Conditional execution” on page 98.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

13.11.7.2 Operation
PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” on page 111 for more information.

13.11.7.3 Restrictions

In these instructions:
* reglist must not contain SP
e for the PUSH instruction, reglist must not contain PC
» for the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglistin a POP instruction:
¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to

this halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

13.11.7.4 Condition flags
These instructions do not change the flags.

13.11.7.5 Examples

PUSH {RO,R4-R7}
PUSH {R2, LR}
POP {RO,R10, PC}

AImEl@ 113

6430E-ATARM-29-Aug-11

ATMEL

13.11.8 LDREX and STREX

13.11.8.1

13.11.8.2

13.11.8.3

114

Syntax

Operation

Restrictions

Load and Store Register Exclusive.

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization primitives” on page 75

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

In these instructions:

* do not use PC

¢ do not use SP for Rd and Rt

e for STREX, Rd must be different from both Rt and Rn

* the value of offset must be a multiple of four in the range 0-1020.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.8.4 Condition flags
These instructions do not change the flags.

13.11.8.5 Examples

MOV R1, #0x1 ; Initialize the ‘lock taken’ wvalue
try
LDREX RO, [LockAddr] ; Load the lock value
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claim the lock
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No - try again
; Yes - we have the lock

AImEl@ 115

6430E-ATARM-29-Aug-11

13.11.9 CLREX
Clear Exclusive.

13.11.9.1 Syntax
CLREX{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.

13.11.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization primitives” on page 75 for more information.

13.11.9.3 Condition flags
These instructions do not change the flags.

13.11.9.4 Examples
CLREX

116 SAM3U Series m———————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12 General data processing instructions

6430E-ATARM-29-Aug-11

Table 13-20 shows the data processing instructions:

Table 13-20. Data processing instructions

Mnemonic | Brief description See

ADC Add with Carry ADD, ADC, SUB, SBC, and RSB” on
page 119

ADD Add ADD, ADC, SUB, SBC, and RSB” on
page 119

ADDW Add ADD, ADC, SUB, SBC, and RSB” on
page 119

AND Logical AND AND, ORR, EOR, BIC, and ORN” on
page 122

ASR Arithmetic Shift Right 1"\;‘& LSL, LSR, ROR, and RRX" on page

BIC Bit Clear AND, ORR, EOR, BIC, and ORN” on
page 122

CLz Count leading zeros “CLZ” on page 126

CMN Compare Negative “CMP and CMN” on page 127

CMP Compare “CMP and CMN” on page 127

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN” on
page 122

LSL Logical Shift Left 1/;§R, LSL, LSR, ROR, and RRX” on page

LSR Logical Shift Right éiR, LSL, LSR, ROR, and RRX” on page

MOV Move “MOV and MVN” on page 128

MOVT Move Top “MOVT” on page 130

MOVW Move 16-bit constant “MOV and MVN” on page 128

MVN Move NOT “MOV and MVN” on page 128

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN” on
page 122

ORR Logical OR AND, ORR, EOR, BIC, and ORN” on
page 122

RBIT Reverse Bits REV, REV16, REVSH, and RBIT” on
page 131

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT” on
page 131

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT" on
page 131

Reverse byte order in bottom halfword and | “REV, REV16, REVSH, and RBIT” on
REVSH .
sign extend page 131
ROR Rotate Right ASR, LSL, LSR, ROR, and RRX” on page

124

ATMEL

117

118

ATMEL

Table 13-20. Data processing instructions (Continued)

Mnemonic | Brief description See

RRX Rotate Right with Extend éiR' LSL, LSR, ROR, and RRX" on page

RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB” on
page 119

SUB Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

SUBW Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

TEQ Test Equivalence “TST and TEQ” on page 132

TST Test “TST and TEQ” on page 132

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.1

13.12.1.1

13.12.1.2

13.12.1.3

ADD, ADC, SUB, SBC, and RSB

Syntax

Operation

Restrictions

6430E-ATARM-29-Aug-11

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

cond is an optional condition code, see “Conditional execution” on page 98.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.
See “Flexible second operand” on page 94 for details of the options.

imm12 is any value in the range 0-4095.

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on
page 121.

See also “ADR” on page 102.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

In these instructions:

¢ Operand2 must not be SP and must not be PC

AImEl@ 119

ATMEL

* Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rncan be SP only in ADD and SUB
¢ Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix
— Rm must not be PC and must not be SP
— if the instruction is conditional, it must be the last instruction in the IT block

¢ with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to b00 before performing the calculation, making the base address for the calculation
word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler
automatically calculates the correct constant for the ADR instruction.

