libusrp/host/lib/db_wbxng.cc

539 lines
12 KiB
C++

//
// Copyright 2008,2009 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <usrp/db_wbxng.h>
#include "db_wbxng_adf4350.h"
#include <db_base_impl.h>
#include <stdio.h>
#ifdef HAVE_TIME_H
#include <ctime>
#endif
// d'board i/o pin defs
// Tx and Rx have shared defs, but different i/o regs
#define ENABLE_5 (1 << 7) // enables 5.0V power supply
#define ENABLE_33 (1 << 6) // enables 3.3V supply
//#define RX_TXN (1 << 15) // Tx only: T/R antenna switch for TX/RX port
//#define RX2_RX1N (1 << 15) // Rx only: antenna switch between RX2 and TX/RX port
#define RX_TXN ((1 << 5)|(1 << 15)) // Tx only: T/R antenna switch for TX/RX port
#define RX2_RX1N ((1 << 5)|(1 << 15)) // Rx only: antenna switch between RX2 and TX/RX port
#define RXBB_EN (1 << 4)
#define TXMOD_EN (1 << 4)
#define PLL_CE (1 << 3)
#define PLL_PDBRF (1 << 2)
#define PLL_MUXOUT (1 << 1)
#define PLL_LOCK_DETECT (1 << 0)
// RX Attenuator constants
#define ATTN_SHIFT 8
#define ATTN_MASK (63 << ATTN_SHIFT)
wbxng_base::wbxng_base(usrp_basic_sptr _usrp, int which)
: db_base(_usrp, which)
{
/*
@param usrp: instance of usrp.source_c
@param which: which side: 0 or 1 corresponding to side A or B respectively
@type which: int
*/
usrp()->_write_oe(d_which, 0, 0xffff); // turn off all outputs
d_first = true;
d_spi_format = SPI_FMT_MSB | SPI_FMT_HDR_0;
_enable_refclk(false); // disable refclk
set_auto_tr(false);
}
wbxng_base::~wbxng_base()
{
}
int
wbxng_base::_refclk_divisor()
{
return 1;
}
struct freq_result_t
wbxng_base::set_freq(double freq)
{
/*
@returns (ok, actual_baseband_freq) where:
ok is True or False and indicates success or failure,
actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
*/
// clamp freq
freq_t int_freq = freq_t(std::max(freq_min(), std::min(freq, freq_max())));
bool ok = d_common->_set_freq(int_freq*2, _refclk_freq());
_write_spi(d_common->compute_register(5));
_write_spi(d_common->compute_register(4));
_write_spi(d_common->compute_register(3));
/* load involved registers */
_write_spi(d_common->compute_register(2));
_write_spi(d_common->compute_register(1));
_write_spi(d_common->compute_register(0));
double freq_result = (double) d_common->_get_freq(_refclk_freq())/2.0;
//ok &= _get_locked();
struct freq_result_t args = {ok, freq_result};
/* Wait before reading Lock Detect*/
timespec t;
t.tv_sec = 0;
t.tv_nsec = 10000000;
nanosleep(&t, NULL);
//fprintf(stderr,"Setting WBXNG frequency, requested %d, obtained %f, lock_detect %d\n",
// int_freq, freq_result, d_common->_get_locked());
// FIXME
// Offsetting the LO helps get the Tx carrier leakage out of the way.
// This also ensures that on Rx, we're not getting hosed by the
// FPGA's DC removal loop's time constant. We were seeing a
// problem when running with discontinuous transmission.
// Offsetting the LO made the problem go away.
//freq += d_lo_offset;
return args;
}
bool
wbxng_base::_set_pga(float pga_gain)
{
if(d_which == 0) {
usrp()->set_pga(0, pga_gain);
usrp()->set_pga(1, pga_gain);
}
else {
usrp()->set_pga(2, pga_gain);
usrp()->set_pga(3, pga_gain);
}
return true;
}
bool
wbxng_base::is_quadrature()
{
/*
Return True if this board requires both I & Q analog channels.
This bit of info is useful when setting up the USRP Rx mux register.
*/
return true;
}
double
wbxng_base::freq_min()
{
return (double) d_common->_get_min_freq()/2.0;
}
double
wbxng_base::freq_max()
{
return (double) d_common->_get_max_freq()/2.0;
}
bool
wbxng_base::_get_locked(void)
{
return usrp()->read_io(d_which) & PLL_LOCK_DETECT;
}
void
wbxng_base::_write_spi(std::string data)
{
usrp()->_write_spi(0, d_spi_enable, d_spi_format, data);
}
// ----------------------------------------------------------------
db_wbxng_tx::db_wbxng_tx(usrp_basic_sptr _usrp, int which)
: wbxng_base(_usrp, which)
{
/*
@param usrp: instance of usrp.sink_c
@param which: 0 or 1 corresponding to side TX_A or TX_B respectively.
