gr-gsm/lib/decoding/openbts/ViterbiR204.cpp

302 lines
9.1 KiB
C++

/*
* Copyright 2008, 2009, 2014 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*/
#include "BitVector.h"
#include "ViterbiR204.h"
#include <iostream>
#include <stdio.h>
#include <sstream>
#include <string.h>
using namespace std;
/**
Apply a Galois polymonial to a binary seqeunce.
@param val The input sequence.
@param poly The polynomial.
@param order The order of the polynomial.
@return Single-bit result.
*/
unsigned ViterbiBase::applyPoly(uint64_t val, uint64_t poly, unsigned order)
{
uint64_t prod = val & poly;
unsigned sum = prod;
for (unsigned i=1; i<order; i++) sum ^= prod>>i;
return sum & 0x01;
}
unsigned ViterbiBase::applyPoly(uint64_t val, uint64_t poly)
{
uint64_t prod = val & poly;
prod = (prod ^ (prod >> 32));
prod = (prod ^ (prod >> 16));
prod = (prod ^ (prod >> 8));
prod = (prod ^ (prod >> 4));
prod = (prod ^ (prod >> 2));
prod = (prod ^ (prod >> 1));
return prod & 0x01;
}
//void BitVector::encode(const ViterbiR2O4& coder, BitVector& target)
void ViterbiR2O4::encode(const BitVector& in, BitVector& target) const
{
const ViterbiR2O4& coder = *this;
size_t sz = in.size();
assert(sz*coder.iRate() == target.size());
// Build a "history" array where each element contains the full history.
uint32_t history[sz];
uint32_t accum = 0;
for (size_t i=0; i<sz; i++) {
accum = (accum<<1) | in.bit(i);
history[i] = accum;
}
// Look up histories in the pre-generated state table.
char *op = target.begin();
for (size_t i=0; i<sz; i++) {
unsigned index = coder.cMask() & history[i];
for (unsigned g=0; g<coder.iRate(); g++) {
*op++ = coder.stateTable(g,index);
}
}
}
ViterbiR2O4::ViterbiR2O4()
{
assert(mDeferral < 32);
// (pat) The generator polynomials are: G0 = 1 + D**3 + D**4; and G1 = 1 + D + D**3 + D**4
mCoeffs[0] = 0x019; // G0 = D**4 + D**3 + 1; represented as binary 11001,
mCoeffs[1] = 0x01b; // G1 = + D**4 + D**3 + D + 1; represented as binary 11011
computeStateTables(0);
computeStateTables(1);
computeGeneratorTable();
}
void ViterbiR2O4::initializeStates()
{
for (unsigned i=0; i<mIStates; i++) vitClear(mSurvivors[i]);
for (unsigned i=0; i<mNumCands; i++) vitClear(mCandidates[i]);
}
// (pat) The state machine has 16 states.
// Each state has two possible next states corresponding to 0 or 1 inputs to original encoder.
// which are saved in mStateTable in consecutive locations.
// In other words the mStateTable second index is ((current_state <<1) + encoder_bit)
// g is 0 or 1 for the first or second bit of the encoded stream, ie, the one we are decoding.
void ViterbiR2O4::computeStateTables(unsigned g)
{
assert(g<mIRate);
for (unsigned state=0; state<mIStates; state++) {
// 0 input
uint32_t inputVal = state<<1;
mStateTable[g][inputVal] = applyPoly(inputVal, mCoeffs[g], mOrder+1);
// 1 input
inputVal |= 1;
mStateTable[g][inputVal] = applyPoly(inputVal, mCoeffs[g], mOrder+1);
}
}
void ViterbiR2O4::computeGeneratorTable()
{
for (unsigned index=0; index<mIStates*2; index++) {
mGeneratorTable[index] = (mStateTable[0][index]<<1) | mStateTable[1][index];
}
}
void ViterbiR2O4::branchCandidates()
{
// Branch to generate new input states.
const vCand *sp = mSurvivors;
for (unsigned i=0; i<mNumCands; i+=2) {
// extend and suffix
const uint32_t iState0 = (sp->iState) << 1; // input state for 0
const uint32_t iState1 = iState0 | 0x01; // input state for 1
const uint32_t oStateShifted = (sp->oState) << mIRate; // shifted output (by 2)
const float cost = sp->cost;
int bec = sp->bitErrorCnt;
sp++;
// 0 input extension
mCandidates[i].cost = cost;
// mCMask is the low 5 bits, ie, full width of mGeneratorTable.
mCandidates[i].oState = oStateShifted | mGeneratorTable[iState0 & mCMask];
mCandidates[i].iState = iState0;
mCandidates[i].bitErrorCnt = bec;
// 1 input extension
mCandidates[i+1].cost = cost;
mCandidates[i+1].oState = oStateShifted | mGeneratorTable[iState1 & mCMask];
mCandidates[i+1].iState = iState1;
mCandidates[i+1].bitErrorCnt = bec;
}
}
void ViterbiR2O4::getSoftCostMetrics(const uint32_t inSample, const float *matchCost, const float *mismatchCost)
{
const float *cTab[2] = {matchCost,mismatchCost};
for (unsigned i=0; i<mNumCands; i++) {
vCand& thisCand = mCandidates[i];
// We examine input bits 2 at a time for a rate 1/2 coder.
