libusrp/host/lib/usrp_prims_common.cc

1242 lines
28 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2003,2004,2006,2009 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "usrp_primsi.h"
#include "usrp_commands.h"
#include "usrp_ids.h"
#include "usrp_i2c_addr.h"
#include "fpga_regs_common.h"
#include "fpga_regs_standard.h"
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h> // FIXME should check with autoconf (nanosleep)
#include <algorithm>
#include <ad9862.h>
#include <assert.h>
#include "std_paths.h"
extern "C" {
#include "md5.h"
};
#define VERBOSE 0
using namespace ad9862;
static const int FIRMWARE_HASH_SLOT = 0;
static const int FPGA_HASH_SLOT = 1;
static const int hash_slot_addr[2] = {
USRP_HASH_SLOT_0_ADDR,
USRP_HASH_SLOT_1_ADDR
};
static const char *default_firmware_filename = "std.ihx";
static const char *default_fpga_filename = "std_2rxhb_2tx.rbf";
static char *
find_file (const char *filename, int hw_rev)
{
const char **sp = std_paths;
static char path[1000];
char *s;
s = getenv("USRP_PATH");
if (s) {
snprintf (path, sizeof (path), "%s/rev%d/%s", s, hw_rev, filename);
if (access (path, R_OK) == 0)
return path;
}
while (*sp){
snprintf (path, sizeof (path), "%s/rev%d/%s", *sp, hw_rev, filename);
if (access (path, R_OK) == 0)
return path;
sp++;
}
return 0;
}
static const char *
get_proto_filename(const std::string user_filename, const char *env_var, const char *def)
{
if (user_filename.length() != 0)
return user_filename.c_str();
char *s = getenv(env_var);
if (s && *s)
return s;
return def;
}
static void power_down_9862s (libusb_device_handle *udh);
// ----------------------------------------------------------------
/*
* q must be a real USRP, not an FX2. Return its hardware rev number.
*/
int
usrp_hw_rev (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return desc.bcdDevice & 0x00FF;
}
/*
* q must be a real USRP, not an FX2. Return true if it's configured.
*/
static bool
_usrp_configured_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.bcdDevice & 0xFF00) != 0;
}
bool
usrp_usrp_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.idVendor == USB_VID_FSF
&& desc.idProduct == USB_PID_FSF_USRP);
}
bool
usrp_fx2_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.idVendor == USB_VID_CYPRESS
&& desc.idProduct == USB_PID_CYPRESS_FX2);
}
bool
usrp_usrp0_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 0;
}
bool
usrp_usrp1_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 1;
}
bool
usrp_usrp2_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 2;
}
bool
usrp_unconfigured_usrp_p (libusb_device *q)
{
return usrp_usrp_p (q) && !_usrp_configured_p (q);
}
bool
usrp_configured_usrp_p (libusb_device *q)
{
return usrp_usrp_p (q) && _usrp_configured_p (q);
}
// ----------------------------------------------------------------
libusb_device_handle *
usrp_open_cmd_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_CMD_INTERFACE, USRP_CMD_ALTINTERFACE);
}
libusb_device_handle *
usrp_open_rx_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_RX_INTERFACE, USRP_RX_ALTINTERFACE);
}
libusb_device_handle *
usrp_open_tx_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_TX_INTERFACE, USRP_TX_ALTINTERFACE);
}
// ----------------------------------------------------------------
// write internal ram using Cypress vendor extension
static bool
write_internal_ram (libusb_device_handle *udh, unsigned char *buf,
int start_addr, size_t len)
{
int addr;
int n;
int a;
int quanta = MAX_EP0_PKTSIZE;
for (addr = start_addr; addr < start_addr + (int) len; addr += quanta){
n = len + start_addr - addr;
if (n > quanta)
n = quanta;
a = _usb_control_transfer (udh, 0x40, 0xA0, addr, 0,
(unsigned char*)(buf + (addr - start_addr)), n, 1000);
if (a < 0){
fprintf(stderr,"write_internal_ram failed\n");
