added separate header for viterbi detector

This commit is contained in:
Piotr Krysik 2009-06-06 14:35:29 +02:00
parent 58b281711e
commit 4ebdbec814
2 changed files with 553 additions and 497 deletions

552
src/lib/viterbi_detector.cc Normal file
View File

@ -0,0 +1,552 @@
/***************************************************************************
* Copyright (C) 2008 by Piotr Krysik *
* pkrysik@stud.elka.pw.edu.pl *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
** viterbi_detector:
** This part does the detection of received sequnece.
** Employed algorithm is viterbi Maximum Likehood Sequence Estimation.
** At this moment it gives hard decisions on the output, but
** it was designed with soft decisions in mind.
**
** SYNTAX: void viterbi_detector(
** const gr_complex * input,
** unsigned int samples_num,
** gr_complex * rhh,
** unsigned int start_state,
** const unsigned int * stop_states,
** unsigned int stops_num,
** float * output)
**
** INPUT: input: Complex received signal afted matched filtering.
** samples_num: Number of samples in the input table.
** rhh: The autocorrelation of the estimated channel
** impulse response.
** start_state: Number of the start point. In GSM each burst
** starts with sequence of three bits (0,0,0) which
** indicates start point of the algorithm.
** stop_states: Table with numbers of possible stop states.
** stops_num: Number of possible stop states
**
**
** OUTPUT: output: Differentially decoded hard output of the algorithm:
** -1 for logical "0" and 1 for logical "1"
**
** SUB_FUNC: none
**
** TEST(S): Tested with real world normal burst.
*/
#include <gnuradio/gr_complex.h>
#include <gsm_constants.h>
#define PATHS_NUM (1 << (CHAN_IMP_RESP_LENGTH-1))
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output)
{
float increment[8];
float path_metrics1[16];
float path_metrics2[16];
float * new_path_metrics;
float * old_path_metrics;
float * tmp;
float trans_table[BURST_SIZE][16];
float pm_candidate1, pm_candidate2;
bool real_imag;
float input_symbol_real, input_symbol_imag;
unsigned int i, sample_nr;
/*
* Setup first path metrics, so only state pointed by start_state is possible.
* Start_state metric is equal to zero, the rest is written with some very low value,
* which makes them practically impossible to occur.
*/
for(i=0; i<PATHS_NUM; i++){
path_metrics1[i]=(-10e30);
}
path_metrics1[start_state]=0;
/*
* Compute Increment - a table of values which does not change for subsequent input samples.
* Increment is table of reference levels for computation of branch metrics:
* branch metric = (+/-)received_sample (+/-) reference_level
*/
increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
/*
* Computation of path metrics and decisions (Add-Compare-Select).
* It's composed of two parts: one for odd input samples (imaginary numbers)
* and one for even samples (real numbers).
* Each part is composed of independent (parallelisable) statements like
* this one:
* pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7];
* pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0];
* if(pm_candidate1 > pm_candidate2){
* new_path_metrics[0] = pm_candidate1;
* trans_table[sample_nr][0] = -1.0;
* }
* else{
* new_path_metrics[0] = pm_candidate2;
* trans_table[sample_nr][0] = 1.0;
* }
* This is very good point for optimisations (SIMD or OpenMP) as it's most time
* consuming part of this function.
