/* -*- c++ -*- */ /* @file * @author (C) 2016 by Piotr Krysik * @section LICENSE * * Gr-gsm is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * Gr-gsm is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with gr-gsm; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "controlled_fractional_resampler_cc_impl.h" #include namespace gr { namespace gsm { controlled_fractional_resampler_cc::sptr controlled_fractional_resampler_cc::make(float phase_shift, float resamp_ratio) { return gnuradio::get_initial_sptr (new controlled_fractional_resampler_cc_impl(phase_shift, resamp_ratio)); } controlled_fractional_resampler_cc_impl::controlled_fractional_resampler_cc_impl (float phase_shift, float resamp_ratio) : block("controlled_fractional_resampler_cc", io_signature::make(1, 1, sizeof(gr_complex)), io_signature::make(1, 1, sizeof(gr_complex))), d_mu(phase_shift), d_mu_inc(resamp_ratio), d_resamp(new mmse_fir_interpolator_cc()) { this->set_tag_propagation_policy(TPP_DONT); if(resamp_ratio <= 0) throw std::out_of_range("resampling ratio must be > 0"); if(phase_shift < 0 || phase_shift > 1) throw std::out_of_range("phase shift ratio must be > 0 and < 1"); set_relative_rate(1.0 / resamp_ratio); } controlled_fractional_resampler_cc_impl::~controlled_fractional_resampler_cc_impl() { delete d_resamp; } void controlled_fractional_resampler_cc_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for(unsigned i=0; i < ninputs; i++) { ninput_items_required[i] = (int)ceil((noutput_items * d_mu_inc) + d_resamp->ntaps()); } } int controlled_fractional_resampler_cc_impl::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex*)input_items[0]; gr_complex *out = (gr_complex*)output_items[0]; uint64_t processed_in = 0; //input samples processed in the last call to resample function uint64_t processed_in_sum = 0; //input samples processed during a whole call to general_work function uint64_t produced_out_sum = 0; //output samples produced during a whole call to general_work function std::vector tags; pmt::pmt_t key = pmt::string_to_symbol("set_resamp_ratio"); get_tags_in_range(tags, 0, nitems_read(0), nitems_read(0)+ninput_items[0]); bool out_buffer_full = false; for(std::vector::iterator i_tag = tags.begin(); i_tag < tags.end(); i_tag++) { uint64_t tag_offset_rel = i_tag->offset - nitems_read(0); if(pmt::symbol_to_string(i_tag->key) == "set_resamp_ratio") { uint64_t samples_to_produce = static_cast(round(static_cast(tag_offset_rel-processed_in_sum)/d_mu_inc)); if((samples_to_produce + produced_out_sum) > noutput_items) { samples_to_produce = noutput_items - produced_out_sum; out_buffer_full = true; } processed_in = resample(in, processed_in_sum, out, produced_out_sum, samples_to_produce); processed_in_sum = processed_in_sum + processed_in; produced_out_sum = produced_out_sum + samples_to_produce; if(out_buffer_full) { break; } else { add_item_tag(0, produced_out_sum + nitems_written(0), i_tag->key, i_tag->value); set_resamp_ratio(pmt::to_double(i_tag->value)); } } else { uint64_t out_samples_to_tag = round(static_cast(tag_offset_rel-processed_in_sum)/d_mu_inc); if( (out_samples_to_tag + produced_out_sum) < noutput_items) { add_item_tag(0, produced_out_sum + out_samples_to_tag + nitems_written(0), i_tag->key, i_tag->value); } } } if(!out_buffer_full) { processed_in = resample(in, processed_in_sum, out, produced_out_sum, (noutput_items-produced_out_sum)); processed_in_sum = processed_in_sum + processed_in; } consume_each(processed_in_sum); return noutput_items; } inline uint64_t controlled_fractional_resampler_cc_impl::resample(const gr_complex *in, uint64_t first_in_sample, gr_complex *out, uint64_t first_out_sample, uint64_t samples_to_produce) { int ii = first_in_sample; int oo = first_out_sample; while(oo < (first_out_sample+samples_to_produce)) //produce samples_to_produce number of samples { out[oo++] = d_resamp->interpolate(&in[ii], d_mu); double s = d_mu + d_mu_inc; double f = floor(s); int incr = (int)f; d_mu = s - f; ii += incr; } return ii-first_in_sample; //number of input samples processed } float controlled_fractional_resampler_cc_impl::mu() const { return d_mu; } float controlled_fractional_resampler_cc_impl::resamp_ratio() const { return d_mu_inc; } void controlled_fractional_resampler_cc_impl::set_mu(float mu) { d_mu = mu; } void controlled_fractional_resampler_cc_impl::set_resamp_ratio(float resamp_ratio) { d_mu_inc = resamp_ratio; set_relative_rate(1.0 / resamp_ratio); } } /* namespace gsm */ } /* namespace gr */