/** * YSHA1.cpp * This file is part of the YATE Project http://YATE.null.ro * * Originally based on the public domain implementation written by Steve Reid. * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald * Copyright (c) Jean-Francois Dive * Adapted for YATE by Paul Chitescu * * Yet Another Telephony Engine - a fully featured software PBX and IVR * Copyright (C) 2004-2006 Null Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "yateclass.h" #include #include #if (defined(WORDS_BIGENDIAN) || defined(BIGENDIAN)) #define be32_to_cpu(x) (x) /* Nothing */ #else static inline u_int32_t be32_to_cpu(u_int32_t x) { return ((x & 0xff000000) >> 24) | ((x & 0xff0000) >> 8) | ((x & 0xff00) << 8) | ((x & 0xff) << 24); } #endif #define SHA1_DIGEST_SIZE 20 #define SHA1_HMAC_BLOCK_SIZE 64 static inline u_int32_t rol(u_int32_t value, u_int32_t bits) { return (((value) << (bits)) | ((value) >> (32 - (bits)))); } /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ # define blk0(i) block32[i] #define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \ ^block32[(i+2)&15]^block32[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \ w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \ w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \ w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); typedef struct { u_int64_t count; u_int32_t state[5]; u_int8_t buffer[64]; } sha1_ctx; /* Hash a single 512-bit block. This is the core of the algorithm. */ static void sha1_transform(u_int32_t *state, const u_int8_t *in) { u_int32_t a, b, c, d, e; u_int32_t block32[16]; /* convert/copy data to workspace */ for (a = 0; a < sizeof(block32)/sizeof(u_int32_t); a++) block32[a] = be32_to_cpu (((const u_int32_t *)in)[a]); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; memset (block32, 0x00, sizeof block32); } static void sha1_init(sha1_ctx *sctx) { static const sha1_ctx initstate = { 0, { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }, { 0, } }; *sctx = initstate; } static void sha1_update(sha1_ctx *sctx, const u_int8_t *data, unsigned int len) { unsigned int i, j; j = (sctx->count >> 3) & 0x3f; sctx->count += len << 3; if ((j + len) > 63) { memcpy(&sctx->buffer[j], data, (i = 64-j)); sha1_transform(sctx->state, sctx->buffer); for ( ; i + 63 < len; i += 64) { sha1_transform(sctx->state, &data[i]); } j = 0; } else i = 0; memcpy(&sctx->buffer[j], &data[i], len - i); } /* Add padding and return the message digest. */ static void sha1_final(sha1_ctx *sctx, u_int8_t *out) { u_int32_t i, j, index, padlen; u_int64_t t; u_int8_t bits[8] = { 0, }; static const u_int8_t padding[64] = { 0x80, }; t = sctx->count; bits[7] = 0xff & t; t>>=8; bits[6] = 0xff & t; t>>=8; bits[5] = 0xff & t; t>>=8; bits[4] = 0xff & t; t>>=8; bits[3] = 0xff & t; t>>=8; bits[2] = 0xff & t; t>>=8; bits[1] = 0xff & t; t>>=8; bits[0] = 0xff & t; /* Pad out to 56 mod 64 */ index = (sctx->count >> 3) & 0x3f; padlen = (index < 56) ? (56 - index) : ((64+56) - index); sha1_update(sctx, padding, padlen); /* Append length */ sha1_update(sctx, bits, sizeof bits); /* Store state in digest */ for (i = j = 0; i < 5; i++, j += 4) { u_int32_t t2 = sctx->state[i]; out[j+3] = t2 & 0xff; t2>>=8; out[j+2] = t2 & 0xff; t2>>=8; out[j+1] = t2 & 0xff; t2>>=8; out[j ] = t2 & 0xff; } /* Wipe context */ memset(sctx, 0, sizeof *sctx); } // Yate's C++ wrapper routines start here using namespace TelEngine; SHA1::SHA1() : m_private(0) { } SHA1::SHA1(const void* buf, unsigned int len) : m_private(0) { update(buf,len); } SHA1::SHA1(const DataBlock& data) : m_private(0) { update(data); } SHA1::SHA1(const String& str) : m_private(0) { update(str); } SHA1::SHA1(const SHA1& original) : m_private(0) { m_hex = original.m_hex; ::memcpy(m_bin,original.m_bin,sizeof(m_bin)); if (original.m_private) { m_private = ::malloc(sizeof(sha1_ctx)); ::memcpy(m_private,original.m_private,sizeof(sha1_ctx)); } } SHA1::~SHA1() { clear(); } SHA1& SHA1::operator=(const SHA1& original) { clear(); m_hex = original.m_hex; ::memcpy(m_bin,original.m_bin,sizeof(m_bin)); if (original.m_private) { m_private = ::malloc(sizeof(sha1_ctx)); ::memcpy(m_private,original.m_private,sizeof(sha1_ctx)); } return *this; } void SHA1::clear() { if (m_private) { ::free(m_private); m_private = 0; } m_hex.clear(); ::memset(m_bin,0,sizeof(m_bin)); } void SHA1::init() { if (m_private) return; clear(); m_private = ::malloc(sizeof(sha1_ctx)); sha1_init((sha1_ctx*)m_private); } void SHA1::finalize() { if (m_hex) return; init(); sha1_final((sha1_ctx*)m_private, (u_int8_t*)m_bin); m_hex.hexify(m_bin,sizeof(m_bin)); } bool SHA1::update(const void* buf, unsigned int len) { // Don't update an already finalized digest if (m_hex) return false; if (!len) return true; if (!buf) return false; init(); sha1_update((sha1_ctx*)m_private, (const u_int8_t*)buf, len); return true; } SHA1& SHA1::operator<<(const char* value) { if (!null(value)) update(value,::strlen(value)); return *this; } const unsigned char* SHA1::rawDigest() { finalize(); return m_bin; } const String& SHA1::hexDigest() { finalize(); return m_hex; } /* vi: set ts=8 sw=4 sts=4 noet: */