*/
sample_nr=0;
old_path_metrics=path_metrics1;
new_path_metrics=path_metrics2;
while(sample_nr<samples_num){
//Processing imag states
real_imag=1;
input_symbol_imag = input[sample_nr].imag();
pm_candidate1 = old_path_metrics[0] + input_symbol_imag - increment[2];
pm_candidate2 = old_path_metrics[8] + input_symbol_imag + increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[0] = pm_candidate1;
trans_table[sample_nr][0] = -1.0;
}
else{
new_path_metrics[0] = pm_candidate2;
trans_table[sample_nr][0] = 1.0;
}
pm_candidate1 = old_path_metrics[0] - input_symbol_imag + increment[2];
pm_candidate2 = old_path_metrics[8] - input_symbol_imag - increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[1] = pm_candidate1;
trans_table[sample_nr][1] = -1.0;
}
else{
new_path_metrics[1] = pm_candidate2;
trans_table[sample_nr][1] = 1.0;
}
pm_candidate1 = old_path_metrics[1] + input_symbol_imag - increment[3];
pm_candidate2 = old_path_metrics[9] + input_symbol_imag + increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[2] = pm_candidate1;
trans_table[sample_nr][2] = -1.0;
}
else{
new_path_metrics[2] = pm_candidate2;
trans_table[sample_nr][2] = 1.0;
}
pm_candidate1 = old_path_metrics[1] - input_symbol_imag + increment[3];
pm_candidate2 = old_path_metrics[9] - input_symbol_imag - increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[3] = pm_candidate1;
trans_table[sample_nr][3] = -1.0;
}
else{
new_path_metrics[3] = pm_candidate2;
trans_table[sample_nr][3] = 1.0;
}
pm_candidate1 = old_path_metrics[2] + input_symbol_imag - increment[0];
pm_candidate2 = old_path_metrics[10] + input_symbol_imag + increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[4] = pm_candidate1;
trans_table[sample_nr][4] = -1.0;
}
else{
new_path_metrics[4] = pm_candidate2;
trans_table[sample_nr][4] = 1.0;
}
pm_candidate1 = old_path_metrics[2] - input_symbol_imag + increment[0];
pm_candidate2 = old_path_metrics[10] - input_symbol_imag - increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[5] = pm_candidate1;
trans_table[sample_nr][5] = -1.0;
}
else{
new_path_metrics[5] = pm_candidate2;
trans_table[sample_nr][5] = 1.0;
}
pm_candidate1 = old_path_metrics[3] + input_symbol_imag - increment[1];
pm_candidate2 = old_path_metrics[11] + input_symbol_imag + increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[6] = pm_candidate1;
trans_table[sample_nr][6] = -1.0;
}
else{
new_path_metrics[6] = pm_candidate2;
trans_table[sample_nr][6] = 1.0;
}
pm_candidate1 = old_path_metrics[3] - input_symbol_imag + increment[1];
pm_candidate2 = old_path_metrics[11] - input_symbol_imag - increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[7] = pm_candidate1;
trans_table[sample_nr][7] = -1.0;
}
else{
new_path_metrics[7] = pm_candidate2;
trans_table[sample_nr][7] = 1.0;
}
pm_candidate1 = old_path_metrics[4] + input_symbol_imag - increment[6];
pm_candidate2 = old_path_metrics[12] + input_symbol_imag + increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[8] = pm_candidate1;
trans_table[sample_nr][8] = -1.0;
}
else{
new_path_metrics[8] = pm_candidate2;
trans_table[sample_nr][8] = 1.0;
}
pm_candidate1 = old_path_metrics[4] - input_symbol_imag + increment[6];
pm_candidate2 = old_path_metrics[12] - input_symbol_imag - increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[9] = pm_candidate1;
trans_table[sample_nr][9] = -1.0;
}
else{
new_path_metrics[9] = pm_candidate2;
trans_table[sample_nr][9] = 1.0;
}
pm_candidate1 = old_path_metrics[5] + input_symbol_imag - increment[7];
pm_candidate2 = old_path_metrics[13] + input_symbol_imag + increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[10] = pm_candidate1;
trans_table[sample_nr][10] = -1.0;
}
else{
new_path_metrics[10] = pm_candidate2;
trans_table[sample_nr][10] = 1.0;
}
pm_candidate1 = old_path_metrics[5] - input_symbol_imag + increment[7];
pm_candidate2 = old_path_metrics[13] - input_symbol_imag - increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[11] = pm_candidate1;
trans_table[sample_nr][11] = -1.0;
