SPI configuration port

A write or read operation is initiated by pulling **spi_ncs** low. There are two parts to a communication cycle with the FPGA. In the first part, a 8-bit instruction word is written to the FPGA, coincident with the first 8 **spi_sclk** rising edges. The instruction word provides information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write and the starting register address for the first word of the data transfer.

7	6	5	4	3	2	1	0
R/W				ADDR			

Setting a register value

If the instruction word is for a write operation, the next 32 **spi_sclk** cycles clock in data for the address specified in the instruction word. Data bits are registered on the rising edge of **spi_sclk**.

					Instruc	tion						Data			
spi_ncs															
spi_sclk	DC											()			DC
spi_mosi	DC	R/W	A6	A5	A4	A3	A2	A1	A0	D31	D30	()	D1	D0	DC

Reading a register value

If the instruction word is for a read operation, the next 32 SCLK cycles clock out the data from the address specified in the instruction word. The readback data is updated on the falling edge of **spi_sclk**.

						Instruc	tion						Data			
spi_ncs																
spi_sclk	DC	\supset														DC
spi_mosi	i DC		R/W	A6	A5	A4	A3	A2	A1	A0	Ľ	00	()		DC	DC
spi_miso) HIGH-Z	2	_X			unde	efined				D31	D30		D1	D0	HIGH-Z

Register set description

Register 0x00

Identification

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MA	GIC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MA	GIC							

MAGIC [31..0] R Magic Identifier

32 bit unsigned integer

The magic value can be used to detect is the FPGA is running and the communication interface is working. It always reads **0xDEADBEEF** at the moment.

PWM #1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DU	ITY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FR	EQ							

FREQ [15..0] R/W PWM1 Frequency

16 bit unsigned integer

The frequency of the first PWM output is configured vis this value:

$$PWM_{freq} = \left(\frac{80\,MHz}{FREQ + 1}\right)$$

DUTY [31..0] R/W

PWM1 Duty Cycle

16 bit unsigned integer

The duty cycle of the first PWM output is configured vis this value:

$$PWM_{duty} = \left(\frac{DUTY}{FREQ + 1}\right)$$

PWM #2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DU	ΤY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FR	EQ							

FREQ [15..0] R/W PWM1 Frequency

R/W

16 bit unsigned integer

The frequency of the second PWM output is configured vis this value:

$$PWM_{freq} = \left(\frac{80\,MHz}{FREQ + 1}\right)$$

DUTY [31..0]

PWM1 Duty Cycle

16 bit unsigned integer

The duty cycle of the second PWM output is configured vis this value:

$$PWM_{duty} = \left(\frac{DUTY}{FREQ + 1}\right)$$

ADC Timing

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·	ACC	LEN						<u>.</u>	CLM	DIV			•

CLKDIV [7..0] R/W AD7357 SCK Frequency

8 bit unsigned integer

The frequency of the SCK line to the AD7357 ADC is configured via this value:

$$F_{SCK} = \left(\frac{80 \, MHz}{CLKDIV}\right)$$

DUTY [15..8] R/W

AD7357 Acquisition Time

8 bit unsigned integer

Number of SCK cycles the CS Line to the AD7357 is held high between two conversions.

SSC Interface

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			CLM	DIV											ТМ

ТМ [0] R/W Testmode

Decides if the testmode of the SSC Interface is enabled:

- 0 normal operation
- 1 testmode enabled, data is replaced by a 16 bit counter

CLKDIV [15..8] R/W **SSC Clock Frequency**

8 bit unsigned integer

The frequency of the Clock line of the SSC interface to the MCU is configured via this value:

$$F_{SSC} = \left(\frac{80 \, MHz}{2 \cdot (CLKDIV + 1)}\right)$$

ADC Values

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								ADO	C_Q						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	·		•					AD	C_I		*	•		•	

ADC_I [13..0] R ADC Value A (I-Channel)

14 bit unsigned integer

This register contains the last value read from the AD7357 on the A channel of the ADC.

ADC_Q [29..16] R ADC Value B (Q-Channel)

14 bit unsigned integer

This register contains the last value read from the AD7357 on the B channel of the ADC.

Decimation Filter

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RATE	

RATE [2..0] R/W

Decimation Factor

Configures the decimation factor of the filter:

- 000 no decimation
- 001 Samplerate is reduced by factor 2
- 010 Samplerate is reduced by factor 4
- 011 Samplerate is reduced by factor 8
- **100** Samplerate is reduced by factor **16**
- **101** Samplerate is reduced by factor **32**
- 110 Samplerate is reduced by factor 64

ADC Sample Offset

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							OFI	F_Q							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							OF	F_I							

OFF_I [15..0] R/W Offset (I-Channel)

16 bit signed integer

The value off **OFF_I** is added to each sample read from the AD7357 on the A channel. Before the addition, the ADC sample is expanded to 16 Bits.

OFF_Q [31..0] R/W Offset (Q-Channel)

16 bit signed integer

The value off **OFF_Q** is added to each sample read from the AD7357 on the B channel. Before the addition, the ADC sample is expanded to 16 Bits.