libusrp/host/lib/db_flexrf.cc

1248 lines
25 KiB
C++

//
// Copyright 2008,2009 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <usrp/db_flexrf.h>
#include <db_base_impl.h>
#ifdef HAVE_TIME_H
#include <ctime>
#endif
// d'board i/o pin defs
// Tx and Rx have shared defs, but different i/o regs
#define AUX_RXAGC (1 << 8)
#define POWER_UP (1 << 7) // enables power supply
#define RX_TXN (1 << 6) // Tx only: T/R antenna switch for TX/RX port
#define RX2_RX1N (1 << 6) // Rx only: antenna switch between RX2 and TX/RX port
#define ENABLE (1 << 5) // enables mixer
#define AUX_SEN (1 << 4)
#define AUX_SCLK (1 << 3)
#define PLL_LOCK_DETECT (1 << 2)
#define AUX_SDO (1 << 1)
#define CLOCK_OUT (1 << 0)
flexrf_base::flexrf_base(usrp_basic_sptr _usrp, int which, int _power_on)
: db_base(_usrp, which), d_power_on(_power_on)
{
/*
@param usrp: instance of usrp.source_c
@param which: which side: 0 or 1 corresponding to side A or B respectively
@type which: int
*/
d_first = true;
d_spi_format = SPI_FMT_MSB | SPI_FMT_HDR_0;
usrp()->_write_oe(d_which, 0, 0xffff); // turn off all outputs
_enable_refclk(false); // disable refclk
set_auto_tr(false);
}
flexrf_base::~flexrf_base()
{
delete d_common;
}
void
flexrf_base::_write_all(int R, int control, int N)
{
/*
Write R counter latch, control latch and N counter latch to VCO.
Adds 10ms delay between writing control and N if this is first call.
This is the required power-up sequence.
@param R: 24-bit R counter latch
@type R: int
@param control: 24-bit control latch
@type control: int
@param N: 24-bit N counter latch
@type N: int
*/
timespec t;
t.tv_sec = 0;
t.tv_nsec = 10000000;
_write_R(R);
_write_control(control);
if(d_first) {
//time.sleep(0.010);
nanosleep(&t, NULL);
d_first = false;
}
_write_N(N);
}
void
flexrf_base::_write_control(int control)
{
_write_it((control & ~0x3) | 0);
}
void
flexrf_base::_write_R(int R)
{
_write_it((R & ~0x3) | 1);
}
void
flexrf_base::_write_N(int N)
{
_write_it((N & ~0x3) | 2);
}
void
flexrf_base::_write_it(int v)
{
char s[3];
s[0] = (char)((v >> 16) & 0xff);
s[1] = (char)((v >> 8) & 0xff);
s[2] = (char)(v & 0xff);
std::string str(s, 3);
usrp()->_write_spi(0, d_spi_enable, d_spi_format, str);
}
bool
flexrf_base::_lock_detect()
{
/*
@returns: the value of the VCO/PLL lock detect bit.
@rtype: 0 or 1
*/
if(usrp()->read_io(d_which) & PLL_LOCK_DETECT) {
return true;
}
else { // Give it a second chance
// FIXME: make portable sleep
timespec t;
t.tv_sec = 0;
t.tv_nsec = 100000000;
nanosleep(&t, NULL);
if(usrp()->read_io(d_which) & PLL_LOCK_DETECT) {
return true;
}
else {
return false;
}
}
}
bool
flexrf_base::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
/*
Determine values of R, control, and N registers, along with actual freq.
@param freq: target frequency in Hz
@type freq: float
@returns: (R, control, N, actual_freq)
@rtype: tuple(int, int, int, float)
Override this in derived classes.
*/
//raise NotImplementedError;
throw std::runtime_error("_compute_regs called from flexrf_base\n");
}
int
flexrf_base::_compute_control_reg()
{
return d_common->_compute_control_reg();
}
int
flexrf_base::_refclk_divisor()
{
return d_common->_refclk_divisor();
}
struct freq_result_t
flexrf_base::set_freq(double freq)
{
/*
@returns (ok, actual_baseband_freq) where:
ok is True or False and indicates success or failure,
actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
*/
struct freq_result_t args = {false, 0};
// Offsetting the LO helps get the Tx carrier leakage out of the way.