}
else{
new_path_metrics[11] = pm_candidate2;
trans_table[sample_nr][11] = 1.0;
}
pm_candidate1 = old_path_metrics[6] + input_symbol_imag - increment[4];
pm_candidate2 = old_path_metrics[14] + input_symbol_imag + increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[12] = pm_candidate1;
trans_table[sample_nr][12] = -1.0;
}
else{
new_path_metrics[12] = pm_candidate2;
trans_table[sample_nr][12] = 1.0;
}
pm_candidate1 = old_path_metrics[6] - input_symbol_imag + increment[4];
pm_candidate2 = old_path_metrics[14] - input_symbol_imag - increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[13] = pm_candidate1;
trans_table[sample_nr][13] = -1.0;
}
else{
new_path_metrics[13] = pm_candidate2;
trans_table[sample_nr][13] = 1.0;
}
pm_candidate1 = old_path_metrics[7] + input_symbol_imag - increment[5];
pm_candidate2 = old_path_metrics[15] + input_symbol_imag + increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[14] = pm_candidate1;
trans_table[sample_nr][14] = -1.0;
}
else{
new_path_metrics[14] = pm_candidate2;
trans_table[sample_nr][14] = 1.0;
}
pm_candidate1 = old_path_metrics[7] - input_symbol_imag + increment[5];
pm_candidate2 = old_path_metrics[15] - input_symbol_imag - increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[15] = pm_candidate1;
trans_table[sample_nr][15] = -1.0;
}
else{
new_path_metrics[15] = pm_candidate2;
trans_table[sample_nr][15] = 1.0;
}
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
if(sample_nr==samples_num)
break;
//Processing real states
real_imag=0;
input_symbol_real = input[sample_nr].real();
pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7];
pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[0] = pm_candidate1;
trans_table[sample_nr][0] = -1.0;
}
else{
new_path_metrics[0] = pm_candidate2;
trans_table[sample_nr][0] = 1.0;
}
pm_candidate1 = old_path_metrics[0] + input_symbol_real + increment[7];
pm_candidate2 = old_path_metrics[8] + input_symbol_real - increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[1] = pm_candidate1;
trans_table[sample_nr][1] = -1.0;
}
else{
new_path_metrics[1] = pm_candidate2;
trans_table[sample_nr][1] = 1.0;
}
pm_candidate1 = old_path_metrics[1] - input_symbol_real - increment[6];
pm_candidate2 = old_path_metrics[9] - input_symbol_real + increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[2] = pm_candidate1;
trans_table[sample_nr][2] = -1.0;
}
else{
new_path_metrics[2] = pm_candidate2;
trans_table[sample_nr][2] = 1.0;
}
pm_candidate1 = old_path_metrics[1] + input_symbol_real + increment[6];
pm_candidate2 = old_path_metrics[9] + input_symbol_real - increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[3] = pm_candidate1;
trans_table[sample_nr][3] = -1.0;
}
else{
new_path_metrics[3] = pm_candidate2;
trans_table[sample_nr][3] = 1.0;
}
pm_candidate1 = old_path_metrics[2] - input_symbol_real - increment[5];
pm_candidate2 = old_path_metrics[10] - input_symbol_real + increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[4] = pm_candidate1;
trans_table[sample_nr][4] = -1.0;
}
else{
new_path_metrics[4] = pm_candidate2;
trans_table[sample_nr][4] = 1.0;
}
pm_candidate1 = old_path_metrics[2] + input_symbol_real + increment[5];
pm_candidate2 = old_path_metrics[10] + input_symbol_real - increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[5] = pm_candidate1;
trans_table[sample_nr][5] = -1.0;
}
else{
new_path_metrics[5] = pm_candidate2;
trans_table[sample_nr][5] = 1.0;
}
pm_candidate1 = old_path_metrics[3] - input_symbol_real - increment[4];
pm_candidate2 = old_path_metrics[11] - input_symbol_real + increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[6] = pm_candidate1;
trans_table[sample_nr][6] = -1.0;
}
else{
new_path_metrics[6] = pm_candidate2;
trans_table[sample_nr][6] = 1.0;
}
pm_candidate1 = old_path_metrics[3] + input_symbol_real + increment[4];
pm_candidate2 = old_path_metrics[11] + input_symbol_real - increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[7] = pm_candidate1;
trans_table[sample_nr][7] = -1.0;
