ais-tx/gr-aistx/lib/AisEncoder_impl.cc

488 lines
14 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 <+YOU OR YOUR COMPANY+>.
* Copyright 2015 Harald Welte <hwelet@sysmocom.de>.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include <gnuradio/block.h>
#include <gnuradio/blocks/pdu.h>
#include "AisEncoder_impl.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LEN_PREAMBLE 24
#define LEN_START 8
#define LEN_CRC 16
#define LEN_FRAME_MAX 256
#define PREAMBLE_MARK 101010101010101010101010 (24 bits)
#define START_MARK 01111110 (8 bits)
#define PREAMBLE_ASC "\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0"
#define START_MARK_ASC "\0\1\1\1\1\1\1\0"
#define DEBUG 0
namespace gr {
namespace AISTX {
AisEncoder::sptr
AisEncoder::make(bool enable_NRZI, unsigned int num_lead_in_syms)
{
return gnuradio::get_initial_sptr
(new AisEncoder_impl(enable_NRZI, num_lead_in_syms));
}
/*
* The private constructor
*/
AisEncoder_impl::AisEncoder_impl(bool enable_NRZI, unsigned int num_lead_in_syms)
: block("AIS Payload to Symbols Encoder",
io_signature::make(0, 0, 0),
io_signature::make(0, 0, 0)),
d_enable_NRZI(enable_NRZI),
d_num_lead_in_syms(num_lead_in_syms)
{
message_port_register_out(pmt::mp("pdus"));
message_port_register_in(pmt::mp("pdus"));
set_msg_handler(pmt::mp("pdus"), boost::bind(&AisEncoder_impl::handle_msg, this, _1));
if (d_num_lead_in_syms) {
/* round up to the next byte boundary */
if (d_num_lead_in_syms % 8)
d_num_lead_in_syms += d_num_lead_in_syms % 8;
/* empty vector for lead-in */
d_lead_in_bytes = pmt::make_u8vector(d_num_lead_in_syms/8, 0);
}
}
/*
* Our virtual destructor.
*/
AisEncoder_impl::~AisEncoder_impl()
{
}
void AisEncoder_impl::dump_buffer(const char *b, int buffer_size)
{
int k = 0;
for(; k < buffer_size; k++)
printf("%d", b[k]);
printf("\n");
}
// buffer must have length >= sizeof(int) + 1
// Write to the buffer backwards so that the binary representation
// is in the correct order i.e. the LSB is on the far right
// instead of the far left of the printed string
char * AisEncoder_impl::int2bin(int a, char *buffer, int buf_size) {
buffer += (buf_size - 1);
for (int i = 31; i >= 0; i--) {
*buffer-- = (a & 1) + '0';
a >>= 1;
}
return buffer;
}
// staffing function
int AisEncoder_impl::stuff (const char *in, char *out, int l_in)
{
int i=0, j=0, consecutives=0, l_out=0;
while(i<l_in) {
if (in[i] & 0x01)
consecutives++;
else
consecutives=0;
out[j++]=in[i++];
l_out++;
if (consecutives==5) {
out[j++]=0x0;
l_out++;
consecutives=0;
}
}
return l_out;
}
void AisEncoder_impl::pack (int orig_ascii, char *ret, int bits_per_byte)
{
// go down to fit in 6 bits
int ascii = orig_ascii-48;
if(ascii > 39)
ascii -= 8;
/* if (DEBUG)*/
/* printf ("\nAscii: orig=%d scaled=%d\n", orig_ascii, ascii);*/
char binary[6];
int y = 0;
if (ascii==0)
memset (binary, 0x0, 6);
else
while (ascii!=1) {
if (ascii % 2 == 0)
binary[y] = 0x0;
else if (ascii % 2 == 1)
binary[y] = 0x1;
ascii /= 2;
y++;
}
if (ascii==1) {
binary[y] = 0x1;
y++;
}
if(y < 6) { // fill in space
for(; y < 6; y++)
binary[y] = 0x0;
}
for(y = 0; y < 6; y++) // reverse*/
ret[y] = binary[5 - y];
ret[y]='\0';
/* if (DEBUG)*/
/* printf("Binary = %s, Ret = %s\n", binary, ret );*/
}
void AisEncoder_impl::nrz_to_nrzi(char *data, int length)
{
unsigned short d_prev_nrzi_bit = 0;
unsigned short nrz_bit, nrzi_bit;
for (int i = 0; i < length; i++)