return false;
}
}
return true;
}
// ----------------------------------------------------------------
// whack the CPUCS register using the upload RAM vendor extension
static bool
reset_cpu (libusb_device_handle *udh, bool reset_p)
{
unsigned char v;
if (reset_p)
v = 1; // hold processor in reset
else
v = 0; // release reset
return write_internal_ram (udh, &v, 0xE600, 1);
}
// ----------------------------------------------------------------
// Load intel format file into cypress FX2 (8051)
static bool
_usrp_load_firmware (libusb_device_handle *udh, const char *filename,
unsigned char hash[USRP_HASH_SIZE])
{
FILE *f = fopen (filename, "ra");
if (f == 0){
perror (filename);
return false;
}
if (!reset_cpu (udh, true)) // hold CPU in reset while loading firmware
goto fail;
char s[1024];
int length;
int addr;
int type;
unsigned char data[256];
unsigned char checksum, a;
unsigned int b;
int i;
while (!feof(f)){
fgets(s, sizeof (s), f); /* we should not use more than 263 bytes normally */
if(s[0]!=':'){
fprintf(stderr,"%s: invalid line: \"%s\"\n", filename, s);
goto fail;
}
sscanf(s+1, "%02x", &length);
sscanf(s+3, "%04x", &addr);
sscanf(s+7, "%02x", &type);
if(type==0){
a=length+(addr &0xff)+(addr>>8)+type;
for(i=0;i<length;i++){
sscanf (s+9+i*2,"%02x", &b);
data[i]=b;
a=a+data[i];
}
sscanf (s+9+length*2,"%02x", &b);
checksum=b;
if (((a+checksum)&0xff)!=0x00){
fprintf (stderr, " ** Checksum failed: got 0x%02x versus 0x%02x\n", (-a)&0xff, checksum);
goto fail;
}
if (!write_internal_ram (udh, data, addr, length))
goto fail;
}
else if (type == 0x01){ // EOF
break;
}
else if (type == 0x02){
fprintf (stderr, "Extended address: whatever I do with it?\n");
fprintf (stderr, "%s: invalid line: \"%s\"\n", filename, s);
goto fail;
}
}
// we jam the hash value into the FX2 memory before letting
// the cpu out of reset. When it comes out of reset it
// may renumerate which will invalidate udh.
if (!usrp_set_hash (udh, FIRMWARE_HASH_SLOT, hash))
fprintf (stderr, "usrp: failed to write firmware hash slot\n");
if (!reset_cpu (udh, false)) // take CPU out of reset
goto fail;
fclose (f);
return true;
fail:
fclose (f);
return false;
}
// ----------------------------------------------------------------
// load fpga
static bool
_usrp_load_fpga (libusb_device_handle *udh, const char *filename,
unsigned char hash[USRP_HASH_SIZE])
{
bool ok = true;
FILE *fp = fopen (filename, "rb");
if (fp == 0){
perror (filename);
return false;
}
unsigned char buf[MAX_EP0_PKTSIZE]; // 64 is max size of EP0 packet on FX2
int n;
usrp_set_led (udh, 1, 1); // led 1 on
// reset FPGA (and on rev1 both AD9862's, thus killing clock)
usrp_set_fpga_reset (udh, 1); // hold fpga in reset
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_BEGIN, 0, 0) != 0)
goto fail;
while ((n = fread (buf, 1, sizeof (buf), fp)) > 0){
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_XFER, buf, n) != n)
goto fail;
}
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_END, 0, 0) != 0)
goto fail;
fclose (fp);
if (!usrp_set_hash (udh, FPGA_HASH_SLOT, hash))
fprintf (stderr, "usrp: failed to write fpga hash slot\n");
// On the rev1 USRP, the {tx,rx}_{enable,reset} bits are
// controlled over the serial bus, and hence aren't observed until
// we've got a good fpga bitstream loaded.
usrp_set_fpga_reset (udh, 0); // fpga out of master reset
// now these commands will work
ok &= usrp_set_fpga_tx_enable (udh, 0);
ok &= usrp_set_fpga_rx_enable (udh, 0);
ok &= usrp_set_fpga_tx_reset (udh, 1); // reset tx and rx paths
ok &= usrp_set_fpga_rx_reset (udh, 1);
ok &= usrp_set_fpga_tx_reset (udh, 0); // reset tx and rx paths
ok &= usrp_set_fpga_rx_reset (udh, 0);
if (!ok)
fprintf (stderr, "usrp: failed to reset tx and/or rx path\n");
// Manually reset all regs except master control to zero.