}
else{
new_path_metrics[7] = pm_candidate2;
trans_table[sample_nr][7] = 1.0;
}
pm_candidate1 = old_path_metrics[4] - input_symbol_real - increment[3];
pm_candidate2 = old_path_metrics[12] - input_symbol_real + increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[8] = pm_candidate1;
trans_table[sample_nr][8] = -1.0;
}
else{
new_path_metrics[8] = pm_candidate2;
trans_table[sample_nr][8] = 1.0;
}
pm_candidate1 = old_path_metrics[4] + input_symbol_real + increment[3];
pm_candidate2 = old_path_metrics[12] + input_symbol_real - increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[9] = pm_candidate1;
trans_table[sample_nr][9] = -1.0;
}
else{
new_path_metrics[9] = pm_candidate2;
trans_table[sample_nr][9] = 1.0;
}
pm_candidate1 = old_path_metrics[5] - input_symbol_real - increment[2];
pm_candidate2 = old_path_metrics[13] - input_symbol_real + increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[10] = pm_candidate1;
trans_table[sample_nr][10] = -1.0;
}
else{
new_path_metrics[10] = pm_candidate2;
trans_table[sample_nr][10] = 1.0;
}
pm_candidate1 = old_path_metrics[5] + input_symbol_real + increment[2];
pm_candidate2 = old_path_metrics[13] + input_symbol_real - increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[11] = pm_candidate1;
trans_table[sample_nr][11] = -1.0;
}
else{
new_path_metrics[11] = pm_candidate2;
trans_table[sample_nr][11] = 1.0;
}
pm_candidate1 = old_path_metrics[6] - input_symbol_real - increment[1];
pm_candidate2 = old_path_metrics[14] - input_symbol_real + increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[12] = pm_candidate1;
trans_table[sample_nr][12] = -1.0;
}
else{
new_path_metrics[12] = pm_candidate2;
trans_table[sample_nr][12] = 1.0;
}
pm_candidate1 = old_path_metrics[6] + input_symbol_real + increment[1];
pm_candidate2 = old_path_metrics[14] + input_symbol_real - increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[13] = pm_candidate1;
trans_table[sample_nr][13] = -1.0;
}
else{
new_path_metrics[13] = pm_candidate2;
trans_table[sample_nr][13] = 1.0;
}
pm_candidate1 = old_path_metrics[7] - input_symbol_real - increment[0];
pm_candidate2 = old_path_metrics[15] - input_symbol_real + increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[14] = pm_candidate1;
trans_table[sample_nr][14] = -1.0;
}
else{
new_path_metrics[14] = pm_candidate2;
trans_table[sample_nr][14] = 1.0;
}
pm_candidate1 = old_path_metrics[7] + input_symbol_real + increment[0];
pm_candidate2 = old_path_metrics[15] + input_symbol_real - increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[15] = pm_candidate1;
trans_table[sample_nr][15] = -1.0;
}
else{
new_path_metrics[15] = pm_candidate2;
trans_table[sample_nr][15] = 1.0;
}
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
}
/*
* Find the best from the stop states by comparing their path metrics.
* Not every stop state is always possible, so we are searching in
* a subset of them.
*/
unsigned int best_stop_state;
float stop_state_metric, max_stop_state_metric;
best_stop_state = stop_states[0];
max_stop_state_metric = old_path_metrics[best_stop_state];
for(i=1; i< stops_num; i++){
stop_state_metric = old_path_metrics[stop_states[i]];
if(stop_state_metric > max_stop_state_metric){
max_stop_state_metric = stop_state_metric;
best_stop_state = stop_states[i];
}
}
/*
* This table was generated with hope that it gives a litle speedup during
* traceback stage.
* Received bit is related to the number of state in the trellis.
* I've numbered states so their parity (number of ones) is related
* to a received bit.
*/
static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, };
/*
* Table of previous states in the trellis diagram.
* For GMSK modulation every state has two previous states.
* Example:
* previous_state_nr1 = prev_table[current_state_nr][0]
* previous_state_nr2 = prev_table[current_state_nr][1]
*/
static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, };
/*
* Traceback and differential decoding of received sequence.