// This also ensures that on Rx, we're not getting hosed by the
// FPGA's DC removal loop's time constant. We were seeing a
// problem when running with discontinuous transmission.
// Offsetting the LO made the problem go away.
freq += d_lo_offset;
int R, control, N;
double actual_freq;
_compute_regs(freq, R, control, N, actual_freq);
if(R==0) {
return args;
}
_write_all(R, control, N);
args.ok = _lock_detect();
args.baseband_freq = actual_freq;
return args;
}
bool
flexrf_base::_set_pga(float pga_gain)
{
if(d_which == 0) {
usrp()->set_pga(0, pga_gain);
usrp()->set_pga(1, pga_gain);
}
else {
usrp()->set_pga(2, pga_gain);
usrp()->set_pga(3, pga_gain);
}
return true;
}
bool
flexrf_base::is_quadrature()
{
/*
Return True if this board requires both I & Q analog channels.
This bit of info is useful when setting up the USRP Rx mux register.
*/
return true;
}
double
flexrf_base::freq_min()
{
return d_common->freq_min();
}
double
flexrf_base::freq_max()
{
return d_common->freq_max();
}
// ----------------------------------------------------------------
flexrf_base_tx::flexrf_base_tx(usrp_basic_sptr _usrp, int which, int _power_on)
: flexrf_base(_usrp, which, _power_on)
{
/*
@param usrp: instance of usrp.sink_c
@param which: 0 or 1 corresponding to side TX_A or TX_B respectively.
*/
if(which == 0) {
d_spi_enable = SPI_ENABLE_TX_A;
}
else {
d_spi_enable = SPI_ENABLE_TX_B;
}
// power up the transmit side, but don't enable the mixer
usrp()->_write_oe(d_which,(POWER_UP|RX_TXN|ENABLE), 0xffff);
usrp()->write_io(d_which, (power_on()|RX_TXN), (POWER_UP|RX_TXN|ENABLE));
set_lo_offset(4e6);
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
flexrf_base_tx::~flexrf_base_tx()
{
shutdown();
}
void
flexrf_base_tx::shutdown()
{
// fprintf(stderr, "flexrf_base_tx::shutdown d_is_shutdown = %d\n", d_is_shutdown);
if (!d_is_shutdown){
d_is_shutdown = true;
// do whatever there is to do to shutdown
// Power down and leave the T/R switch in the R position
usrp()->write_io(d_which, (power_off()|RX_TXN), (POWER_UP|RX_TXN|ENABLE));
// Power down VCO/PLL
d_PD = 3;
_write_control(_compute_control_reg());
_enable_refclk(false); // turn off refclk
set_auto_tr(false);
}
}
bool
flexrf_base_tx::set_auto_tr(bool on)
{
bool ok = true;
if(on) {
ok &= set_atr_mask (RX_TXN | ENABLE);
ok &= set_atr_txval(0 | ENABLE);
ok &= set_atr_rxval(RX_TXN | 0);
}
else {
ok &= set_atr_mask (0);
ok &= set_atr_txval(0);
ok &= set_atr_rxval(0);
}
return ok;
}
bool
flexrf_base_tx::set_enable(bool on)
{
/*
Enable transmitter if on is true
*/
int v;
int mask = RX_TXN | ENABLE;
if(on) {
v = ENABLE;
}
else {
v = RX_TXN;
}
return usrp()->write_io(d_which, v, mask);
}
float
flexrf_base_tx::gain_min()
{
return usrp()->pga_max();
}
float
flexrf_base_tx::gain_max()
{
return usrp()->pga_max();
}
float
flexrf_base_tx::gain_db_per_step()
{
return 1;
}
bool
flexrf_base_tx::set_gain(float gain)
{
/*
Set the gain.