When Rdis PC in the ADD{cond} PC, PC, Rm instruction:

¢ bit[0] of the value written to the PC is ignored
¢ a branch occurs to the address created by forcing bit[0] of that value to 0.

13.12.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

13.12.1.5 Examples

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if C flag set and Z
; flag clear
120 SANMSIU Serie S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.1.6 Multiword arithmetic examples

13.12.1.7 64-bit addition
The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

13.12.1.8 96-bit subtraction
Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit

integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

AImEl@ 121

6430E-ATARM-29-Aug-11

ATMEL

13.12.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

13.12.2.1

13.12.2.2

13.12.2.3

13.12.2.4

122

op{S}{cond} {Rd,} Rn, Operand2

is one of:

logical AND.

logical OR, or bit set.

logical Exclusive OR.

logical AND NOT, or bit clear.
logical OR NOT.

is an optional suffix. If S is specified, the condition code flags are updated on the

result of the operation, see “Conditional execution” on page 98.

is an optional condition code, see See “Conditional execution” on page 98..
is the destination register.
is the register holding the first operand.

is a flexible second operand. See “Flexible second operand” on page 94 for

details of the options.

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations
on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?.

Syntax
where:
op
AND
ORR
EOR
BIC
ORN
S
cond
Rd
Rn
Operand2
Operation
Restrictions

Do not use SP and do not use PC.

Condition flags

If S is specified, these instructions:

¢ update the N and Z flags according to the result

e can update the C flag during the calculation of Operand2, see “Flexible second operand” on

page 94

* do not affect the V flag.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.2.5 Examples

AND R9, R2, #0xFFO0O
ORREQ R2, RO, R5

ANDS R9, R8, #0x19

EORS R7, R11, #0x18181818
BIC RO, R1, #0xab

ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

AImEl@ 123

6430E-ATARM-29-Aug-11

ATMEL

13.12.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

13.12.3.1 Syntax
op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{S}cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

13.12.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of
places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” on page 95.

13.12.3.3 Restrictions
Do not use SP and do not use PC.

13.12.3.4 Condition flags
If S is specified:

e these instructions update the N and Z flags according to the result

122 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” on page 95.

13.12.3.5 Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits

LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update

LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, RS ; Rotate right with extend

AImEl@ 125

6430E-ATARM-29-Aug-11

Y)
13.124 CLZ
Count Leading Zeros.

13.12.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

Rm is the operand register.

13.12.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

13.12.4.3 Restrictions
Do not use SP and do not use PC.

13.12.4.4 Condition flags
This instruction does not change the flags.

13.124.5 Examples
CLZ R4, R9
CLZNE R2,R3

126 SAM3U Series m——————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.5 CMP and CMN
Compare and Compare Negative.

13.12.5.1 Syntax
CMP{cond} Rn, Operand?2

CMN{cond} Rn, OperandZ

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

13.12.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as
a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

13.12.5.3 Restrictions
In these instructions:
¢ do not use PC
¢ Operand2 must not be SP.

13.12.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.

13.12.5.5 Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

AImEl@ 127

6430E-ATARM-29-Aug-11

13.12.6 MOV and MVN

Restrictions

Move and Move NOT.

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #immlé
MVN{S}{cond} Rd, OperandZ

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

cond is an optional condition code, see “Conditional execution” on page 98.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

imm16 is any value in the range 0-65535.

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred
syntax is the corresponding shift instruction:
¢ ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, ASR #n
¢ LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nif n!=0
¢ LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSR #n
* ROR{S}Kcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
* RRX{SKcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:
* MOV{S}cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
e MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
* MOV{S}¥cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX” on page 124.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16
operand.

You can use SP and PC only in the MOV instruction, with the following restrictions:

¢ the second operand must be a register without shift
¢ you must not specify the S suffix.
When Rdis PC in a MOV instruction:

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ bit[0] of the value written to the PC is ignored
* a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of
a BX or BLX instruction to branch for software portability to the ARM instruction set.

13.12.6.4 Condition flags
If S is specified, these instructions:
 update the N and Z flags according to the result

¢ can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 94
* do not affect the V flag.

13.12.6.5 Example

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV R1, #O0xFA05 ; Write value of 0xFAO5 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated

MOV R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, #0xF ; Write value of OXFFFFFFFO (bitwise inverse of 0OxF)

; to the R2 and update flags

AImEl@ 129

6430E-ATARM-29-Aug-11

Y)
13.12.7 MOVT
Move Top.

13.12.7.1 Syntax
MOVT{cond} Rd, #immlé6

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

13.12.7.2 Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

13.12.7.3 Restrictions
Rd must not be SP and must not be PC.

13.12.7.4 Condition flags
This instruction does not change the flags.

13.12.7.5 Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
; and APSR are unchanged

130 SAM3U Series m—————————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

13.12.8.1 Syntax
op{cond} Rd, Rn

where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the register holding the operand.

13.12.8.2 Operation
Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

13.12.8.3 Restrictions
Do not use SP and do not use PC.

13.12.8.4 Condition flags
These instructions do not change the flags.

13.12.8.5 Examples
REV R3, R7
REV16 RO, RO
REVSH RO, R5
REVHS R3, R7
RBIT R7, R8

Reverse byte order of value in R7 and write it to R3
Reverse byte order of each 16-bit halfword in RO

Reverse Signed Halfword

Reverse with Higher or Same condition

Reverse bit order of value in R8 and write the result to R7

Ne Ne Ne o Ne N

AImEl@ 131

6430E-ATARM-29-Aug-11

13.12.9 TST and TEQ
Test bits and Test Equivalence.

13.12.9.1 Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, OperandZ

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

13.12.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

13.12.9.3 Restrictions
Do not use SP and do not use PC.

13.12.9.4 Condition flags
These instructions:
¢ update the N and Z flags according to the result

e can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 94

* do not affect the V flag.

13.12.9.5 Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to 0x3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded

132 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.13 Multiply and divide instructions
Table 13-21 shows the multiply and divide instructions:

Table 13-21. Multiply and divide instructions

Mnemonic | Brief description See

MLA Multiply with Accumulate, 32-bit result | “MUL, MLA, and MLS” on page 134

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS” on page 134

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 134

SDIV Signed Divide “SDIV and UDIV” on page 136

SMLAL Signed Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 135

SMULL Signed Multiply (32x32), 64-bit result | oMo UMLAL, SMULL, and SMLAL" on

page 135

ubDIV Unsigned Divide “SDIV and UDIV” on page 136

UMLAL Unsigned Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 135
Unsigned Multiply (32x32), 64-bit “UMULL, UMLAL, SMULL, and SMLAL” on

UMULL
result page 135

AImEl@ 133

6430E-ATARM-29-Aug-11

ATMEL

13.13.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.
13.13.1.1 Syntax
MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract
where:
cond is an optional condition code, see “Conditional execution” on page 98.
S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
13.13.1.2 Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.
The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places
the least significant 32 bits of the result in Rd.
The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.
The results of these instructions do not depend on whether the operands are signed or
unsigned.
13.13.1.3 Restrictions
In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:
* Rd, Rn, and Rm must all be in the range RO to R7
* Rd must be the same as Rm
¢ you must not use the cond suffix.
13.13.1.4 Condition flags
If S is specified, the MUL instruction:
¢ updates the N and Z flags according to the result
* does not affect the C and V flags.
13.13.1.5 Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1l) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)
134 SAM3U Serles |

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.13.2 UMULL, UMLAL, SMULL, and SMLAL

13.13.2.1

13.13.2.2

13.13.2.3

13.13.2.4

13.13.2.5

UMULL
SMLAL

Syntax

Operation

Restrictions

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

op{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 98.
RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHiand RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

In these instructions:

* do not use SP and do not use PC
* RdHiand RdLo must be different registers.

Condition flags

Examples

6430E-ATARM-29-Aug-11

These instructions do not affect the condition code flags.

RO, R4, R5, RG6 ; Unsigned (R4,R0) = R5 x R6
R4, R5, R3, RS8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

AImEl@ 135

13.13.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

13.13.3.1 Syntax
SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

13.13.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.
For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded

towards zero.

13.13.3.3 Restrictions
Do not use SP and do not use PC.

13.13.3.4 Condition flags
These instructions do not change the flags.

13.13.3.5 Examples

SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/R1

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.14 Saturating instructions
This section describes the saturating instructions, SSAT and USAT.

13.14.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

13.14.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}

where:
op is one of:
SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
n specifies the bit position to saturate to:

nranges from 1 to 32 for SSAT
nranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where sis in the range 1 to 31
LSL #s where sis in the range 0 to 31.

13.14.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -
2 <x 21,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 <x <2"1.
For signed n-bit saturation using SSAT, this means that:

« if the value to be saturated is less than 2™, the result returned is 2™
« if the value to be saturated is greater than 2771, the result returned is 2"'4
* otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

¢ if the value to be saturated is less than 0, the result returned is 0
« if the value to be saturated is greater than 2", the result returned is 2™
¢ otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, you must use the MSR instruction, see “MSR” on page 158.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 157.

AImEl@ 137

6430E-ATARM-29-Aug-11

ATMEL

13.14.1.3 Restrictions
Do not use SP and do not use PC.

13.14.1.4 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

13.14.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7
USATNE RO, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO

133 SAM3U Series m———————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.15 Bitfield instructions
Table 13-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

6430E-ATARM-29-Aug-11

Table 13-22. Packing and unpacking instructions
Mnemonic | Brief description See
BFC Bit Field Clear “BFC and BFI” on page 140
BFI Bit Field Insert “BFC and BFI” on page 140
SBFX Signed Bit Field Extract “SBFX and UBFX” on page 141
SXTB Sign extend a byte “SXT and UXT” on page 142
SXTH Sign extend a halfword “SXT and UXT” on page 142
UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 141
UXTB Zero extend a byte “SXT and UXT” on page 142
UXTH Zero extend a halfword “SXT and UXT” on page 142

ATMEL

139

13.15.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

13.15.1.1 Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #1sb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

13.15.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position /sb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

13.15.1.3 Restrictions
Do not use SP and do not use PC.

13.15.1.4 Condition flags
These instructions do not affect the flags.

13.15.1.5 Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit 0 to bit 11 from R2

140 SAM3U Series m—————————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.15.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

13.15.2.1 Syntax
SBEFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #1lsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

13.15.2.2 Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

13.15.2.3 Restrictions
Do not use SP and do not use PC.

13.15.2.4 Condition flags
These instructions do not affect the flags.

13.15.2.5 Examples

SBFX RO, R1, #20, #4 Extract bit 20 to bit 23 (4 bits) from Rl and sign
extend to 32 bits and then write the result to RO.
Extract bit 9 to bit 18 (10 bits) from R11 and zero

extend to 32 bits and then write the result to R8

UBFX R8, R11, #9, #10

Ne Ne Ne N

AImEl@ 141

6430E-ATARM-29-Aug-11

ATMEL

13.15.3 SXT and UXT
Sign extend and Zero extend.

13.15.3.1 Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}
where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
13.15.3.2 Operation
These instructions do the following:

* Rotate the value from Rm right by 0, 8, 16 or 24 bits.
 Extract bits from the resulting value:
SXTB extracts bits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

13.15.3.3 Restrictions
Do not use SP and do not use PC.

13.15.3.4 Condition flags
These instructions do not affect the flags.

13.15.3.5 Examples

SXTH R4, R6, ROR #1l6 ; Rotate R6 right by 16 bits, then obtain the lower
halfword of the result and then sign extend to
32 bits and write the result to R4.
Extract lowest byte of the value in R10 and zero
extend it, and write the result to R3

UXTB R3, R10

Ne Ne Ne N

142 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16 Branch and control instructions

6430E-ATARM-29-Aug-11

Table 13-23 shows the branch and control instructions:

Table 13-23. Branch and control instructions
Mnemonic | Brief description See
B Branch “B, BL, BX, and BLX” on page 144
BL Branch with Link “B, BL, BX, and BLX” on page 144
BLX Branch indirect with Link “B, BL, BX, and BLX” on page 144
BX Branch indirect “B, BL, BX, and BLX” on page 144
CBNz Compare and Branch if Non Zero “CBZ and CBNZ” on page 146
CBz Compare and Branch if Non Zero “CBZ and CBNZ” on page 146
IT If-Then “IT” on page 147
TBB Table Branch Byte “TBB and TBH” on page 149
TBH Table Branch Halfword “TBB and TBH” on page 149

ATMEL

143

13.16.1 B, BL, BX, and BLX
Branch instructions.

13.16.1.1 Syntax
B{cond} label

BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional execution” on page 98.

label is a PC-relative expression. See “PC-relative expressions” on page 98.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must

be 1, but the address to branch to is created by changing bit[0] to O.

13.16.1.2 Operation
All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link register,
R14).
e The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” on page 147.

Table 13-24 shows the ranges for the various branch instructions.

Table 13-24. Branch ranges

Instruction Branch range

B label -16 MB to +16 MB
Beond label (outside IT block) 4 MBto +1 MB

Beond label (inside IT block) -16 MB to +16 MB
BL{cond} label 16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width
selection” on page 100.

13.16.1.3 Restrictions
The restrictions are:

144 SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16.1.4 Condition flags

13.16.1.5 Examples

B loopA
BLE ng

B.W target
BEQ target
BEQ.W target
BL funcC
BX LR
BXNE RO

BLX RO

6430E-ATARM-29-Aug-11

¢ do not use PC in the BLX instruction
e for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target

address created by changing bit[0] to O

* when any of these instructions is inside an IT block, it must be the last instruction of the IT

block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

These instructions do not change the flags.

’

’
’
’

’

Branch to loopA

Conditionally branch to label ng

Branch to target within 16MB range

Conditionally branch to target

Conditionally branch to target within 1MB

Branch with link (Call) to function funC, return address
stored in LR

Return from function call

Conditionally branch to address stored in RO

Branch with link and exchange (Call) to a address stored
in RO

AImEl@ 145

ATMEL

13.16.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

13.16.2.1 Syntax
CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

13.16.2.2 Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

13.16.2.3 Restrictions
The restrictions are:
* Rn must be in the range of RO to R7
e the branch destination must be within 4 to 130 bytes after the instruction
* these instructions must not be used inside an IT block.

13.16.2.4 Condition flags
These instructions do not change the flags.

13.16.2.5 Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not =zero

146 SAM3U Series m—————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16.3

13.16.3.1

13.16.3.2

13.16.3.3

IT

Syntax

Operation

Restrictions

6430E-ATARM-29-Aug-11

If-Then condition instruction.

IT{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of
the instructions in the IT block must be unconditional, and each of x, y, and z must be T or omit-
ted but not E.

The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documenta-
tion for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

The following instructions are not permitted in an IT block:

o IT
* CBZ and CBNZ
* CPSID and CPSIE.
Other restrictions when using an IT block are:

AImEl@ 147

ATMEL

* a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

— ADD PC, PC, Rm

— MOV PC, Rm

- B, BL, BX, BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH

* do not branch to any instruction inside an IT block, except when returning from an exception
handler

e all conditional instructions except Bcond must be inside an IT block. Bcond can be either
outside or inside an IT block but has a larger branch range if it is inside one

¢ each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

13.16.3.4 Condition flags
This instruction does not change the flags.

13.16.3.5 Example

ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move
CMP RO, #9 ; Convert RO hex value (0 to 15) into ASCII
; (101_191, VAV_VFV)
ITE GT ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA -> 'A'
ADDLE R1, RO, #48 ; Convert 0x0 -> '0'
IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally
ITTEE EQ ; Next 4 instructions are conditional
MOVEQ RO, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block

148 SAM3U Series m——————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

13.16.4.1 Syntax
TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rnis PC,
then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables,

LSL #1 doubles the value in Rm to form the right offset into the table.

13.16.4.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index
into the table. For TBB the branch offset is twice the unsigned value of the byte returned from
the table. and for TBH the branch offset is twice the unsigned value of the halfword returned
from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

13.16.4.3 Restrictions
The restrictions are:
¢ Rn must not be SP
¢ Rm must not be SP and must not be PC

¢ when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

13.16.4.4 Condition flags
These instructions do not change the flags.

AImEl@ 149

6430E-ATARM-29-Aug-11

ATMEL

13.16.4.5 Examples
ADR.W RO, BranchTable Byte
TBB [RO, R1] ; Rl is the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case?2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable Byte

DCB 0 ; Casel offset calculation
DCB ((Case2-Casel) /2) ; Case2 offset calculation
DCB ((Case3-Casel) /2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; Rl is the index, PC is used as base of the

; branch table
BranchTable H
DCI ((CaseA - BranchTable H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/Z) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/Z) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

150 SAM3U Series m——————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17 Miscellaneous instructions
Table 13-25 shows the remaining Cortex-M3 instructions:

Table 13-25. Miscellaneous instructions

Mnemonic | Brief description See

BKPT Breakpoint “BKPT” on page 152
CPSID I(.“r,lzltslrr:gstsl:’rocessor State, Disable “CPS” on page 153
CPSIE l(;t::rr:gstgrocessor State, Enable “CPS’ on page 153
DMB Data Memory Barrier “DMB” on page 154
DSB Data Synchronization Barrier “DSB” on page 155
ISB Instruction Synchronization Barrier “ISB” on page 156
MRS Move from special register to register “MRS” on page 157
MSR Move from register to special register “MSR” on page 158
NOP No Operation “NOP” on page 159
SEV Send Event “SEV” on page 160
sSvC Supervisor Call “SVC” on page 161
WFE Wait For Event “WFE” on page 162
WFI Wait For Interrupt “WFI” on page 163

AImEl@ 151

6430E-ATARM-29-Aug-11

13.17.1 BKPT
Breakpoint.
13.17.1.1 Syntax
BKPT #imm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

13.17.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

13.17.1.3 Condition flags
This instruction does not change the flags.

13.17.1.4 Examples
BKPT OxAB ; Breakpoint with immediate value set to 0xAB (debugger can
; extract the immediate value by locating it using the PC)

152 SANMIU Serie S s —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.2 CPS
Change Processor State.

13.17.2.1 Syntax
CPSeffect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
[Set or clear PRIMASK.
f Set or clear FAULTMASK.