// FIXME may want to remove this when we rework FPGA reset strategy.
// In the mean while, this gets us reproducible behavior.
for (int i = 0; i < FR_USER_0; i++){
if (i == FR_MASTER_CTRL)
continue;
usrp_write_fpga_reg(udh, i, 0);
}
power_down_9862s (udh); // on the rev1, power these down!
usrp_set_led (udh, 1, 0); // led 1 off
return true;
fail:
power_down_9862s (udh); // on the rev1, power these down!
fclose (fp);
return false;
}
// ----------------------------------------------------------------
bool
usrp_set_led (libusb_device_handle *udh, int which, bool on)
{
int r = write_cmd (udh, VRQ_SET_LED, on, which, 0, 0);
return r == 0;
}
bool
usrp_set_hash (libusb_device_handle *udh, int which,
const unsigned char hash[USRP_HASH_SIZE])
{
which &= 1;
// we use the Cypress firmware down load command to jam it in.
int r = _usb_control_transfer (udh, 0x40, 0xa0, hash_slot_addr[which], 0,
(unsigned char *) hash, USRP_HASH_SIZE, 1000);
if (r < 0)
fprintf (stderr, "usrp: failed to set hash\n");
return r == USRP_HASH_SIZE;
}
bool
usrp_get_hash (libusb_device_handle *udh, int which,
unsigned char hash[USRP_HASH_SIZE])
{
which &= 1;
// we use the Cypress firmware upload command to fetch it.
int r = _usb_control_transfer (udh, 0xc0, 0xa0, hash_slot_addr[which], 0,
(unsigned char *) hash, USRP_HASH_SIZE, 1000);
if (r < 0)
fprintf (stderr, "usrp: failed to get hash\n");
return r == USRP_HASH_SIZE;
}
static bool
usrp_set_switch (libusb_device_handle *udh, int cmd_byte, bool on)
{
return write_cmd (udh, cmd_byte, on, 0, 0, 0) == 0;
}
static bool
usrp1_fpga_write (libusb_device_handle *udh,
int regno, int value)
{
// on the rev1 usrp, we use the generic spi_write interface
unsigned char buf[4];
buf[0] = (value >> 24) & 0xff; // MSB first
buf[1] = (value >> 16) & 0xff;
buf[2] = (value >> 8) & 0xff;
buf[3] = (value >> 0) & 0xff;
return usrp_spi_write (udh, 0x00 | (regno & 0x7f),
SPI_ENABLE_FPGA,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, sizeof (buf));
}
static bool
usrp1_fpga_read (libusb_device_handle *udh,
int regno, int *value)
{
*value = 0;
unsigned char buf[4];
bool ok = usrp_spi_read (udh, 0x80 | (regno & 0x7f),
SPI_ENABLE_FPGA,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, sizeof (buf));
if (ok)
*value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
return ok;
}
bool
usrp_write_fpga_reg (libusb_device_handle *udh, int reg, int value)
{
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0: // not supported ;)
abort();
default:
return usrp1_fpga_write (udh, reg, value);
}
}
bool
usrp_read_fpga_reg (libusb_device_handle *udh, int reg, int *value)
{
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0: // not supported ;)
abort();
default:
return usrp1_fpga_read (udh, reg, value);
}
}
bool
usrp_set_fpga_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RESET, on);
}
bool
usrp_set_fpga_tx_enable (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_TX_ENABLE, on);
}
bool
usrp_set_fpga_rx_enable (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RX_ENABLE, on);
}
bool
usrp_set_fpga_tx_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_TX_RESET, on);
}
bool
usrp_set_fpga_rx_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RX_RESET, on);
}
// ----------------------------------------------------------------
// conditional load stuff
static bool
compute_hash (const char *filename, unsigned char hash[USRP_HASH_SIZE])
{
assert (USRP_HASH_SIZE == 16);
memset (hash, 0, USRP_HASH_SIZE);
FILE *fp = fopen (filename, "rb");
if (fp == 0){
perror (filename);
return false;
}
int r = md5_stream (fp, hash);
fclose (fp);
return r == 0;
}
static usrp_load_status_t
usrp_conditionally_load_something (libusb_device_handle *udh,
const char *filename,
bool force,
int slot,
bool loader (libusb_device_handle *,
const char *,
unsigned char [USRP_HASH_SIZE]))
{
unsigned char file_hash[USRP_HASH_SIZE];
unsigned char usrp_hash[USRP_HASH_SIZE];
if (access (filename, R_OK) != 0){
