303 lines
11 KiB
Executable File

#!/usr/bin/env python3
# Copyright 2005,2007,2011 Free Software Foundation, Inc.
# This file is part of GNU Radio
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
import osmosdr
from gnuradio import gr, eng_notation
from gnuradio import blocks
from gnuradio import audio
from gnuradio import filter
from gnuradio import fft
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
import struct
import threading
from datetime import datetime
sys.stderr.write("Warning: this may have issues on some machines+Python version combinations to seg fault due to the callback in bin_statitics.\n\n")
class ThreadClass(threading.Thread):
def run(self):
class tune(gr.feval_dd):
This class allows C++ code to callback into python.
def __init__(self, tb):
self.tb = tb
def eval(self, ignore):
This method is called from blocks.bin_statistics_f when it wants
to change the center frequency. This method tunes the front
end to the new center frequency, and returns the new frequency
as its result.
# We use this try block so that if something goes wrong
# from here down, at least we'll have a prayer of knowing
# what went wrong. Without this, you get a very
# mysterious:
# terminate called after throwing an instance of
# 'Swig::DirectorMethodException' Aborted
# message on stderr. Not exactly helpful ;)
new_freq = self.tb.set_next_freq()
# wait until msgq is empty before continuing
#print("msgq full, holding..")
return new_freq
except Exception as e:
print("tune: Exception: ", e)
class parse_msg(object):
def __init__(self, msg):
self.center_freq = msg.arg1()
self.vlen = int(msg.arg2())
assert(msg.length() == self.vlen * gr.sizeof_float)
# FIXME consider using NumPy array
t = msg.to_string()
self.raw_data = t = struct.unpack('%df' % (self.vlen,), t)
class my_top_block(gr.top_block):
def __init__(self):
usage = "usage: %prog [options] min_freq max_freq"
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option("-a", "--args", type="string", default="",
help="Device args [default=%default]")
parser.add_option("-A", "--antenna", type="string", default=None,
help="Select antenna where appropriate")
parser.add_option("-s", "--samp-rate", type="eng_float", default=None,
help="Set sample rate (bandwidth), minimum by default")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="Set gain in dB (default is midpoint)")
parser.add_option("", "--tune-delay", type="eng_float",
default=0.25, metavar="SECS",
help="Time to delay (in seconds) after changing frequency [default=%default]")
parser.add_option("", "--dwell-delay", type="eng_float",
default=0.25, metavar="SECS",
help="Time to dwell (in seconds) at a given frequency [default=%default]")
parser.add_option("-b", "--channel-bandwidth", type="eng_float",
default=6.25e3, metavar="Hz",
help="Channel bandwidth of fft bins in Hz [default=%default]")
parser.add_option("-q", "--squelch-threshold", type="eng_float",
default=None, metavar="dB",
help="Squelch threshold in dB [default=%default]")
parser.add_option("-F", "--fft-size", type="int", default=None,
help="Specify number of FFT bins [default=samp_rate/channel_bw]")
parser.add_option("", "--real-time", action="store_true", default=False,
help="Attempt to enable real-time scheduling")
(options, args) = parser.parse_args()
if len(args) != 2:
self.channel_bandwidth = options.channel_bandwidth
self.min_freq = eng_notation.str_to_num(args[0])
self.max_freq = eng_notation.str_to_num(args[1])
if self.min_freq > self.max_freq:
# swap them
self.min_freq, self.max_freq = self.max_freq, self.min_freq
if not options.real_time:
realtime = False
# Attempt to enable realtime scheduling
r = gr.enable_realtime_scheduling()
if r == gr.RT_OK:
realtime = True
realtime = False
print("Note: failed to enable realtime scheduling")
# build graph
self.u = osmosdr.source(options.args)
except RuntimeError:
print("Source has no sample rates (wrong device arguments?).")