* Decisions stored in trans_table are used to restore best path in the trellis.
*/
sample_nr=samples_num;
unsigned int state_nr=best_stop_state;
unsigned int decision;
bool out_bit=0;
while(sample_nr>0){
sample_nr--;
decision = (trans_table[sample_nr][state_nr]>0);
if(decision != out_bit)
output[sample_nr]=-trans_table[sample_nr][state_nr];
else
output[sample_nr]=trans_table[sample_nr][state_nr];
out_bit = out_bit ^ real_imag ^ parity_table[state_nr];
state_nr = prev_table[state_nr][decision];
real_imag = !real_imag;
}
}

View File

@ -53,500 +53,4 @@
** TEST(S): Tested with real world normal burst.
*/
#include <gnuradio/gr_complex.h>
#include <gsm_constants.h>
#define PATHS_NUM (1 << (CHAN_IMP_RESP_LENGTH-1))
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output)
{
float increment[8];
float path_metrics1[16];
float path_metrics2[16];
float * new_path_metrics;
float * old_path_metrics;
float * tmp;
float trans_table[BURST_SIZE][16];
float pm_candidate1, pm_candidate2;
bool real_imag;
float input_symbol_real, input_symbol_imag;
unsigned int i, sample_nr;
/*
* Setup first path metrics, so only state pointed by start_state is possible.
* Start_state metric is equal to zero, the rest is written with some very low value,
* which makes them practically impossible to occur.
*/
for(i=0; i<PATHS_NUM; i++){
path_metrics1[i]=(-10e30);
}
path_metrics1[start_state]=0;
/*
* Compute Increment - a table of values which does not change for subsequent input samples.
* Increment is table of reference levels for computation of branch metrics:
* branch metric = (+/-)received_sample (+/-) reference_level
*/
increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
/*
* Computation of path metrics and decisions (Add-Compare-Select).
* It's composed of two parts: one for odd input samples (imaginary numbers)
* and one for even samples (real numbers).
* Each part is composed of independent (parallelisable) statements like
* this one:
* pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7];
* pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0];
* if(pm_candidate1 > pm_candidate2){
* new_path_metrics[0] = pm_candidate1;
* trans_table[sample_nr][0] = -1.0;
* }
* else{
* new_path_metrics[0] = pm_candidate2;
* trans_table[sample_nr][0] = 1.0;
* }
* This is very good point for optimisations (SIMD or OpenMP) as it's most time
* consuming part of this function.
*/
sample_nr=0;
old_path_metrics=path_metrics1;
new_path_metrics=path_metrics2;
while(sample_nr<samples_num){
//Processing imag states
real_imag=1;
input_symbol_imag = input[sample_nr].imag();
pm_candidate1 = old_path_metrics[0] + input_symbol_imag - increment[2];
pm_candidate2 = old_path_metrics[8] + input_symbol_imag + increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[0] = pm_candidate1;
trans_table[sample_nr][0] = -1.0;
}
else{
new_path_metrics[0] = pm_candidate2;
trans_table[sample_nr][0] = 1.0;
}
pm_candidate1 = old_path_metrics[0] - input_symbol_imag + increment[2];
pm_candidate2 = old_path_metrics[8] - input_symbol_imag - increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[1] = pm_candidate1;
trans_table[sample_nr][1] = -1.0;
}
else{
new_path_metrics[1] = pm_candidate2;
trans_table[sample_nr][1] = 1.0;
}
pm_candidate1 = old_path_metrics[1] + input_symbol_imag - increment[3];
pm_candidate2 = old_path_metrics[9] + input_symbol_imag + increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[2] = pm_candidate1;
trans_table[sample_nr][2] = -1.0;
}
else{
new_path_metrics[2] = pm_candidate2;
trans_table[sample_nr][2] = 1.0;
}
pm_candidate1 = old_path_metrics[1] - input_symbol_imag + increment[3];
pm_candidate2 = old_path_metrics[9] - input_symbol_imag - increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[3] = pm_candidate1;