perror (filename);
return ULS_ERROR;
}
if (!compute_hash (filename, file_hash))
return ULS_ERROR;
if (!force
&& usrp_get_hash (udh, slot, usrp_hash)
&& memcmp (file_hash, usrp_hash, USRP_HASH_SIZE) == 0)
return ULS_ALREADY_LOADED;
bool r = loader (udh, filename, file_hash);
if (!r)
return ULS_ERROR;
return ULS_OK;
}
usrp_load_status_t
usrp_load_firmware (libusb_device_handle *udh,
const char *filename,
bool force)
{
return usrp_conditionally_load_something (udh, filename, force,
FIRMWARE_HASH_SLOT,
_usrp_load_firmware);
}
usrp_load_status_t
usrp_load_fpga (libusb_device_handle *udh,
const char *filename,
bool force)
{
return usrp_conditionally_load_something (udh, filename, force,
FPGA_HASH_SLOT,
_usrp_load_fpga);
}
static libusb_device_handle *
open_nth_cmd_interface (int nth, libusb_context *ctx)
{
libusb_device *udev = usrp_find_device (nth, false, ctx);
if (udev == 0){
fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth);
return 0;
}
libusb_device_handle *udh;
udh = usrp_open_cmd_interface (udev);
if (udh == 0){
// FIXME this could be because somebody else has it open.
// We should delay and retry...
fprintf (stderr, "open_nth_cmd_interface: open_cmd_interface failed\n");
return 0;
}
return udh;
}
static bool
our_nanosleep (const struct timespec *delay)
{
struct timespec new_delay = *delay;
struct timespec remainder;
while (1){
int r = nanosleep (&new_delay, &remainder);
if (r == 0)
return true;
if (errno == EINTR)
new_delay = remainder;
else {
perror ("nanosleep");
return false;
}
}
}
static bool
mdelay (int millisecs)
{
struct timespec ts;
ts.tv_sec = millisecs / 1000;
ts.tv_nsec = (millisecs - (1000 * ts.tv_sec)) * 1000000;
return our_nanosleep (&ts);
}
usrp_load_status_t
usrp_load_firmware_nth (int nth, const char *filename, bool force, libusb_context *ctx)
{
libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx);
if (udh == 0)
return ULS_ERROR;
usrp_load_status_t s = usrp_load_firmware (udh, filename, force);
usrp_close_interface (udh);
switch (s){
case ULS_ALREADY_LOADED: // nothing changed...
return ULS_ALREADY_LOADED;
break;
case ULS_OK:
// we loaded firmware successfully.
// It's highly likely that the board will renumerate (simulate a
// disconnect/reconnect sequence), invalidating our current
// handle.
// FIXME. Turn this into a loop that rescans until we refind ourselves
struct timespec t; // delay for 2 second
t.tv_sec = 2;
t.tv_nsec = 0;
our_nanosleep (&t);
usrp_rescan ();
return ULS_OK;
default:
case ULS_ERROR: // some kind of problem
return ULS_ERROR;
}
}
static void
load_status_msg (usrp_load_status_t s, const char *type, const char *filename)
{
char *e = getenv("USRP_VERBOSE");
bool verbose = e != 0;
switch (s){
case ULS_ERROR:
fprintf (stderr, "usrp: failed to load %s %s.\n", type, filename);
break;
case ULS_ALREADY_LOADED:
if (verbose)
fprintf (stderr, "usrp: %s %s already loaded.\n", type, filename);
break;
case ULS_OK:
if (verbose)
fprintf (stderr, "usrp: %s %s loaded successfully.\n", type, filename);
break;
}
}
bool
usrp_load_standard_bits (int nth, bool force,
const std::string fpga_filename,
const std::string firmware_filename,
libusb_context *ctx)
{
usrp_load_status_t s;
const char *filename;
const char *proto_filename;
int hw_rev;
// first, figure out what hardware rev we're dealing with
{
libusb_device *udev = usrp_find_device (nth, false, ctx);
if (udev == 0){
fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth);
return false;
}
hw_rev = usrp_hw_rev (udev);
}
// start by loading the firmware
proto_filename = get_proto_filename(firmware_filename, "USRP_FIRMWARE",
default_firmware_filename);
filename = find_file(proto_filename, hw_rev);
if (filename == 0){
fprintf (stderr, "Can't find firmware: %s\n", proto_filename);
return false;
}
s = usrp_load_firmware_nth (nth, filename, force, ctx);
load_status_msg (s, "firmware", filename);
if (s == ULS_ERROR)
return false;
// if we actually loaded firmware, we must reload fpga ...