# Set the antenna
self.u.set_antenna(options.antenna, 0)
if options.samp_rate is None:
options.samp_rate = self.u.get_sample_rates().start()
self.usrp_rate = usrp_rate = self.u.get_sample_rate()
if options.fft_size is None:
self.fft_size = int(self.usrp_rate/self.channel_bandwidth)
self.fft_size = options.fft_size
self.squelch_threshold = options.squelch_threshold
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
mywindow = filter.window.blackmanharris(self.fft_size)
ffter = fft.fft_vcc(self.fft_size, True, mywindow, True)
power = 0
for tap in mywindow:
power += tap*tap
c2mag = blocks.complex_to_mag_squared(self.fft_size)
# FIXME the log10 primitive is dog slow
#log = blocks.nlog10_ff(10, self.fft_size,
# -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))
# Set the freq_step to 75% of the actual data throughput.
# This allows us to discard the bins on both ends of the spectrum.
self.freq_step = self.nearest_freq((0.75 * self.usrp_rate), self.channel_bandwidth)
self.min_center_freq = self.min_freq + (self.freq_step/2)
nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)
self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)
self.next_freq = self.min_center_freq
tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames
dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames
self.msgq = gr.msg_queue(1)
self._tune_callback = tune(self) # hang on to this to keep it from being GC'd
stats = blocks.bin_statistics_f(self.fft_size, self.msgq,
self._tune_callback, tune_delay,
# FIXME leave out the log10 until we speed it up
#self.connect(self.u, s2v, ffter, c2mag, log, stats)
self.connect(self.u, s2v, ffter, c2mag, stats)
if options.gain is None:
# if no gain was specified, use the mid-point in dB
g = self.u.get_gain_range()
options.gain = float(g.start()+g.stop())/2.0
print("gain =", options.gain)
def set_next_freq(self):
target_freq = self.next_freq
self.next_freq = self.next_freq + self.freq_step
if self.next_freq >= self.max_center_freq:
self.next_freq = self.min_center_freq
if not self.set_freq(target_freq):
print("Failed to set frequency to", target_freq)
return target_freq
def set_freq(self, target_freq):
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
r = self.u.set_center_freq(target_freq)
if r:
return True
return False
def set_gain(self, gain):
def nearest_freq(self, freq, channel_bandwidth):
freq = round(freq / channel_bandwidth, 0) * channel_bandwidth
return freq
def main_loop(tb):
def bin_freq(i_bin, center_freq):
#hz_per_bin = tb.usrp_rate / tb.fft_size
freq = center_freq - (tb.usrp_rate / 2) + (tb.channel_bandwidth * i_bin)
#print("freq original:",freq)
#freq = nearest_freq(freq, tb.channel_bandwidth)
#print("freq rounded:",freq)
return freq
bin_start = int(tb.fft_size * ((1 - 0.75) / 2))
bin_stop = int(tb.fft_size - bin_start)
while 1:
# Get the next message sent from the C++ code (blocking call).
# It contains the center frequency and the mag squared of the fft
m = parse_msg(tb.msgq.delete_head())
# m.center_freq is the center frequency at the time of capture
# are the mag_squared of the fft output
# m.raw_data is a string that contains the binary floats.
# You could write this as binary to a file.
for i_bin in range(bin_start, bin_stop):
center_freq = m.center_freq
freq = bin_freq(i_bin, center_freq)
#noise_floor_db = -174 + 10*math.log10(tb.channel_bandwidth)
noise_floor_db = 10*math.log10(min(
power_db = 10*math.log10([i_bin]/tb.usrp_rate) - noise_floor_db
if (power_db > tb.squelch_threshold) and (freq >= tb.min_freq) and (freq <= tb.max_freq):
print(, "center_freq", center_freq, "freq", freq, "power_db", power_db, "noise_floor_db", noise_floor_db)
if __name__ == '__main__':
t = ThreadClass()
tb = my_top_block()
except KeyboardInterrupt: