yate/engine/YSHA1.cpp

291 lines
7.9 KiB
C++

/**
* YSHA1.cpp
* This file is part of the YATE Project http://YATE.null.ro
*
* Originally based on the public domain implementation written by Steve Reid.
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
* Adapted for YATE by Paul Chitescu
*
* Yet Another Telephony Engine - a fully featured software PBX and IVR
* Copyright (C) 2004-2014 Null Team
*
* This software is distributed under multiple licenses;
* see the COPYING file in the main directory for licensing
* information for this specific distribution.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "yateclass.h"
#include <stdlib.h>
#include <string.h>
#if (defined(WORDS_BIGENDIAN) || defined(BIGENDIAN))
#define be32_to_cpu(x) (x) /* Nothing */
#else
static inline u_int32_t be32_to_cpu(u_int32_t x)
{
return ((x & 0xff000000) >> 24) | ((x & 0xff0000) >> 8) | ((x & 0xff00) << 8) | ((x & 0xff) << 24);
}
#endif
#define SHA1_DIGEST_SIZE 20
#define SHA1_HMAC_BLOCK_SIZE 64
static inline u_int32_t rol(u_int32_t value, u_int32_t bits)
{
return (((value) << (bits)) | ((value) >> (32 - (bits))));
}
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
# define blk0(i) block32[i]
#define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \
^block32[(i+2)&15]^block32[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \
w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \
w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \
w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
typedef struct {
u_int64_t count;
u_int32_t state[5];
u_int8_t buffer[64];
} sha1_ctx;
/* Hash a single 512-bit block. This is the core of the algorithm. */
static void sha1_transform(u_int32_t *state, const u_int8_t *in)
{
u_int32_t a, b, c, d, e;
u_int32_t block32[16];
/* convert/copy data to workspace */
for (a = 0; a < sizeof(block32)/sizeof(u_int32_t); a++)
block32[a] = be32_to_cpu (((const u_int32_t *)in)[a]);
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
memset (block32, 0x00, sizeof block32);
}
static void sha1_init(sha1_ctx *sctx)
{
static const sha1_ctx initstate = {
0,
{ 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 },
{ 0, }
};
*sctx = initstate;
}
static void sha1_update(sha1_ctx *sctx, const u_int8_t *data, unsigned int len)
{
unsigned int i, j;
j = (sctx->count >> 3) & 0x3f;
sctx->count += len << 3;
if ((j + len) > 63) {
memcpy(&sctx->buffer[j], data, (i = 64-j));
sha1_transform(sctx->state, sctx->buffer);
for ( ; i + 63 < len; i += 64) {
sha1_transform(sctx->state, &data[i]);
}
j = 0;
}
else i = 0;
memcpy(&sctx->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
static void sha1_final(sha1_ctx *sctx, u_int8_t *out)
{
u_int32_t i, j, index, padlen;
u_int64_t t;
u_int8_t bits[8] = { 0, };
static const u_int8_t padding[64] = { 0x80, };
t = sctx->count;
bits[7] = 0xff & t; t>>=8;
bits[6] = 0xff & t; t>>=8;
bits[5] = 0xff & t; t>>=8;
bits[4] = 0xff & t; t>>=8;
bits[3] = 0xff & t; t>>=8;
bits[2] = 0xff & t; t>>=8;
bits[1] = 0xff & t; t>>=8;
bits[0] = 0xff & t;
/* Pad out to 56 mod 64 */
index = (sctx->count >> 3) & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
sha1_update(sctx, padding, padlen);
/* Append length */
sha1_update(sctx, bits, sizeof bits);
/* Store state in digest */
for (i = j = 0; i < 5; i++, j += 4) {
u_int32_t t2 = sctx->state[i];
out[j+3] = t2 & 0xff; t2>>=8;
out[j+2] = t2 & 0xff; t2>>=8;
out[j+1] = t2 & 0xff; t2>>=8;
out[j ] = t2 & 0xff;
}
/* Wipe context */
memset(sctx, 0, sizeof *sctx);
}
// Yate's C++ wrapper routines start here
using namespace TelEngine;
SHA1::SHA1()
{
}
SHA1::SHA1(const void* buf, unsigned int len)
{
update(buf,len);
}
SHA1::SHA1(const DataBlock& data)
{
update(data);
}
SHA1::SHA1(const String& str)
{
update(str);
}
SHA1::SHA1(const SHA1& original)
{
m_hex = original.m_hex;
::memcpy(m_bin,original.m_bin,sizeof(m_bin));
if (original.m_private) {
m_private = ::malloc(sizeof(sha1_ctx));
::memcpy(m_private,original.m_private,sizeof(sha1_ctx));
}
}
SHA1::~SHA1()
{
clear();
}
SHA1& SHA1::operator=(const SHA1& original)
{
clear();
m_hex = original.m_hex;
::memcpy(m_bin,original.m_bin,sizeof(m_bin));
if (original.m_private) {
m_private = ::malloc(sizeof(sha1_ctx));
::memcpy(m_private,original.m_private,sizeof(sha1_ctx));
}
return *this;
}
void SHA1::clear()
{
if (m_private) {
::free(m_private);
m_private = 0;
}
m_hex.clear();
::memset(m_bin,0,sizeof(m_bin));
}
void SHA1::init()
{
if (m_private)
return;
clear();
m_private = ::malloc(sizeof(sha1_ctx));
sha1_init((sha1_ctx*)m_private);
}
void SHA1::finalize()
{
if (m_hex)
return;
init();
sha1_final((sha1_ctx*)m_private, (u_int8_t*)m_bin);
m_hex.hexify(m_bin,sizeof(m_bin));
}
bool SHA1::updateInternal(const void* buf, unsigned int len)
{
// Don't update an already finalized digest
if (m_hex)
return false;
if (!len)
return true;
if (!buf)
return false;
init();
sha1_update((sha1_ctx*)m_private, (const u_int8_t*)buf, len);
return true;
}
const unsigned char* SHA1::rawDigest()
{
finalize();
return m_bin;
}
/* vi: set ts=8 sw=4 sts=4 noet: */