@param gain: gain in decibels
@returns True/False
*/
return _set_pga(usrp()->pga_max());
}
/**************************************************************************/
flexrf_base_rx::flexrf_base_rx(usrp_basic_sptr _usrp, int which, int _power_on)
: flexrf_base(_usrp, which, _power_on)
{
/*
@param usrp: instance of usrp.source_c
@param which: 0 or 1 corresponding to side RX_A or RX_B respectively.
*/
if(which == 0) {
d_spi_enable = SPI_ENABLE_RX_A;
}
else {
d_spi_enable = SPI_ENABLE_RX_B;
}
usrp()->_write_oe(d_which, (POWER_UP|RX2_RX1N|ENABLE), 0xffff);
usrp()->write_io(d_which, (power_on()|RX2_RX1N|ENABLE),
(POWER_UP|RX2_RX1N|ENABLE));
// set up for RX on TX/RX port
select_rx_antenna("TX/RX");
bypass_adc_buffers(true);
set_lo_offset(-4e6);
}
flexrf_base_rx::~flexrf_base_rx()
{
shutdown();
}
void
flexrf_base_rx::shutdown()
{
// fprintf(stderr, "flexrf_base_rx::shutdown d_is_shutdown = %d\n", d_is_shutdown);
if (!d_is_shutdown){
d_is_shutdown = true;
// do whatever there is to do to shutdown
// Power down
usrp()->common_write_io(C_RX, d_which, power_off(), (POWER_UP|ENABLE));
// Power down VCO/PLL
d_PD = 3;
// fprintf(stderr, "flexrf_base_rx::shutdown before _write_control\n");
_write_control(_compute_control_reg());
// fprintf(stderr, "flexrf_base_rx::shutdown before _enable_refclk\n");
_enable_refclk(false); // turn off refclk
// fprintf(stderr, "flexrf_base_rx::shutdown before set_auto_tr\n");
set_auto_tr(false);
// fprintf(stderr, "flexrf_base_rx::shutdown after set_auto_tr\n");
}
}
bool
flexrf_base_rx::set_auto_tr(bool on)
{
bool ok = true;
if(on) {
ok &= set_atr_mask (ENABLE);
ok &= set_atr_txval( 0);
ok &= set_atr_rxval(ENABLE);
}
else {
ok &= set_atr_mask (0);
ok &= set_atr_txval(0);
ok &= set_atr_rxval(0);
}
return true;
}
bool
flexrf_base_rx::select_rx_antenna(int which_antenna)
{
/*
Specify which antenna port to use for reception.
@param which_antenna: either 'TX/RX' or 'RX2'
*/
if(which_antenna == 0) {
usrp()->write_io(d_which, 0,RX2_RX1N);
}
else if(which_antenna == 1) {
usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N);
}
else {
return false;
// throw std::invalid_argument("which_antenna must be either 'TX/RX' or 'RX2'\n");
}
return true;
}
bool
flexrf_base_rx::select_rx_antenna(const std::string &which_antenna)
{
/*
Specify which antenna port to use for reception.
@param which_antenna: either 'TX/RX' or 'RX2'
*/
if(which_antenna == "TX/RX") {
usrp()->write_io(d_which, 0, RX2_RX1N);
}
else if(which_antenna == "RX2") {
usrp()->write_io(d_which, RX2_RX1N, RX2_RX1N);
}
else {
// throw std::invalid_argument("which_antenna must be either 'TX/RX' or 'RX2'\n");
return false;
}
return true;
}
bool
flexrf_base_rx::set_gain(float gain)
{
/*
Set the gain.