13.17.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask
registers” on page 62 for more information about these registers.

13.17.2.3 Restrictions
The restrictions are:

* use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

13.17.2.4 Condition flags
This instruction does not change the condition flags.

13.17.2.5 Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

AImEl@ 153

6430E-ATARM-29-Aug-11

13.17.3 DMB
Data Memory Barrier.

13.17.3.1 Syntax
DMB{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.

13.17.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

13.17.3.3 Condition flags
This instruction does not change the flags.

13.17.3.4 Examples

DMB ; Data Memory Barrier

152 SAM3U Series m———————————
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.4 DSB
Data Synchronization Barrier.

13.17.4.1 Syntax
DSB{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.

13.17.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

13.17.4.3 Condition flags
This instruction does not change the flags.

13.17.4.4 Examples

DSB ; Data Synchronisation Barrier

AImEl@ 155

6430E-ATARM-29-Aug-11

13.17.5 ISB
Instruction Synchronization Barrier.

13.17.5.1 Syntax
ISB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.

13.17.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

13.17.5.3 Condition flags
This instruction does not change the flags.

13.17.5.4 Examples

ISB ; Instruction Synchronisation Barrier

156 SAM3U Series m—————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.6 MRS

13.17.6.1 Syntax

13.17.6.2 Operation

13.17.6.3 Restrictions

Move the contents of a special register to a general-purpose register.

MRS{cond} Rd, spec reg

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 158.

Rd must not be SP and must not be PC.

13.17.6.4 Condition flags

13.17.6.5 Examples

This instruction does not change the flags.

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

6430E-ATARM-29-Aug-11

AImEl@ 157

ATMEL

13.17.7 MSR
Move the contents of a general-purpose register into the specified special register.

13.17.7.1 Syntax
MSR{cond} spec reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

13.17.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR, see “Application Program Status Register” on page 60. Privileged soft-
ware can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

* Rnis non-zero and the current BASEPRI value is 0
* Rnis non-zero and less than the current BASEPRI value.

See “MRS” on page 157.

13.17.7.3 Restrictions
Rn must not be SP and must not be PC.

13.17.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

13.17.7.5 Examples
MSR CONTROL, Rl ; Read Rl value and write it to the CONTROL register

158 SAM3U Series m————————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.8 NOP
No Operation.

13.17.8.1 Syntax
NOP { cond}

where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

13.17.8.3 Condition flags
This instruction does not change the flags.

13.17.8.4 Examples
NOP ; No operation

AImEl@ 159

6430E-ATARM-29-Aug-11

13.17.9 SEV
Send Event.
13.17.9.1 Syntax
SEV{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power management” on page 87.

13.17.9.3 Condition flags
This instruction does not change the flags.

13.17.9.4 Examples
SEV ; Send Event

160 SAM3U Series m—————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.10 SVC
Supervisor Call.

13.17.10.1 Syntax
SVC{cond} #imm

where:
cond is an optional condition code, see “Conditional execution” on page 98.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

13.17.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

13.17.10.3 Condition flags
This instruction does not change the flags.

13.17.10.4 Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

AImEl@ 161

6430E-ATARM-29-Aug-11

13.17.11 WFE

13.17.11.1

13.17.11.2 Operation

Syntax

Wait For Event.

WFE { cond}
where:

cond is an optional condition code, see “Conditional execution” on page 98.

WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:

¢ an exception, unless masked by the exception mask registers or the current priority level
* an exception enters the Pending state, if SEVONPEND in the System Control Register is set
* a Debug Entry request, if Debug is enabled

¢ an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 87.

13.17.11.3 Condition flags

13.17.11.4 Examples

162

WEFE

This instruction does not change the flags.

; Wait for event

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.12 WFI
Wait for Interrupt.

13.17.12.1 Syntax
WEFI{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.
13.17.12.2 Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

* an exception
* a Debug Entry request, regardless of whether Debug is enabled.