trans_table[sample_nr][3] = -1.0;
}
else{
new_path_metrics[3] = pm_candidate2;
trans_table[sample_nr][3] = 1.0;
}
pm_candidate1 = old_path_metrics[2] + input_symbol_imag - increment[0];
pm_candidate2 = old_path_metrics[10] + input_symbol_imag + increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[4] = pm_candidate1;
trans_table[sample_nr][4] = -1.0;
}
else{
new_path_metrics[4] = pm_candidate2;
trans_table[sample_nr][4] = 1.0;
}
pm_candidate1 = old_path_metrics[2] - input_symbol_imag + increment[0];
pm_candidate2 = old_path_metrics[10] - input_symbol_imag - increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[5] = pm_candidate1;
trans_table[sample_nr][5] = -1.0;
}
else{
new_path_metrics[5] = pm_candidate2;
trans_table[sample_nr][5] = 1.0;
}
pm_candidate1 = old_path_metrics[3] + input_symbol_imag - increment[1];
pm_candidate2 = old_path_metrics[11] + input_symbol_imag + increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[6] = pm_candidate1;
trans_table[sample_nr][6] = -1.0;
}
else{
new_path_metrics[6] = pm_candidate2;
trans_table[sample_nr][6] = 1.0;
}
pm_candidate1 = old_path_metrics[3] - input_symbol_imag + increment[1];
pm_candidate2 = old_path_metrics[11] - input_symbol_imag - increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[7] = pm_candidate1;
trans_table[sample_nr][7] = -1.0;
}
else{
new_path_metrics[7] = pm_candidate2;
trans_table[sample_nr][7] = 1.0;
}
pm_candidate1 = old_path_metrics[4] + input_symbol_imag - increment[6];
pm_candidate2 = old_path_metrics[12] + input_symbol_imag + increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[8] = pm_candidate1;
trans_table[sample_nr][8] = -1.0;
}
else{
new_path_metrics[8] = pm_candidate2;
trans_table[sample_nr][8] = 1.0;
}
pm_candidate1 = old_path_metrics[4] - input_symbol_imag + increment[6];
pm_candidate2 = old_path_metrics[12] - input_symbol_imag - increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[9] = pm_candidate1;
trans_table[sample_nr][9] = -1.0;
}
else{
new_path_metrics[9] = pm_candidate2;
trans_table[sample_nr][9] = 1.0;
}
pm_candidate1 = old_path_metrics[5] + input_symbol_imag - increment[7];
pm_candidate2 = old_path_metrics[13] + input_symbol_imag + increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[10] = pm_candidate1;
trans_table[sample_nr][10] = -1.0;
}
else{
new_path_metrics[10] = pm_candidate2;
trans_table[sample_nr][10] = 1.0;
}
pm_candidate1 = old_path_metrics[5] - input_symbol_imag + increment[7];
pm_candidate2 = old_path_metrics[13] - input_symbol_imag - increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[11] = pm_candidate1;
trans_table[sample_nr][11] = -1.0;
}
else{
new_path_metrics[11] = pm_candidate2;
trans_table[sample_nr][11] = 1.0;
}
pm_candidate1 = old_path_metrics[6] + input_symbol_imag - increment[4];
pm_candidate2 = old_path_metrics[14] + input_symbol_imag + increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[12] = pm_candidate1;
trans_table[sample_nr][12] = -1.0;
}
else{
new_path_metrics[12] = pm_candidate2;
trans_table[sample_nr][12] = 1.0;
}
pm_candidate1 = old_path_metrics[6] - input_symbol_imag + increment[4];
pm_candidate2 = old_path_metrics[14] - input_symbol_imag - increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[13] = pm_candidate1;
trans_table[sample_nr][13] = -1.0;
}
else{
new_path_metrics[13] = pm_candidate2;
trans_table[sample_nr][13] = 1.0;
}
pm_candidate1 = old_path_metrics[7] + input_symbol_imag - increment[5];
pm_candidate2 = old_path_metrics[15] + input_symbol_imag + increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[14] = pm_candidate1;
trans_table[sample_nr][14] = -1.0;
}
else{
new_path_metrics[14] = pm_candidate2;
trans_table[sample_nr][14] = 1.0;
}
pm_candidate1 = old_path_metrics[7] - input_symbol_imag + increment[5];
pm_candidate2 = old_path_metrics[15] - input_symbol_imag - increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[15] = pm_candidate1;
trans_table[sample_nr][15] = -1.0;
}
else{
new_path_metrics[15] = pm_candidate2;
trans_table[sample_nr][15] = 1.0;
}
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
if(sample_nr==samples_num)
break;
//Processing real states
real_imag=0;
input_symbol_real = input[sample_nr].real();
pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7];
pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[0] = pm_candidate1;
trans_table[sample_nr][0] = -1.0;
}
else{
new_path_metrics[0] = pm_candidate2;
trans_table[sample_nr][0] = 1.0;
}
pm_candidate1 = old_path_metrics[0] + input_symbol_real + increment[7];
pm_candidate2 = old_path_metrics[8] + input_symbol_real - increment[0];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[1] = pm_candidate1;
trans_table[sample_nr][1] = -1.0;
}
else{
new_path_metrics[1] = pm_candidate2;
trans_table[sample_nr][1] = 1.0;
}
pm_candidate1 = old_path_metrics[1] - input_symbol_real - increment[6];
pm_candidate2 = old_path_metrics[9] - input_symbol_real + increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[2] = pm_candidate1;
trans_table[sample_nr][2] = -1.0;
}
else{
new_path_metrics[2] = pm_candidate2;
trans_table[sample_nr][2] = 1.0;
}
pm_candidate1 = old_path_metrics[1] + input_symbol_real + increment[6];
pm_candidate2 = old_path_metrics[9] + input_symbol_real - increment[1];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[3] = pm_candidate1;
trans_table[sample_nr][3] = -1.0;
}
else{
new_path_metrics[3] = pm_candidate2;
trans_table[sample_nr][3] = 1.0;
}
pm_candidate1 = old_path_metrics[2] - input_symbol_real - increment[5];
pm_candidate2 = old_path_metrics[10] - input_symbol_real + increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[4] = pm_candidate1;
trans_table[sample_nr][4] = -1.0;
}
else{
new_path_metrics[4] = pm_candidate2;
trans_table[sample_nr][4] = 1.0;
}
pm_candidate1 = old_path_metrics[2] + input_symbol_real + increment[5];
pm_candidate2 = old_path_metrics[10] + input_symbol_real - increment[2];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[5] = pm_candidate1;
trans_table[sample_nr][5] = -1.0;
}
else{
new_path_metrics[5] = pm_candidate2;
trans_table[sample_nr][5] = 1.0;
}
pm_candidate1 = old_path_metrics[3] - input_symbol_real - increment[4];
pm_candidate2 = old_path_metrics[11] - input_symbol_real + increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[6] = pm_candidate1;
trans_table[sample_nr][6] = -1.0;
}
else{
new_path_metrics[6] = pm_candidate2;
trans_table[sample_nr][6] = 1.0;
}
pm_candidate1 = old_path_metrics[3] + input_symbol_real + increment[4];
pm_candidate2 = old_path_metrics[11] + input_symbol_real - increment[3];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[7] = pm_candidate1;
trans_table[sample_nr][7] = -1.0;
}
else{
new_path_metrics[7] = pm_candidate2;
trans_table[sample_nr][7] = 1.0;
}
pm_candidate1 = old_path_metrics[4] - input_symbol_real - increment[3];
pm_candidate2 = old_path_metrics[12] - input_symbol_real + increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[8] = pm_candidate1;
trans_table[sample_nr][8] = -1.0;
}
else{
new_path_metrics[8] = pm_candidate2;
trans_table[sample_nr][8] = 1.0;
}
pm_candidate1 = old_path_metrics[4] + input_symbol_real + increment[3];
pm_candidate2 = old_path_metrics[12] + input_symbol_real - increment[4];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[9] = pm_candidate1;
trans_table[sample_nr][9] = -1.0;
}
else{
new_path_metrics[9] = pm_candidate2;
trans_table[sample_nr][9] = 1.0;
}
pm_candidate1 = old_path_metrics[5] - input_symbol_real - increment[2];