@param gain: gain in decibels
@returns True/False
*/
// clamp gain
gain = std::max(gain_min(), std::min(gain, gain_max()));
float pga_gain, agc_gain;
float V_maxgain, V_mingain, V_fullscale, dac_value;
float maxgain = gain_max() - usrp()->pga_max();
float mingain = gain_min();
if(gain > maxgain) {
pga_gain = gain-maxgain;
assert(pga_gain <= usrp()->pga_max());
agc_gain = maxgain;
}
else {
pga_gain = 0;
agc_gain = gain;
}
V_maxgain = .2;
V_mingain = 1.2;
V_fullscale = 3.3;
dac_value = (agc_gain*(V_maxgain-V_mingain)/(maxgain-mingain) + V_mingain)*4096/V_fullscale;
assert(dac_value>=0 && dac_value<4096);
return (usrp()->write_aux_dac(d_which, 0, int(dac_value))
&& _set_pga(int(pga_gain)));
}
// ----------------------------------------------------------------
_AD4360_common::_AD4360_common()
{
// R-Register Common Values
d_R_RSV = 0; // bits 23,22
d_BSC = 3; // bits 21,20 Div by 8 to be safe
d_TEST = 0; // bit 19
d_LDP = 1; // bit 18
d_ABP = 0; // bit 17,16 3ns
// N-Register Common Values
d_N_RSV = 0; // bit 7
// Control Register Common Values
d_PD = 0; // bits 21,20 Normal operation
d_PL = 0; // bits 13,12 11mA
d_MTLD = 1; // bit 11 enabled
d_CPG = 0; // bit 10 CP setting 1
d_CP3S = 0; // bit 9 Normal
d_PDP = 1; // bit 8 Positive
d_MUXOUT = 1; // bits 7:5 Digital Lock Detect
d_CR = 0; // bit 4 Normal
d_PC = 1; // bits 3,2 Core power 10mA
}
_AD4360_common::~_AD4360_common()
{
}
bool
_AD4360_common::_compute_regs(double refclk_freq, double freq, int &retR,
int &retcontrol, int &retN, double &retfreq)
{
/*
Determine values of R, control, and N registers, along with actual freq.
@param freq: target frequency in Hz
@type freq: float
@returns: (R, control, N, actual_freq)
@rtype: tuple(int, int, int, float)
*/
// Band-specific N-Register Values
//float phdet_freq = _refclk_freq()/d_R_DIV;
double phdet_freq = refclk_freq/d_R_DIV;
double desired_n = round(freq*d_freq_mult/phdet_freq);
double actual_freq = desired_n * phdet_freq;
int B = floor(desired_n/_prescaler());
int A = desired_n - _prescaler()*B;
d_B_DIV = int(B); // bits 20:8
d_A_DIV = int(A); // bit 6:2
//assert db_B_DIV >= db_A_DIV
if(d_B_DIV < d_A_DIV) {
retR = 0;
retcontrol = 0;
retN = 0;
retfreq = 0;
return false;
}
int R = (d_R_RSV<<22) | (d_BSC<<20) | (d_TEST<<19) |
(d_LDP<<18) | (d_ABP<<16) | (d_R_DIV<<2);
int control = _compute_control_reg();
int N = (d_DIVSEL<<23) | (d_DIV2<<22) | (d_CPGAIN<<21) |
(d_B_DIV<<8) | (d_N_RSV<<7) | (d_A_DIV<<2);
retR = R;
retcontrol = control;
retN = N;
retfreq = actual_freq/d_freq_mult;
return true;
}
int
_AD4360_common::_compute_control_reg()
{
int control = (d_P<<22) | (d_PD<<20) | (d_CP2<<17) | (d_CP1<<14)
| (d_PL<<12) | (d_MTLD<<11) | (d_CPG<<10) | (d_CP3S<<9) | (d_PDP<<8)
| (d_MUXOUT<<5) | (d_CR<<4) | (d_PC<<2);
return control;
}
int
_AD4360_common::_refclk_divisor()
{
/*
Return value to stick in REFCLK_DIVISOR register
*/
return 1;
}
int
_AD4360_common::_prescaler()
{
if(d_P == 0) {
return 8;
}
else if(d_P == 1) {
return 16;
}
else {
return 32;
}
}
//----------------------------------------------------------------------
_2200_common::_2200_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2
// Band-specific C-Register values
d_P = 1; // bits 23,22 Div by 16/17
d_CP2 = 7; // bits 19:17
d_CP1 = 7; // bits 16:14
// Band specifc N-Register Values
d_DIVSEL = 0; // bit 23
d_DIV2 = 0; // bit 22
d_CPGAIN = 0; // bit 21
d_freq_mult = 1;
}
double
_2200_common::freq_min()
{
return 2000e6;
}
double
_2200_common::freq_max()
{
return 2400e6;
}
//----------------------------------------------------------------------
_2400_common::_2400_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2
// Band-specific C-Register values
d_P = 1; // bits 23,22 Div by 16/17
d_CP2 = 7; // bits 19:17
d_CP1 = 7; // bits 16:14
// Band specifc N-Register Values
d_DIVSEL = 0; // bit 23
d_DIV2 = 0; // bit 22