{
nrz_bit = data[i];
if(nrz_bit == 0)
{
nrzi_bit = d_prev_nrzi_bit ^ 1;
}
else
{
nrzi_bit = d_prev_nrzi_bit;
}
data[i] = nrzi_bit;
d_prev_nrzi_bit = nrzi_bit;
}
}
void AisEncoder_impl::reverse_bit_order(char *data, int length)
{
int tmp = 0;
for(int i = 0; i < length/8; i++) {
for(int j = 0; j < 4; j++) {
tmp = data[i*8 + j];
data[i*8 + j] = data[i*8 + 7-j];
data[i*8 + 7-j] = tmp;
}
}
}
unsigned long AisEncoder_impl::unpack(char *buffer, int start, int length)
{
unsigned long ret = 0;
for(int i = start; i < (start+length); i++) {
ret <<= 1;
ret |= (buffer[i] & 0x01);
}
return ret;
}
void AisEncoder_impl::compute_crc(char *buffer, char *ret, unsigned int len) // Calculates CRC-checksum from unpacked data
{
static const unsigned short crc_itu16_table[] =
{
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
};
int crc=0xffff;
int i = 0;
char temp[8];
int datalen = len/8;
// // go to char (this can be optimized)
// printf ("INPUT:");
// for(int j=0;j<len;j++) {
// buffer[j]=buffer[j]+0x30;
// printf ("%x", buffer[j]); }
// printf ("\n");
char data[256];
for(int j=0;j<datalen;j++) //this unpacks the data in preparation for calculating CRC
{
data[j] = unpack(buffer, j*8, 8);
}
for (i = 0; i < datalen; i++)
crc = (crc >> 8) ^ crc_itu16_table[(crc ^ data[i]) & 0xFF];
crc=(crc & 0xFFFF)^0xFFFF;
// printf("%X\n", crc);
int2bin(crc, ret, 16);
// printf ("CRC ASCII1 = %s\n", ret);
//dump_buffer(ret, 16);
reverse_bit_order (ret, 16); //revert crc bit in byte
int2bin(crc, ret, 16);
strncpy(temp,ret+8,8); //swap the two crc byte
strncpy(ret+8,ret,8);
strncpy(ret,temp,8);
// back to binary
for(int j=0;j<16;j++)
ret[j]=ret[j]-0x30;
// if (DEBUG) {
// printf("CRC 2=\n");
// dump_buffer(ret,16);
// }
}
void AisEncoder_impl::byte_packing(char *input_frame, unsigned char *out_byte, unsigned int len) {
for (int i = 0; i < len/8; i++) {
char tmp[8];
memcpy(tmp, &input_frame[i*8], 8);
out_byte[i] = tmp[0]*128+tmp[1]*64+tmp[2]*32+tmp[3]*16+tmp[4]*8+tmp[5]*4+tmp[6]*2+tmp[7];
//out_byte[i] = input_frame[i*8]*128+input_frame[i*8+1]*64+input_frame[i*8+2]*32+input_frame[i*8+3]*16+input_frame[i*8+4]*8+input_frame[i*8+5]*4+input_frame[i*8+6]*2+input_frame[i*8+7];
// printf ("%X", out_byte[i]);
}
// printf("\n");
}
void
AisEncoder_impl::handle_msg(pmt::pmt_t pdu)
{
pmt::pmt_t meta = pmt::car(pdu);
pmt::pmt_t inpdu_bytes = pmt::cdr(pdu);
if (pmt::is_null(meta)) {
meta = pmt::make_dict();
} else if (!pmt::is_dict(meta)) {
throw std::runtime_error("received non PDU input");
}
if (!pmt::is_u8vector(inpdu_bytes))
throw std::runtime_error("This block requires u8 vector as input");
size_t io(0);
const uint8_t *sentence = (const uint8_t *) uniform_vector_elements(inpdu_bytes, io);
char *payload;
unsigned short REMAINDER_TO_EIGHT, PADDING_TO_EIGHT; // to pad the payload to a multiple of 8
unsigned int len_payload = pmt::length(inpdu_bytes);
// IMPORTANT
REMAINDER_TO_EIGHT = len_payload % 8;
PADDING_TO_EIGHT = 8 - REMAINDER_TO_EIGHT;
payload = (char *) malloc(len_payload + PADDING_TO_EIGHT + LEN_CRC);
// nb. It comes in in ASCII
int j = 0;
for (int i = 0; i < len_payload; i++) {
switch (sentence[i]) {
case '1':
case '0':
payload[j++] = sentence[i]-'0';
break;
default:
/* skip all bad symbols */
break;
}
}
len_payload = j;
/* we don't want to send empty messages */
if (len_payload == 0) {
free(payload);