// (pat) mismatched will end up with bits in it for previous transitions,
// but we only use the bottom two bits of mismatched so it is ok.
const unsigned mismatched = inSample ^ (thisCand.oState);
// (pat) TODO: Are these two tests swapped?
thisCand.cost += cTab[mismatched&0x01][1] + cTab[(mismatched>>1)&0x01][0];
if (mismatched & 1) { thisCand.bitErrorCnt++; }
if (mismatched & 2) { thisCand.bitErrorCnt++; }
}
}
void ViterbiR2O4::pruneCandidates()
{
const vCand* c1 = mCandidates; // 0-prefix
const vCand* c2 = mCandidates + mIStates; // 1-prefix
for (unsigned i=0; i<mIStates; i++) {
if (c1[i].cost < c2[i].cost) mSurvivors[i] = c1[i];
else mSurvivors[i] = c2[i];
}
}
const ViterbiR2O4::vCand& ViterbiR2O4::minCost() const
{
int minIndex = 0;
float minCost = mSurvivors[0].cost;
for (unsigned i=1; i<mIStates; i++) {
const float thisCost = mSurvivors[i].cost;
if (thisCost>=minCost) continue;
minCost = thisCost;
minIndex=i;
}
return mSurvivors[minIndex];
}
const ViterbiR2O4::vCand* ViterbiR2O4::vstep(uint32_t inSample, const float *probs, const float *iprobs, bool isNotTailBits)
{
branchCandidates();
// (pat) tail bits do not affect cost or error bit count of any branch.
if (isNotTailBits) getSoftCostMetrics(inSample,probs,iprobs);
pruneCandidates();
return &minCost();
}
void ViterbiR2O4::decode(const SoftVector &in, BitVector& target)
{
ViterbiR2O4& decoder = *this;
const size_t sz = in.size();
const unsigned oSize = in.size() / decoder.iRate();
const unsigned deferral = decoder.deferral();
const size_t ctsz = sz + deferral*decoder.iRate();
assert(sz <= decoder.iRate()*target.size());
// Build a "history" array where each element contains the full history.
// (pat) We only use every other history element, so why are we setting them?
uint32_t history[ctsz];
{
BitVector bits = in.sliced();
uint32_t accum = 0;
for (size_t i=0; i<sz; i++) {
accum = (accum<<1) | bits.bit(i);
history[i] = accum;
}
// Repeat last bit at the end.
// (pat) TODO: really? Does this matter?
for (size_t i=sz; i<ctsz; i++) {
accum = (accum<<1) | (accum & 0x01);
history[i] = accum;
}
}
// Precompute metric tables.
float matchCostTable[ctsz];
float mismatchCostTable[ctsz];
{
const float *dp = in.begin();
for (size_t i=0; i<sz; i++) {
// pVal is the probability that a bit is correct.
// ipVal is the probability that a bit is incorrect.
float pVal = dp[i];
if (pVal>0.5F) pVal = 1.0F-pVal;
float ipVal = 1.0F-pVal;
// This is a cheap approximation to an ideal cost function.
if (pVal<0.01F) pVal = 0.01;
if (ipVal<0.01F) ipVal = 0.01;
matchCostTable[i] = 0.25F/ipVal;
mismatchCostTable[i] = 0.25F/pVal;
}
// pad end of table with unknowns
// Note that these bits should not contribute to Bit Error Count.
for (size_t i=sz; i<ctsz; i++) {
matchCostTable[i] = 0.5F;
mismatchCostTable[i] = 0.5F;
}
}
{
decoder.initializeStates();
// Each sample of history[] carries its history.
// So we only have to process every iRate-th sample.
const unsigned step = decoder.iRate();
// input pointer
const uint32_t *ip = history + step - 1;
// output pointers
char *op = target.begin();
const char *const opt = target.end(); // (pat) Not right if target is larger than needed; should be: op + sz/2;
// table pointers
const float* match = matchCostTable;
const float* mismatch = mismatchCostTable;
size_t oCount = 0;
const ViterbiR2O4::vCand *minCost = NULL;
while (op<opt) {
// Viterbi algorithm
assert(match-matchCostTable<(float)sizeof(matchCostTable)/sizeof(matchCostTable[0])-1);
assert(mismatch-mismatchCostTable<(float)sizeof(mismatchCostTable)/sizeof(mismatchCostTable[0])-1);
minCost = decoder.vstep(*ip, match, mismatch, oCount < oSize);
ip += step;
match += step;
mismatch += step;
// output
if (oCount>=deferral) *op++ = (minCost->iState >> deferral)&0x01;
oCount++;
}
// Dont think minCost == NULL can happen.
mBitErrorCnt = minCost ? minCost->bitErrorCnt : 0;
}
}
// vim: ts=4 sw=4