13.17.12.3 Condition flags
This instruction does not change the flags.

13.17.12.4 Examples
WFI ; Wait for interrupt

AImEl@ 163

6430E-ATARM-29-Aug-11

ATMEL

13.18 About the Cortex-M3 peripherals

The address map of the Private peripheral bus (PPB) is:

Table 13-26. Core peripheral register regions

Address Core peripheral Description

gigggggggi System control block Table 13-30 on page 178
giggggﬁg}g System timer Table 13-33 on page 205
gigggggﬁ ggﬁ?g,g?dored Interrupt Table 13-27 on page 165
giiggggggg System control block Table 13-30 on page 178
;;:;;i:::?g?ﬁ Memory protection unit Table 13-35 on page 211
gigggggggg ggﬁ?g,g?dored Interrupt Table 13-27 on page 165

In register descriptions:

* the register type is described as follows:
RW Read and write.

RO Read-only.
wO Write-only.

* the required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

164 SAM3U Series m——————————
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:
¢ 1 to 30 interrupts.

* A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

* Level detection of interrupt signals.

* Dynamic reprioritization of interrupts.

* Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The
hardware implementation of the NVIC registers is:

Table 13-27. NVIC register summary

Required Reset

Address Name Type privilege value Description

OXEQOOE100 ISERO RW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 167

OXEOOOE180 ICERO RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 168

OXEO00E200 ISPRO RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 169

OXEO00E280 ICPRO RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 170

OXEO00E300 IABRO RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 171

0xEOOOE400- IPRO- - . . .)

OXEO00E41C IPR7 RW Privileged 0x00000000 Interrupt Priority Registers” on page 172

OXEO0OEFO0 STIR WO %?nflgurable 0x00000000 1S7c;ftware Trigger Interrupt Register” on page
1. See the register description for more information.

13.19.1

6430E-ATARM-29-Aug-11

The CMSIS mapping of the Cortex-M3 NVIC registers

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the

CMSIS:

* the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:

— the array ISER[0] corresponds to the registers ISERO

— the array ICER[0] corresponds to the registers ICERO

— the array ISPR[0] corresponds to the registers ISPRO

— the array ICPRI[0] corresponds to the registers ICPRO

— the array IABR[0] corresponds to the registers IABRO

ATMEL

165

166

ATMEL

¢ the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[29] corresponds to the registers IPRO-IPR7, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. For more information see the description of the NVIC_SetPriority function in “NVIC
programming hints” on page 177. Table 13-28 shows how the interrupts, or IRQ numbers, map
onto the interrupt registers and corresponding CMSIS variables that have one bit per interrupt.

Table 13-28. Mapping of interrupts to the interrupt variables

CMSIS array elements (!

Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit
0-29 ISERI[O0] ICERI[O0] ISPRI0] ICPR[O0] IABR[0]
1. Each array element corresponds to a single NVIC register, for example the element

ICER[0] corresponds to the ICERQO register.

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.2 Interrupt Set-enable Registers
The ISERQO register enables interrupts, and show which interrupts are enabled. See:
e the register summary in Table 13-27 on page 165 for the register attributes
» Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

¢ SETENA

Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

AImEl@ 167

6430E-ATARM-29-Aug-11

ATMEL

13.19.3 Interrupt Clear-enable Registers
The ICERO register disables interrupts, and shows which interrupts are enabled. See:

¢ the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register
The bit assignments are:

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA
¢ CLRENA
Interrupt clear-enable bits.
Write:
0 = no effect

1 = disable interrupt.
Read:
0 = interrupt disabled

1 = interrupt enabled.

168 SAM3U Series m————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.4 Interrupt Set-pending Registers
The ISPRO register forces interrupts into the pending state, and shows which interrupts are

pending. See:
e the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

e SETPEND

Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to the ISPR bit corresponding to:

e an interrupt that is pending has no effect
* a disabled interrupt sets the state of that interrupt to pending

AImEl@ 169

6430E-ATARM-29-Aug-11

ATMEL

13.19.5 Interrupt Clear-pending Registers
The ICPRO register removes the pending state from interrupts, and show which interrupts are
pending. See:
e the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

e CLRPEND

Interrupt clear-pending bits.

Write:

0 = no effect.

1 = removes pending state an interrupt.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

170 SAM3U Series m——
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.6 Interrupt Active Bit Registers
The IABRO register indicates which interrupts are active. See:
e the register summary in Table 13-27 on page 165 for the register attributes
» Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0 = interrupt not active
1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

AImEl@ 171

6430E-ATARM-29-Aug-11

13.19.7

13.19.7.1 IPRm

ATMEL

Interrupt Priority Registers

The IPRO-IPRY7 registers provide a 4-bit priority field for each interrupt (See the “Peripheral Iden-
tifiers” section of the datasheet for more details). These registers are byte-accessible. See the
register summary in Table 13-27 on page 165 for their attributes. Each register holds four priority
fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[29], as shown:

31 30 29 28 27 26 25 24
IP[4m+3] |

23 22 21 20 19 18 17 16
IP[4m+2] |

15 14 13 12 11 10 9 8
IP[4m+1] |

7 6 5 4 3 2 1 0
IP[4m] |

13.19.7.2 IPR4

31 30 29 28 27 26 25 24
IP[19] |

23 22 21 20 19 18 17 16
IP[18] |

15 14 13 12 11 10 9 8
IP[17] |

7 6 5 4 3 2 1 0
IP[16] |

13.19.7.3 IPR3

31 30 29 28 27 26 25 24
IP[15] |

23 22 21 20 19 18 17 16
IP[14] |

15 14 13 12 11 10 9 8
IP[13] |

7 6 5 4 3 2 1 0
IP[12] |

172

SAMSIU S el O S e —

6430E-ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.7.4 IPR2

31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

I IP[9] |
7 6 5 4 3 2 1 0

I IP[8] |

13.19.7.5 IPR1

31 30 29 28 27 26 25 24

I IP[7] |
23 22 21 20 19 18 17 16

I IP[6] |
15 14 13 12 11 10 9 8

I IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

13.19.7.6 IPRO

31 30 29 28 27 26 25 24

I IP[3] |
23 22 21 20 19 18 17 16

| IP[2] |
15 14 13 12 1 10 9 8

I IP[1] |
7 6 5 4 3 2 1 0

I IP[0] |

¢ Priority, byte offset 3
¢ Priority, byte offset 2
¢ Priority, byte offset 1

¢ Priority, byte offset 0
Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 165 for more information about the IP[0] to IP[29]
interrupt priority array, that provides the software view of the interrupt priorities.

AIMEL 173

6430E-ATARM-29-Aug-11

ATMEL

Find the IPR number and byte offset for interrupt N as follows:

* the corresponding IPR number, M, is given by M= NDIV 4
* the byte offset of the required Priority field in this register is N MOD 4, where:
— byte offset 0 refers to register bits[7:0]
— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

172 SAM3U Series m——
6430E—ATARM-29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.8 Software Trigger Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary
in Table 13-27 on page 165 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the
STIR, see “System Control Register” on page 187.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved INTID |
7 6 5 4 3 2 1 0

| INTID |

¢ INTID

Interrupt ID of the required SGi, in the range 0-239. For example, a value of b000000011 specifies interrupt IRQ3.

6430E-ATARM-29-Aug-11

AImEl@ 175

ATMEL

13.19.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typ-
ically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt, see “Hardware and software control of interrupts”. For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes pend-
ing again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer needs servicing.

13.19.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-
lowing reasons:
* the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
* the NVIC detects a rising edge on the interrupt signal
e software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-

pending Registers” on page 169, or to the STIR to make an SGI pending, see “Software
Trigger Interrupt Register” on page 175.

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pend-
ing to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

» Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

176 SAM3U Series m———————————
6430E~ATARM—29-Aug-11

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.10 NVIC design hints and tips
Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the supported

13.19.10.1

6430E-ATARM-29-Aug-11

access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are setup for fault handlers and all enabled exception like interrupts. For more
information see “Vector Table Offset Register” on page 184.

NVIC programming hints

Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable irg(void) // Disable Interrupts

void enable irqg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 13-29. CMSIS functions for NVIC control

CMSIS interrupt control function

Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN)

Enable IRQN

void NVIC_DisablelRQ(IRQn_t IRQN)

Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN)

Return true if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQN)

Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQN)

Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

For more information about these functions see the CMSIS documentation.

ATMEL

177

ATMEL

13.20 System control block

The System control block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions. The system
control block registers are:

Table 13-30. Summary of the system control block registers

Required | Reset
Address Name Type privilege value Description
0xEOOOE008 ACTLR RW Privileged | 0x00000000 “Auxiliary Control Register” on page 179
0xEOOOEDO00 CPUID RO Privileged | 0x412FC230 “CPUID Base Register” on page 180
OxEOOOEDO04 ICSR Rw® Privileged | 0x00000000 “Interrupt Control and State Register” on page 181
OxEOOOEDO0