d_CPGAIN = 0; // bit 21
d_freq_mult = 1;
}
double
_2400_common::freq_min()
{
return 2300e6;
}
double
_2400_common::freq_max()
{
return 2900e6;
}
//----------------------------------------------------------------------
_1200_common::_1200_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2 DIV by 16 for a 1 MHz phase detector freq
// Band-specific C-Register values
d_P = 1; // bits 23,22 Div by 16/17
d_CP2 = 7; // bits 19:17 1.25 mA
d_CP1 = 7; // bits 16:14 1.25 mA
// Band specifc N-Register Values
d_DIVSEL = 0; // bit 23
d_DIV2 = 1; // bit 22
d_CPGAIN = 0; // bit 21
d_freq_mult = 2;
}
double
_1200_common::freq_min()
{
return 1150e6;
}
double
_1200_common::freq_max()
{
return 1450e6;
}
//-------------------------------------------------------------------------
_1800_common::_1800_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2 DIV by 16 for a 1 MHz phase detector freq
// Band-specific C-Register values
d_P = 1; // bits 23,22 Div by 16/17
d_CP2 = 7; // bits 19:17 1.25 mA
d_CP1 = 7; // bits 16:14 1.25 mA
// Band specifc N-Register Values
d_DIVSEL = 0; // bit 23
d_DIV2 = 0; // bit 22
d_freq_mult = 1;
d_CPGAIN = 0; // bit 21
}
double
_1800_common::freq_min()
{
return 1500e6;
}
double
_1800_common::freq_max()
{
return 2100e6;
}
//-------------------------------------------------------------------------
_900_common::_900_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2 DIV by 16 for a 1 MHz phase detector freq
// Band-specific C-Register values
d_P = 1; // bits 23,22 Div by 16/17
d_CP2 = 7; // bits 19:17 1.25 mA
d_CP1 = 7; // bits 16:14 1.25 mA
// Band specifc N-Register Values
d_DIVSEL = 0; // bit 23
d_DIV2 = 1; // bit 22
d_freq_mult = 2;
d_CPGAIN = 0; // bit 21
}
double
_900_common::freq_min()
{
return 750e6;
}
double
_900_common::freq_max()
{
return 1050e6;
}
//-------------------------------------------------------------------------
_400_common::_400_common()
: _AD4360_common()
{
// Band-specific R-Register Values
d_R_DIV = 16; // bits 15:2
// Band-specific C-Register values
d_P = 0; // bits 23,22 Div by 8/9
d_CP2 = 7; // bits 19:17 1.25 mA
d_CP1 = 7; // bits 16:14 1.25 mA
// Band specifc N-Register Values These are different for TX/RX
d_DIVSEL = 0; // bit 23
d_freq_mult = 2;
d_CPGAIN = 0; // bit 21
}
double
_400_common::freq_min()
{
return 400e6;
}
double
_400_common::freq_max()
{
return 500e6;
}
_400_tx::_400_tx()
: _400_common()
{
d_DIV2 = 1; // bit 22
}
_400_rx::_400_rx()
: _400_common()
{
d_DIV2 = 0; // bit 22 // RX side has built-in DIV2 in AD8348
}
//------------------------------------------------------------
db_flexrf_2200_tx::db_flexrf_2200_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which)
{
d_common = new _2200_common();
}
db_flexrf_2200_tx::~db_flexrf_2200_tx()
{
}
bool
db_flexrf_2200_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_2200_rx::db_flexrf_2200_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which)
{
d_common = new _2200_common();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_2200_rx::~db_flexrf_2200_rx()
{
}
float
db_flexrf_2200_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_2200_rx::gain_max()
{
return usrp()->pga_max()+70;
}
float
db_flexrf_2200_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_flexrf_2200_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_2200_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
//------------------------------------------------------------
db_flexrf_2400_tx::db_flexrf_2400_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which)
{
d_common = new _2400_common();
}
db_flexrf_2400_tx::~db_flexrf_2400_tx()
{
}
bool
db_flexrf_2400_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_2400_rx::db_flexrf_2400_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which)
{
d_common = new _2400_common();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_2400_rx::~db_flexrf_2400_rx()