*/
if(which == 0) {
d_spi_enable = SPI_ENABLE_TX_A;
}
else {
d_spi_enable = SPI_ENABLE_TX_B;
}
d_common = boost::shared_ptr<adf4350> (new adf4350());
/* Initialize the registers. */
_write_spi(d_common->compute_register(5));
_write_spi(d_common->compute_register(4));
_write_spi(d_common->compute_register(3));
_write_spi(d_common->compute_register(2));
_write_spi(d_common->compute_register(1));
_write_spi(d_common->compute_register(0));
// power up the transmit side, but don't enable the mixer
usrp()->_write_oe(d_which,(PLL_CE|PLL_PDBRF|RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5), (PLL_CE|PLL_PDBRF|RX_TXN|TXMOD_EN|ENABLE_33|ENABLE_5));
usrp()->write_io(d_which, (PLL_CE|RX_TXN|ENABLE_33|ENABLE_5), (PLL_CE|PLL_PDBRF|RX_TXN|ENABLE_33|ENABLE_5));
//set_lo_offset(4e6);
// Disable VCO/PLL
//d_common->_enable(true);
usrp()->write_io(d_which, (PLL_PDBRF), (PLL_PDBRF));
set_gain(gain_min()); // initialize gain
}
db_wbxng_tx::~db_wbxng_tx()
{
shutdown();
}
void
db_wbxng_tx::shutdown()
{
// fprintf(stderr, "db_wbxng_tx::shutdown d_is_shutdown = %d\n", d_is_shutdown);
if (!d_is_shutdown){
d_is_shutdown = true;
// do whatever there is to do to shutdown
// Disable VCO/PLL
//d_common->_enable(false);
usrp()->write_io(d_which, 0, (PLL_PDBRF));
// Power down and leave the T/R switch in the R position
usrp()->write_io(d_which, (RX_TXN), (PLL_CE|PLL_PDBRF|RX_TXN|ENABLE_33|ENABLE_5));
/*
_write_control(_compute_control_reg());
*/
_enable_refclk(false); // turn off refclk
set_auto_tr(false);
}
}
bool
db_wbxng_tx::set_auto_tr(bool on)
{
bool ok = true;
if(on) {
ok &= set_atr_mask (RX_TXN | TXMOD_EN);
ok &= set_atr_txval(0 | TXMOD_EN);
ok &= set_atr_rxval(RX_TXN);
}
else {
ok &= set_atr_mask (0);
ok &= set_atr_txval(0);
ok &= set_atr_rxval(0);
}
return ok;
}
bool
db_wbxng_tx::set_enable(bool on)
{
/*
Enable transmitter if on is true
*/
int v;
int mask = RX_TXN | TXMOD_EN;
if(on) {
v = TXMOD_EN;
// Enable VCO/PLL
//d_common->_enable(true);
}
else {
v = RX_TXN;
// Disable VCO/PLL
//d_common->_enable(false);
}
return usrp()->write_io(d_which, v, mask);
}
float
db_wbxng_tx::gain_min()
{
return 0.0;
}
float
db_wbxng_tx::gain_max()
{
return 25.0;
}
float
db_wbxng_tx::gain_db_per_step()
{
return gain_max()/(1+(1.4-0.5)*4096/3.3);
}
bool
db_wbxng_tx::set_gain(float gain)
{
/*
Set the gain.
@param gain: gain in decibels
@returns True/False
*/
// clamp gain
gain = std::max(gain_min(), std::min(gain, gain_max()));
float pga_gain, agc_gain;
float V_maxgain, V_mingain, V_fullscale, dac_value;
float maxgain = gain_max();
float mingain = gain_min();
pga_gain = 0;
agc_gain = gain;
V_maxgain = 0.5;
V_mingain = 1.4;
V_fullscale = 3.3;
dac_value = (agc_gain*(V_maxgain-V_mingain)/(maxgain-mingain) + V_mingain)*4096/V_fullscale;
//fprintf(stderr, "TXGAIN: %f dB, Dac Code: %d, Voltage: %f\n", gain, int(dac_value), float((dac_value/4096.0)*V_fullscale));
assert(dac_value>=0 && dac_value<4096);
return (usrp()->write_aux_dac(d_which, 0, int(dac_value))
&& _set_pga(usrp()->pga_max()));
}
/**************************************************************************/
db_wbxng_rx::db_wbxng_rx(usrp_basic_sptr _usrp, int which)
: wbxng_base(_usrp, which)
{
/*
@param usrp: instance of usrp.source_c
@param which: 0 or 1 corresponding to side RX_A or RX_B respectively.