pm_candidate2 = old_path_metrics[13] - input_symbol_real + increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[10] = pm_candidate1;
trans_table[sample_nr][10] = -1.0;
}
else{
new_path_metrics[10] = pm_candidate2;
trans_table[sample_nr][10] = 1.0;
}
pm_candidate1 = old_path_metrics[5] + input_symbol_real + increment[2];
pm_candidate2 = old_path_metrics[13] + input_symbol_real - increment[5];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[11] = pm_candidate1;
trans_table[sample_nr][11] = -1.0;
}
else{
new_path_metrics[11] = pm_candidate2;
trans_table[sample_nr][11] = 1.0;
}
pm_candidate1 = old_path_metrics[6] - input_symbol_real - increment[1];
pm_candidate2 = old_path_metrics[14] - input_symbol_real + increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[12] = pm_candidate1;
trans_table[sample_nr][12] = -1.0;
}
else{
new_path_metrics[12] = pm_candidate2;
trans_table[sample_nr][12] = 1.0;
}
pm_candidate1 = old_path_metrics[6] + input_symbol_real + increment[1];
pm_candidate2 = old_path_metrics[14] + input_symbol_real - increment[6];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[13] = pm_candidate1;
trans_table[sample_nr][13] = -1.0;
}
else{
new_path_metrics[13] = pm_candidate2;
trans_table[sample_nr][13] = 1.0;
}
pm_candidate1 = old_path_metrics[7] - input_symbol_real - increment[0];
pm_candidate2 = old_path_metrics[15] - input_symbol_real + increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[14] = pm_candidate1;
trans_table[sample_nr][14] = -1.0;
}
else{
new_path_metrics[14] = pm_candidate2;
trans_table[sample_nr][14] = 1.0;
}
pm_candidate1 = old_path_metrics[7] + input_symbol_real + increment[0];
pm_candidate2 = old_path_metrics[15] + input_symbol_real - increment[7];
if(pm_candidate1 > pm_candidate2){
new_path_metrics[15] = pm_candidate1;
trans_table[sample_nr][15] = -1.0;
}
else{
new_path_metrics[15] = pm_candidate2;
trans_table[sample_nr][15] = 1.0;
}
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
}
/*
* Find the best from the stop states by comparing their path metrics.
* Not every stop state is always possible, so we are searching in
* a subset of them.
*/
unsigned int best_stop_state;
float stop_state_metric, max_stop_state_metric;
best_stop_state = stop_states[0];
max_stop_state_metric = old_path_metrics[best_stop_state];
for(i=1; i< stops_num; i++){
stop_state_metric = old_path_metrics[stop_states[i]];
if(stop_state_metric > max_stop_state_metric){
max_stop_state_metric = stop_state_metric;
best_stop_state = stop_states[i];
}
}
/*
* This table was generated with hope that it gives a litle speedup during
* traceback stage.
* Received bit is related to the number of state in the trellis.
* I've numbered states so their parity (number of ones) is related
* to a received bit.
*/
static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, };
/*
* Table of previous states in the trellis diagram.
* For GMSK modulation every state has two previous states.
* Example:
* previous_state_nr1 = prev_table[current_state_nr][0]
* previous_state_nr2 = prev_table[current_state_nr][1]
*/
static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, };
/*
* Traceback and differential decoding of received sequence.
* Decisions stored in trans_table are used to restore best path in the trellis.
*/
sample_nr=samples_num;
unsigned int state_nr=best_stop_state;
unsigned int decision;
bool out_bit=0;
while(sample_nr>0){
sample_nr--;
decision = (trans_table[sample_nr][state_nr]>0);
if(decision != out_bit)
output[sample_nr]=-trans_table[sample_nr][state_nr];
else
output[sample_nr]=trans_table[sample_nr][state_nr];
out_bit = out_bit ^ real_imag ^ parity_table[state_nr];
state_nr = prev_table[state_nr][decision];
real_imag = !real_imag;
}
}
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output);