{
}
float
db_flexrf_2400_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_2400_rx::gain_max()
{
return usrp()->pga_max()+70;
}
float
db_flexrf_2400_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_flexrf_2400_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_2400_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
//------------------------------------------------------------
db_flexrf_1200_tx::db_flexrf_1200_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which)
{
d_common = new _1200_common();
}
db_flexrf_1200_tx::~db_flexrf_1200_tx()
{
}
bool
db_flexrf_1200_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_1200_rx::db_flexrf_1200_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which)
{
d_common = new _1200_common();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_1200_rx::~db_flexrf_1200_rx()
{
}
float
db_flexrf_1200_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_1200_rx::gain_max()
{
return usrp()->pga_max()+70;
}
float
db_flexrf_1200_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_flexrf_1200_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_1200_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
//------------------------------------------------------------
db_flexrf_1800_tx::db_flexrf_1800_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which)
{
d_common = new _1800_common();
}
db_flexrf_1800_tx::~db_flexrf_1800_tx()
{
}
bool
db_flexrf_1800_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_1800_rx::db_flexrf_1800_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which)
{
d_common = new _1800_common();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_1800_rx::~db_flexrf_1800_rx()
{
}
float
db_flexrf_1800_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_1800_rx::gain_max()
{
return usrp()->pga_max()+70;
}
float
db_flexrf_1800_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_flexrf_1800_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_1800_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
//------------------------------------------------------------
db_flexrf_900_tx::db_flexrf_900_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which)
{
d_common = new _900_common();
}
db_flexrf_900_tx::~db_flexrf_900_tx()
{
}
bool
db_flexrf_900_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_900_rx::db_flexrf_900_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which)
{
d_common = new _900_common();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_900_rx::~db_flexrf_900_rx()
{
}
float
db_flexrf_900_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_900_rx::gain_max()
{
return usrp()->pga_max()+70;
}
float
db_flexrf_900_rx::gain_db_per_step()
{
return 0.05;
}
bool
db_flexrf_900_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_900_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
//------------------------------------------------------------
db_flexrf_400_tx::db_flexrf_400_tx(usrp_basic_sptr usrp, int which)
: flexrf_base_tx(usrp, which, POWER_UP)
{
d_common = new _400_tx();
}
db_flexrf_400_tx::~db_flexrf_400_tx()
{
}
bool
db_flexrf_400_tx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}
db_flexrf_400_rx::db_flexrf_400_rx(usrp_basic_sptr usrp, int which)
: flexrf_base_rx(usrp, which, POWER_UP)
{
d_common = new _400_rx();
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
}
db_flexrf_400_rx::~db_flexrf_400_rx()
{
}
float
db_flexrf_400_rx::gain_min()
{
return usrp()->pga_min();
}
float
db_flexrf_400_rx::gain_max()
{
return usrp()->pga_max()+45;
}
float
db_flexrf_400_rx::gain_db_per_step()
{
return 0.035;
}
bool
db_flexrf_400_rx::i_and_q_swapped()
{
return true;
}
bool
db_flexrf_400_rx::_compute_regs(double freq, int &retR, int &retcontrol,
int &retN, double &retfreq)
{
return d_common->_compute_regs(_refclk_freq(), freq, retR,
retcontrol, retN, retfreq);
}