if (s == ULS_OK)
force = true;
// now move on to the fpga configuration bitstream
proto_filename = get_proto_filename(fpga_filename, "USRP_FPGA",
default_fpga_filename);
filename = find_file (proto_filename, hw_rev);
if (filename == 0){
fprintf (stderr, "Can't find fpga bitstream: %s\n", proto_filename);
return false;
}
libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx);
if (udh == 0)
return false;
s = usrp_load_fpga (udh, filename, force);
usrp_close_interface (udh);
load_status_msg (s, "fpga bitstream", filename);
if (s == ULS_ERROR)
return false;
return true;
}
bool
_usrp_get_status (libusb_device_handle *udh, int which, bool *trouble)
{
unsigned char status;
*trouble = true;
if (write_cmd (udh, VRQ_GET_STATUS, 0, which,
&status, sizeof (status)) != sizeof (status))
return false;
*trouble = status;
return true;
}
bool
usrp_check_rx_overrun (libusb_device_handle *udh, bool *overrun_p)
{
return _usrp_get_status (udh, GS_RX_OVERRUN, overrun_p);
}
bool
usrp_check_tx_underrun (libusb_device_handle *udh, bool *underrun_p)
{
return _usrp_get_status (udh, GS_TX_UNDERRUN, underrun_p);
}
bool
usrp_i2c_write (libusb_device_handle *udh, int i2c_addr,
const void *buf, int len)
{
if (len < 1 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_I2C_WRITE, i2c_addr, 0,
(unsigned char *) buf, len) == len;
}
bool
usrp_i2c_read (libusb_device_handle *udh, int i2c_addr,
void *buf, int len)
{
if (len < 1 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_I2C_READ, i2c_addr, 0,
(unsigned char *) buf, len) == len;
}
bool
usrp_spi_write (libusb_device_handle *udh,
int optional_header, int enables, int format,
const void *buf, int len)
{
if (len < 0 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_SPI_WRITE,
optional_header,
((enables & 0xff) << 8) | (format & 0xff),
(unsigned char *) buf, len) == len;
}
bool
usrp_spi_read (libusb_device_handle *udh,
int optional_header, int enables, int format,
void *buf, int len)
{
if (len < 0 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_SPI_READ,
optional_header,
((enables & 0xff) << 8) | (format & 0xff),
(unsigned char *) buf, len) == len;
}
bool
usrp_9862_write (libusb_device_handle *udh, int which_codec,
int regno, int value)
{
if (0)
fprintf (stderr, "usrp_9862_write which = %d, reg = %2d, val = %3d (0x%02x)\n",
which_codec, regno, value, value);
unsigned char buf[1];
buf[0] = value;
return usrp_spi_write (udh, 0x00 | (regno & 0x3f),
which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, 1);
}
bool
usrp_9862_read (libusb_device_handle *udh, int which_codec,
int regno, unsigned char *value)
{
return usrp_spi_read (udh, 0x80 | (regno & 0x3f),
which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B,
SPI_FMT_MSB | SPI_FMT_HDR_1,
value, 1);
}
bool
usrp_9862_write_many (libusb_device_handle *udh,
int which_codec,
const unsigned char *buf,
int len)
{
if (len & 0x1)
return false; // must be even
bool result = true;
while (len > 0){
result &= usrp_9862_write (udh, which_codec, buf[0], buf[1]);
len -= 2;
buf += 2;
}
return result;
}
bool
usrp_9862_write_many_all (libusb_device_handle *udh,
const unsigned char *buf, int len)
{
// FIXME handle 2/2 and 4/4 versions
bool result;
result = usrp_9862_write_many (udh, 0, buf, len);
result &= usrp_9862_write_many (udh, 1, buf, len);
return result;
}
static void
power_down_9862s (libusb_device_handle *udh)
{
static const unsigned char regs[] = {
REG_RX_PWR_DN, 0x01, // everything
REG_TX_PWR_DN, 0x0f, // pwr dn digital and analog_both
REG_TX_MODULATOR, 0x00 // coarse & fine modulators disabled
};
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0:
break;
default:
usrp_9862_write_many_all (udh, regs, sizeof (regs));
break;
}
}
static const int EEPROM_PAGESIZE = 16;
bool
usrp_eeprom_write (libusb_device_handle *udh, int i2c_addr,
int eeprom_offset, const void *buf, int len)
{
unsigned char cmd[2];
const unsigned char *p = (unsigned char *) buf;
// The simplest thing that could possibly work:
// all writes are single byte writes.
//
// We could speed this up using the page write feature,
// but we write so infrequently, why bother...
while (len-- > 0){
cmd[0] = eeprom_offset++;
cmd[1] = *p++;
bool r = usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd));
mdelay (10); // delay 10ms worst case write time
if (!r)
return false;
}
return true;
}
bool
usrp_eeprom_read (libusb_device_handle *udh, int i2c_addr,
int eeprom_offset, void *buf, int len)
{
unsigned char *p = (unsigned char *) buf;
// We setup a random read by first doing a "zero byte write".
// Writes carry an address. Reads use an implicit address.
unsigned char cmd[1];
cmd[0] = eeprom_offset;
if (!usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd)))
return false;
while (len > 0){
int n = std::min (len, MAX_EP0_PKTSIZE);
if (!usrp_i2c_read (udh, i2c_addr, p, n))
return false;
len -= n;
p += n;
}
return true;
}
// ----------------------------------------------------------------
static bool
slot_to_codec (int slot, int *which_codec)
{
*which_codec = 0;
switch (slot){
case SLOT_TX_A:
case SLOT_RX_A:
*which_codec = 0;
break;
case SLOT_TX_B:
case SLOT_RX_B:
*which_codec = 1;
break;
default:
fprintf (stderr, "usrp_prims:slot_to_codec: invalid slot = %d\n", slot);
return false;
}
return true;
}
static bool
tx_slot_p (int slot)
{
switch (slot){
case SLOT_TX_A:
case SLOT_TX_B:
return true;
default:
return false;
}
}
bool
usrp_write_aux_dac (libusb_device_handle *udh, int slot,
int which_dac, int value)
{
int which_codec;
if (!slot_to_codec (slot, &which_codec))
return false;
if (!(0 <= which_dac && which_dac < 4)){
fprintf (stderr, "usrp_write_aux_dac: invalid dac = %d\n", which_dac);
return false;
}
value &= 0x0fff; // mask to 12-bits
if (which_dac == 3){
// dac 3 is really 12-bits. Use value as is.
bool r = true;
r &= usrp_9862_write (udh, which_codec, 43, (value >> 4)); // most sig
r &= usrp_9862_write (udh, which_codec, 42, (value & 0xf) << 4); // least sig
return r;
}
else {
// dac 0, 1, and 2 are really 8 bits.
value = value >> 4; // shift value appropriately
return usrp_9862_write (udh, which_codec, 36 + which_dac, value);
}
}
bool
usrp_read_aux_adc (libusb_device_handle *udh, int slot,
int which_adc, int *value)
{
*value = 0;
int which_codec;
if (!slot_to_codec (slot, &which_codec))
return false;
if (!(0 <= which_codec && which_codec < 2)){
fprintf (stderr, "usrp_read_aux_adc: invalid adc = %d\n", which_adc);
return false;
}
unsigned char aux_adc_control =
AUX_ADC_CTRL_REFSEL_A // on chip reference
| AUX_ADC_CTRL_REFSEL_B; // on chip reference
int rd_reg = 26; // base address of two regs to read for result
// program the ADC mux bits
if (tx_slot_p (slot))
aux_adc_control |= AUX_ADC_CTRL_SELECT_A2 | AUX_ADC_CTRL_SELECT_B2;
else {
rd_reg += 2;
aux_adc_control |= AUX_ADC_CTRL_SELECT_A1 | AUX_ADC_CTRL_SELECT_B1;
}
// I'm not sure if we can set the mux and issue a start conversion
// in the same cycle, so let's do them one at a time.
usrp_9862_write (udh, which_codec, 34, aux_adc_control);
if (which_adc == 0)
aux_adc_control |= AUX_ADC_CTRL_START_A;
else {
rd_reg += 4;
aux_adc_control |= AUX_ADC_CTRL_START_B;
}
// start the conversion
usrp_9862_write (udh, which_codec, 34, aux_adc_control);
// read the 10-bit result back
unsigned char v_lo = 0;
unsigned char v_hi = 0;
bool r = usrp_9862_read (udh, which_codec, rd_reg, &v_lo);
r &= usrp_9862_read (udh, which_codec, rd_reg + 1, &v_hi);
if (r)
*value = ((v_hi << 2) | ((v_lo >> 6) & 0x3)) << 2; // format as 12-bit
return r;
}
// ----------------------------------------------------------------
static int slot_to_i2c_addr (int slot)
{
switch (slot){
case SLOT_TX_A: return I2C_ADDR_TX_A;
case SLOT_RX_A: return I2C_ADDR_RX_A;
case SLOT_TX_B: return I2C_ADDR_TX_B;
case SLOT_RX_B: return I2C_ADDR_RX_B;
default: return -1;
}
}
static void
set_chksum (unsigned char *buf)
{
int sum = 0;
unsigned int i;
for (i = 0; i < DB_EEPROM_CLEN - 1; i++)
sum += buf[i];
buf[i] = -sum;
}
static usrp_dbeeprom_status_t
read_dboard_eeprom (libusb_device_handle *udh,
int slot_id, unsigned char *buf)
{
int i2c_addr = slot_to_i2c_addr (slot_id);
if (i2c_addr == -1)
return UDBE_BAD_SLOT;
if (!usrp_eeprom_read (udh, i2c_addr, 0, buf, DB_EEPROM_CLEN))
return UDBE_NO_EEPROM;
if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE)
return UDBE_INVALID_EEPROM;
int sum = 0;
for (unsigned int i = 0; i < DB_EEPROM_CLEN; i++)
sum += buf[i];
if ((sum & 0xff) != 0)
return UDBE_INVALID_EEPROM;
return UDBE_OK;
}
usrp_dbeeprom_status_t
usrp_read_dboard_eeprom (libusb_device_handle *udh,
int slot_id, usrp_dboard_eeprom *eeprom)
{
unsigned char buf[DB_EEPROM_CLEN];
memset (eeprom, 0, sizeof (*eeprom));
usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf);
if (s != UDBE_OK)
return s;
eeprom->id = (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB];
eeprom->oe = (buf[DB_EEPROM_OE_MSB] << 8) | buf[DB_EEPROM_OE_LSB];
eeprom->offset[0] = (buf[DB_EEPROM_OFFSET_0_MSB] << 8) | buf[DB_EEPROM_OFFSET_0_LSB];
eeprom->offset[1] = (buf[DB_EEPROM_OFFSET_1_MSB] << 8) | buf[DB_EEPROM_OFFSET_1_LSB];
return UDBE_OK;
}
bool
usrp_write_dboard_offsets (libusb_device_handle *udh, int slot_id,
short offset0, short offset1)
{
unsigned char buf[DB_EEPROM_CLEN];
usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf);
if (s != UDBE_OK)
return false;
buf[DB_EEPROM_OFFSET_0_LSB] = (offset0 >> 0) & 0xff;
buf[DB_EEPROM_OFFSET_0_MSB] = (offset0 >> 8) & 0xff;
buf[DB_EEPROM_OFFSET_1_LSB] = (offset1 >> 0) & 0xff;
buf[DB_EEPROM_OFFSET_1_MSB] = (offset1 >> 8) & 0xff;
set_chksum (buf);
return usrp_eeprom_write (udh, slot_to_i2c_addr (slot_id),
0, buf, sizeof (buf));
}
// ----------------------------------------------------------------
std::string
usrp_serial_number(libusb_device_handle *udh)
{
libusb_device_descriptor desc =
_get_usb_device_descriptor (_get_usb_device (udh));
unsigned char iserial = desc.iSerialNumber;
if (iserial == 0)
return "";
unsigned char buf[1024];
if (_get_usb_string_descriptor (udh, iserial, buf, sizeof(buf)) < 0)
return "";
return (char*) buf;
}