return;
}
// IMPORTANT
REMAINDER_TO_EIGHT = len_payload % 8;
PADDING_TO_EIGHT = 8 - REMAINDER_TO_EIGHT;
if (REMAINDER_TO_EIGHT>0) {
printf("Detected a payload which is *not* multiple of 8 (%d bits). Padding with %d bits to %d\n", len_payload, PADDING_TO_EIGHT, len_payload + PADDING_TO_EIGHT);
memset(payload + len_payload, 0x0, PADDING_TO_EIGHT);
len_payload += PADDING_TO_EIGHT; // update PAYLOAD LENGHT
}
dump_buffer(payload, len_payload);
// crc
char crc[16]; // 2 gnuradio bytes of CRC
char input_crc[len_payload];
memcpy(input_crc, payload, len_payload);
compute_crc(input_crc, crc, len_payload);
memcpy(payload+len_payload, crc, LEN_CRC);
// reverse
reverse_bit_order(payload, len_payload+LEN_CRC);
// stuffing (payload + crc)
if (len_payload <= 168) {
char stuffed_payload[LEN_FRAME_MAX];
int len_stuffed_payload = stuff(payload, stuffed_payload, len_payload + LEN_CRC);
//// frame generation /////
char frame[LEN_FRAME_MAX];
unsigned char byte_frame[LEN_FRAME_MAX/8]; //PASTA
memset(frame, 0x0, LEN_FRAME_MAX);
// headers
memcpy(frame, PREAMBLE_ASC, LEN_PREAMBLE);
memcpy(frame + LEN_PREAMBLE, START_MARK_ASC, LEN_START);
// payload + crc
memcpy (frame + LEN_PREAMBLE + LEN_START, stuffed_payload, len_stuffed_payload);
// trailer
memcpy (frame+LEN_PREAMBLE+LEN_START+len_stuffed_payload, START_MARK_ASC, 8);
// padding
int len_padding = LEN_FRAME_MAX-(LEN_PREAMBLE+LEN_START+len_stuffed_payload+LEN_START);
memset(frame+LEN_PREAMBLE+LEN_START+len_stuffed_payload+LEN_START, 0x0, len_padding);
int len_frame_real = LEN_FRAME_MAX; // 256
// NRZI Conversion
nrz_to_nrzi(frame, len_frame_real);
printf ("Sent Frame (NRZI enabled) = ");
dump_buffer(frame, len_frame_real);
// Binary conversion (to use with GMSK mod's byte_to_symb
byte_packing(frame, byte_frame, len_frame_real);
/* sed some blank message before (to clean up GMSK modulator state?) */
if (d_lead_in_bytes)
message_port_pub(pmt::mp("pdus"), pmt::cons(meta, d_lead_in_bytes));
// output
pmt::pmt_t outpdu_bytes = make_pdu_vector(blocks::pdu::byte_t, byte_frame, len_frame_real/8);
message_port_pub(pmt::mp("pdus"), pmt::cons(meta, outpdu_bytes));
}
#if 0
else {
char stuffed_payload[1024];
int len_stuffed_payload = stuff (payload, stuffed_payload, len_payload+LEN_CRC);
//// frame generation /////
int len_frame = LEN_PREAMBLE + LEN_START*2 + len_stuffed_payload;
char frame[len_frame];
unsigned char byte_frame[len_frame/8]; //PASTA
memset (frame, 0x0, len_frame);
// headers
memcpy (frame, PREAMBLE_ASC, LEN_PREAMBLE);
memcpy (frame+LEN_PREAMBLE, START_MARK_ASC, LEN_START);
// payload + crc
memcpy (frame+LEN_PREAMBLE+LEN_START, stuffed_payload, len_stuffed_payload);
// trailer
memcpy (frame+LEN_PREAMBLE+LEN_START+len_stuffed_payload, START_MARK_ASC, 8);
int len_frame_real = len_frame;
// NRZI Conversion
nrz_to_nrzi (frame, len_frame_real);
printf ("Sent Frame (NRZI enabled) = ");
dump_buffer(frame, len_frame_real);
// Binary conversion (to use with GMSK mod's byte_to_symb
byte_packing(frame, byte_frame, len_frame_real);
// output
memcpy (out, byte_frame, len_frame_real/8);
noutput_items = len_frame_real/8;
}
// some sleep here
// int r = (int) rand() % 1000;
// usleep(1000*r); // -6
//sleep(1);
usleep(10000);
// Tell runtime system how many output items we produced.
return noutput_items;
#endif
free(payload);
}
} /* namespace AISTX */
} /* namespace gr */