*/
if(which == 0) {
d_spi_enable = SPI_ENABLE_RX_A;
}
else {
d_spi_enable = SPI_ENABLE_RX_B;
}
d_common = boost::shared_ptr<adf4350> (new adf4350());
/* Initialize the registers. */
_write_spi(d_common->compute_register(5));
_write_spi(d_common->compute_register(4));
_write_spi(d_common->compute_register(3));
_write_spi(d_common->compute_register(2));
_write_spi(d_common->compute_register(1));
_write_spi(d_common->compute_register(0));
usrp()->_write_oe(d_which, (PLL_CE|PLL_PDBRF|RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5), (PLL_CE|PLL_PDBRF|RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5));
usrp()->write_io(d_which, (PLL_CE|RX2_RX1N|RXBB_EN|ENABLE_33|ENABLE_5), (PLL_CE|PLL_PDBRF|RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5));
//fprintf(stderr,"Setting WBXNG RXBB on");
// Enable VCO/PLL
//d_common->_enable(true);
usrp()->write_io(d_which, (PLL_PDBRF), (PLL_PDBRF));
// set up for RX on TX/RX port
select_rx_antenna("TX/RX");
bypass_adc_buffers(true);
/*
set_lo_offset(-4e6);
*/
set_gain(gain_min()); // initialize gain
}
db_wbxng_rx::~db_wbxng_rx()
{
shutdown();
}
void
db_wbxng_rx::shutdown()
{
// fprintf(stderr, "db_wbxng_rx::shutdown d_is_shutdown = %d\n", d_is_shutdown);
if (!d_is_shutdown){
d_is_shutdown = true;
// do whatever there is to do to shutdown
// Power down VCO/PLL
//d_common->_enable(false);
usrp()->write_io(d_which, 0, (PLL_PDBRF));
// fprintf(stderr, "db_wbxng_rx::shutdown before _write_control\n");
//_write_control(_compute_control_reg());
// fprintf(stderr, "db_wbxng_rx::shutdown before _enable_refclk\n");
_enable_refclk(false); // turn off refclk
// fprintf(stderr, "db_wbxng_rx::shutdown before set_auto_tr\n");
set_auto_tr(false);
// Power down
usrp()->write_io(d_which, 0, (PLL_CE|PLL_PDBRF|RX2_RX1N|RXBB_EN|ATTN_MASK|ENABLE_33|ENABLE_5));
// fprintf(stderr, "db_wbxng_rx::shutdown after set_auto_tr\n");
}
}
bool
db_wbxng_rx::set_auto_tr(bool on)
{
bool ok = true;
if(on) {
ok &= set_atr_mask (RXBB_EN|RX2_RX1N);
ok &= set_atr_txval( 0|RX2_RX1N);
ok &= set_atr_rxval(RXBB_EN| 0);
}
else {
ok &= set_atr_mask (0);
ok &= set_atr_txval(0);
ok &= set_atr_rxval(0);
}
return true;
}
bool
db_wbxng_rx::select_rx_antenna(int which_antenna)
{
/*
Specify which antenna port to use for reception.
@param which_antenna: either 'TX/RX' or 'RX2'
*/
if(which_antenna == 0) {
usrp()->write_io(d_which, 0,RX2_RX1N);
}
else if(which_antenna == 1) {
usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N);
}
else {
return false;
}
return true;
}
bool
db_wbxng_rx::select_rx_antenna(const std::string &which_antenna)
{
/*
Specify which antenna port to use for reception.
@param which_antenna: either 'TX/RX' or 'RX2'
*/
if(which_antenna == "TX/RX") {
usrp()->write_io(d_which, 0, RX2_RX1N);
}
else if(which_antenna == "RX2") {
usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N);
}
else {
return false;
}
return true;
}
bool
db_wbxng_rx::set_gain(float gain)
{
/*
Set the gain.
@param gain: gain in decibels
@returns True/False
*/
// clamp gain
gain = std::max(gain_min(), std::min(gain, gain_max()));
float pga_gain, agc_gain;
float maxgain = gain_max() - usrp()->pga_max();
if(gain > maxgain) {
pga_gain = gain-maxgain;
assert(pga_gain <= usrp()->pga_max());
agc_gain = maxgain;
}
else {
pga_gain = 0;
agc_gain = gain;
}
return _set_attn(maxgain-agc_gain) && _set_pga(int(pga_gain));
}
bool
db_wbxng_rx::_set_attn(float attn)
{
int attn_code = int(floor(attn/0.5));
unsigned int iobits = (~attn_code) << ATTN_SHIFT;
//fprintf(stderr, "Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x \n", attn, attn_code, iobits & ATTN_MASK, ATTN_MASK);
return usrp()->write_io(d_which, iobits, ATTN_MASK);
}
float
db_wbxng_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_wbxng_rx::gain_max()
{
return usrp()->pga_max()+30.5;
}
float
db_wbxng_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_wbxng_rx::i_and_q_swapped()
{
return false;
}