SPI configuration port

A write or read operation is initiated by pulling **spi_ncs** low. There are two parts to a communication cycle with the FPGA. In the first part, a 8-bit instruction word is written to the FPGA, coincident with the first 8 **spi_sclk** rising edges. The instruction word provides information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write and the starting register address for the first word of the data transfer.

7	6	5	4	3	2	1	0
R/W				ADDR			

Setting a register value

If the instruction word is for a write operation, the next 32 **spi_sclk** cycles clock in data for the address specified in the instruction word. Data bits are registered on the rising edge of **spi_sclk**.

					Instruc	tion						Data			
spi_ncs															
spi_sclk	DC														DC
spi_mosi	DC	R/W	A6	A5	A4	A3	A2	A1	A0	D31	D30	()	D1	D0	DC

Reading a register value

If the instruction word is for a read operation, the next 32 SCLK cycles clock out the data from the address specified in the instruction word. The readback data is updated on the falling edge of **spi_sclk**.

			Ins	truction					Data		
spi_ncs											
spi_sclk	DC										DC
spi_mosi	DC	R/W A6	A5 A	4 A3	A2	A1	A0	DC	()	DC	DC
spi_miso	HIGH-Z	_X		undefined				D31 D30		D1 D0	HIGH-Z

Register set description

Register 0x00

Identification

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MA	GIC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MA	GIC							

MAGIC [31..0] R Magic Identifier

32 bit unsigned integer

The magic value can be used to detect is the FPGA is running and the communication interface is working. It always reads **0xDEADBEEF** at the moment.

PWM #1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DU	ΤY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FR	EQ							

FREQ [15..0] R/W PWM1 Frequency

16 bit unsigned integer

The frequency of the first PWM output is configured vis this value:

$$PWM_{freq} = \left(\frac{80\,MHz}{FREQ + 1}\right)$$

DUTY [31..0] R/W

PWM1 Duty Cycle

16 bit unsigned integer

The duty cycle of the first PWM output is configured vis this value:

$$PWM_{duty} = \left(\frac{DUTY}{FREQ + 1}\right)$$

PWM #2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DU	ITY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FR	EQ							

FREQ [15..0] R/W PWM1 Frequency

R/W

16 bit unsigned integer

The frequency of the second PWM output is configured vis this value:

$$PWM_{freq} = \left(\frac{80\,MHz}{FREQ + 1}\right)$$

DUTY [31..0]

PWM1 Duty Cycle

16 bit unsigned integer

The duty cycle of the second PWM output is configured vis this value:

$$PWM_{duty} = \left(\frac{DUTY}{FREQ + 1}\right)$$

ADC Timing

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ACQ								CLM	DIV			

CLKDIV [7..0] R/W AD7357 SCK Frequency

8 bit unsigned integer

The frequency of the SCK line to the AD7357 ADC is configured via this value:

$$F_{SCK} = \left(\frac{80 \, MHz}{CLKDIV}\right)$$

DUTY [15..8] R/W

AD7357 Acquisition Time

8 bit unsigned integer

Number of SCK cycles the CS Line to the AD7357 is held high between two conversions.

SSC Interface

			CLK	DIV											тм
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

ТМ [0] R/W Testmode

Decides if the testmode of the SSC Interface is enabled:

- 0 normal operation
- 1 testmode enabled, data is replaced by a 16 bit counter

CLKDIV [15..8] R/W **SSC Clock Frequency**

8 bit unsigned integer

The frequency of the Clock line of the SSC interface to the MCU is configured via this value:

$$F_{SSC} = \left(\frac{80 \, MHz}{2 \cdot (CLKDIV + 1)}\right)$$

Decimation Filter

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RATE	

RATE [2..0] R/W

Decimation Factor

Configures the decimation factor of the filter:

- 000 no decimation
- 001 Samplerate is reduced by factor 2
- 010 Samplerate is reduced by factor 4
- 011 Samplerate is reduced by factor 8
- **100** Samplerate is reduced by factor **16**
- **101** Samplerate is reduced by factor **32**
- 110 Samplerate is reduced by factor 64

ADC (Chann	el Swa	р												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															SWAP

SWAP [0] R/W Channel Swap

Decides if the ADC channels get swapped:

•	normal anaration	I swap	= I
U	normal operation	Q_{swap}	= Q
1	inverted spectrum	I _{swap}	= Q
•	invented spectrum	Q_{swap}	= I

Register 0x08

ADC Sample Gain

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GAI	N_Q							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-	-	-			GA	IN_I						-	

GAIN_I [15..0] R/W Gain (I-Channel)

16 bit unsigned integer

Each I sample is scaled with the value of GAIN_I:

$$I_{scaled} = \left(\frac{I_{swap} \cdot \text{GAIN}_{I}}{32768}\right)$$

GAIN_Q [31..0]

R/W

Gain (Q-Channel)

16 bit unsigned integer

Each **Q** sample is scaled with the value of **GAIN_Q**:

$$Q_{scaled} = \left(\frac{Q_{swap} \cdot \text{GAIN}_Q}{32768}\right)$$

OsmoSDR – FPGA Register

ADC Sample Offset

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	OFF_Q														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OFF_I														

OFF_I[15..0]R/WOffset (I-Channel)16 bit signed integerThe value off OFF_I is added to each I sample: $I_{out} = I_{scaled} + OFF_I$ OFF_Q[31..0]R/WOffset (Q-Channel)16 bit signed integerThe value off OFF_Q is added to each Q sample: $Q_{out} = Q_{scaled} + OFF_Q$

Register 0x0A - 0x0C

0x0A - GPIO – Output Enable

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						GPIO_OE									

0x0B - GPIO – Output Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					GPIO_OD										

0x0C - GPIO – Input Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						GPIO_ID									

GPIO_OE	[100]	R/W	Output Enable
			Sets the direction of the GPIO Pin:
			0 GPIO is input1 GPIO is output
GPIO_OD	[100]	R/W	Output Data
			Sets the data written on the Output driver: (only relevant if the corresponding GPIO_OE Bit is set)
			0 GPIO is driven low1 GPIO is driven high
GPIO_ID	[100]	R	Input Data
			Gets the data read from the Input driver:
			0 GPIO is low
			1 GPIO is high

GPIO Mapping:

- GPIO[0:9]: A[1-10] Pin
- GPIO[10]: FPGA LED

Reference Frequency Measurement

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	REF_UPD								REF_CNT									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	REF_CNT																	

REF_CNT [24..0] R **Reference Counter**

Return the number of the **CLKPO** (typical 30MHz) Cycles between the last two rising edges on the **1PPS** Signal.

REF_UPD [31:25] R Reference Update Counter

This 7 Bit Counter is incremented every time a new value is latched into the REF_CNT register.