libusrp/host/lib/db_dtt768.cc

301 lines
5.6 KiB
C++

/* -*- c++ -*- */
//
// Copyright 2008,2009 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <usrp/db_dtt768.h>
#include <db_base_impl.h>
int
control_byte_4()
{
int C = 0; // Charge Pump Current, no info on how to choose
int R = 4; // 125 kHz fref
// int ATP = 7; // Disable internal AGC
return (0x80 | C<<5 | R);
}
int
control_byte_5(float freq, int agcmode = 1)
{
if(agcmode) {
if(freq < 150e6) {
return 0x3B;
}
else if(freq < 420e6) {
return 0x7E;
}
else {
return 0xB7;
}
}
else {
if(freq < 150e6) {
return 0x39;
}
else if(freq < 420e6) {
return 0x7C;
}
else {
return 0xB5;
}
}
}
int
control_byte_6()
{
int ATC = 0; // AGC time constant = 100ms, 1 = 3S
int IFE = 1; // IF AGC amplifier enable
int AT = 0; // AGC control, ???
return (ATC << 5 | IFE << 4 | AT);
}
int
control_byte_7()
{
int SAS = 1; // SAW Digital mode
int AGD = 1; // AGC disable
int ADS = 0; // AGC detector into ADC converter
int T = 0; // Test mode, undocumented
return (SAS << 7 | AGD << 5 | ADS << 4 | T);
}
db_dtt768::db_dtt768(usrp_basic_sptr _usrp, int which)
: db_base(_usrp, which)
{
/*
* Control custom DTT76803-based daughterboard.
*
* @param usrp: instance of usrp.source_c
* @param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
* @type which: int
*/
if(d_which == 0) {
d_i2c_addr = 0x60;
}
else {
d_i2c_addr = 0x62;
}
d_IF = 44e6;
d_f_ref = 125e3;
d_inverted = false;
set_gain((gain_min() + gain_max()) / 2.0);
bypass_adc_buffers(false);
}
db_dtt768::~db_dtt768()
{
}
float
db_dtt768::gain_min()
{
return 0;
}
float
db_dtt768::gain_max()
{
return 115;
}
float
db_dtt768::gain_db_per_step()
{
return 1;
}
bool
db_dtt768::set_gain(float gain)
{
assert(gain>=0 && gain<=115);
float rfgain, ifgain, pgagain;
if(gain > 60) {
rfgain = 60;
gain = gain - 60;
}
else {
rfgain = gain;
gain = 0;
}
if(gain > 35) {
ifgain = 35;
gain = gain - 35;
}
else {
ifgain = gain;
gain = 0;
}
pgagain = gain;
_set_rfagc(rfgain);
_set_ifagc(ifgain);
_set_pga(pgagain);
return true;
}
double
db_dtt768::freq_min()
{
return 44e6;
}
double
db_dtt768::freq_max()
{
return 900e6;
}
struct freq_result_t
db_dtt768::set_freq(double target_freq)
{
/*
* @returns (ok, actual_baseband_freq) where:
* ok is True or False and indicates success or failure,
* actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
*/
freq_result_t ret = {false, 0.0};
if(target_freq < freq_min() || target_freq > freq_max()) {
return ret;
}
double target_lo_freq = target_freq + d_IF; // High side mixing
int divisor = (int)(0.5+(target_lo_freq / d_f_ref));
double actual_lo_freq = d_f_ref*divisor;
if((divisor & ~0x7fff) != 0) { // must be 15-bits or less
return ret;
}
// build i2c command string
std::vector<int> buf(6);
buf[0] = (divisor >> 8) & 0xff; // DB1
buf[1] = divisor & 0xff; // DB2
buf[2] = control_byte_4();
buf[3] = control_byte_5(target_freq);
buf[4] = control_byte_6();
buf[5] = control_byte_7();
bool ok = usrp()->write_i2c(d_i2c_addr, int_seq_to_str (buf));
d_freq = actual_lo_freq - d_IF;
ret.ok = ok;
ret.baseband_freq = actual_lo_freq;
return ret;
}
bool
db_dtt768::is_quadrature()
{
/*
* Return True if this board requires both I & Q analog channels.
*
* This bit of info is useful when setting up the USRP Rx mux register.
*/
return false;
}
bool
db_dtt768::spectrum_inverted()
{
/*
* The 43.75 MHz version is inverted
*/
return d_inverted;
}
bool
db_dtt768::set_bw(float bw)
{
/*
* Choose the SAW filter bandwidth, either 7MHz or 8MHz)
*/
d_bw = bw;
set_freq(d_freq);
return true; // FIXME: propagate set_freq result
}
void
db_dtt768::_set_rfagc(float gain)
{
assert(gain <= 60 && gain >= 0);
// FIXME this has a 0.5V step between gain = 60 and gain = 59.
// Why are there two cases instead of a single linear case?
float voltage;
if(gain == 60) {
voltage = 4;
}
else {
voltage = gain/60.0 * 2.25 + 1.25;
}
int dacword = (int)(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 1, dacword);
}
void
db_dtt768::_set_ifagc(float gain)
{
assert(gain <= 35 && gain >= 0);
float voltage = gain/35.0 * 2.1 + 1.4;
int dacword = (int)(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 0, dacword);
}
void
db_dtt768::_set_pga(float pga_gain)
{
assert(pga_gain >=0 && pga_gain <=20);
if(d_which == 0) {
usrp()->set_pga (0, pga_gain);
}
else {
usrp()->set_pga (2, pga_gain);
}
}