/***************************************************************************** * sdla_chdlc.c WANPIPE(tm) Multiprotocol WAN Link Driver. Cisco HDLC module. * * Authors: Nenad Corbic * Gideon Hack * * Copyright: (c) 1995-2004 Sangoma Technologies Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ============================================================================ * Jan 03, 2002 Nenad Corbic Memory leak bug fix under Bridge Mode. * If not an ethernet frame skb buffer was * not deallocated. * Oct 18, 2002 Nenad Corbic Added BRIDGE support * Jan 14, 2002 Nenad Corbic Removed the 2.0.X kernel support and added * front end state handling. * Dec 12, 2001 Nenad Corbic Re-wrote the tty receive algorithm, using * task queues, because ISA cards cannot call * receive_buf() from the rx interrupt. * Dec 03, 2001 Gideon Hack Updated for S514-5 56K adapter. * Sep 20, 2001 Nenad Corbic The min() function has changed for 2.4.9 * kernel. Thus using the wp_min() defined in * wanpipe.h * Sept 6, 2001 Alex Feldman Add SNMP support. * Aug 23, 2001 Nenad Corbic Removed the if_header and set the hard_header * length to zero. Caused problems with Checkpoint * firewall. * May 13, 2001 Alex Feldman Added T1/E1 support (TE1). * Feb 28, 2001 Nenad Corbic Updated if_tx_timeout() routine for * 2.4.X kernels. * Jan 25, 2001 Nenad Corbic Added a TTY Sync serial driver over the * HDLC streaming protocol * Added a TTY Async serial driver over the * Async protocol. * Dec 15, 2000 Nenad Corbic Updated for 2.4.X Kernel support * Nov 13, 2000 Nenad Corbic Added true interface type encoding option. * Tcpdump doesn't support CHDLC inteface * types, to fix this "true type" option will set * the interface type to RAW IP mode. * Nov 07, 2000 Nenad Corbic Added security features for UDP debugging: * Deny all and specify allowed requests. * Jun 20, 2000 Nenad Corbic Fixed the API IP ERROR bug. Caused by the * latest update. * May 09, 2000 Nenad Corbic Option to bring down an interface * upon disconnect. * Mar 23, 2000 Nenad Corbic Improved task queue, bh handling. * Mar 16, 2000 Nenad Corbic Fixed the SLARP Dynamic IP addressing. * Mar 06, 2000 Nenad Corbic Bug Fix: corrupted mbox recovery. * Feb 10, 2000 Gideon Hack Added ASYNC support. * Feb 09, 2000 Nenad Corbic Fixed two shutdown bugs in update() and * if_stats() functions. * Jan 24, 2000 Nenad Corbic Fixed a startup wanpipe state racing, * condition between if_open and isr. * Jan 10, 2000 Nenad Corbic Added new socket API support. * Dev 15, 1999 Nenad Corbic Fixed up header files for 2.0.X kernels * Nov 20, 1999 Nenad Corbic Fixed zero length API bug. * Sep 30, 1999 Nenad Corbic Fixed dynamic IP and route setup. * Sep 23, 1999 Nenad Corbic Added SMP support, fixed tracing * Sep 13, 1999 Nenad Corbic Split up Port 0 and 1 into separate devices. * Jun 02, 1999 Gideon Hack Added support for the S514 adapter. * Oct 30, 1998 Jaspreet Singh Added Support for CHDLC API (HDLC STREAMING). * Oct 28, 1998 Jaspreet Singh Added Support for Dual Port CHDLC. * Aug 07, 1998 David Fong Initial version. *****************************************************************************/ #include #include #include /* WANPIPE common user API definitions */ #include #include #include /* CHDLC firmware API definitions */ #include /* CHDLC (async) API definitions */ #include /* Socket Driver common area */ #include #include /****** Defines & Macros ****************************************************/ /* Private critical flags */ enum { POLL_CRIT = PRIV_CRIT, TX_INTR, TASK_POLL, TTY_HANGUP }; /* reasons for enabling the timer interrupt on the adapter */ #define TMR_INT_ENABLED_UDP 0x01 #define TMR_INT_ENABLED_UPDATE 0x02 #define TMR_INT_ENABLED_CONFIG 0x10 #define TMR_INT_ENABLED_TE 0x20 #define MAX_IP_ERRORS 10 #define TTY_CHDLC_MAX_MTU 2000 #define CHDLC_DFLT_DATA_LEN 1500 /* default MTU */ #define CHDLC_HDR_LEN 1 #define CHDLC_API 0x01 #define PORT(x) (x == 0 ? "PRIMARY" : "SECONDARY" ) #define MAX_BH_BUFF 10 /******Data Structures*****************************************************/ /* This structure is placed in the private data area of the device structure. * The card structure used to occupy the private area but now the following * structure will incorporate the card structure along with CHDLC specific data */ typedef struct chdlc_private_area { wanpipe_common_t common; sdla_t *card; int TracingEnabled; /* For enabling Tracing */ unsigned long curr_trace_addr; /* Used for Tracing */ unsigned long start_trace_addr; unsigned long end_trace_addr; unsigned long base_addr_trace_buffer; unsigned long end_addr_trace_buffer; unsigned short number_trace_elements; unsigned available_buffer_space; unsigned long router_start_time; unsigned char route_status; unsigned char route_removed; unsigned long tick_counter; /* For 5s timeout counter */ unsigned long router_up_time; u32 IP_address; /* IP addressing */ u32 IP_netmask; u32 ip_local; u32 ip_remote; u32 ip_local_tmp; u32 ip_remote_tmp; u8 ip_error; unsigned long config_chdlc; u8 config_chdlc_timeout; unsigned char mc; /* Mulitcast support on/off */ unsigned char udp_pkt_src; /* udp packet processing */ unsigned short timer_int_enabled; unsigned long update_comms_stats; /* updating comms stats */ unsigned long interface_down; /* Polling task queue. Each interface * has its own task queue, which is used * to defer events from the interrupt */ wan_taskq_t poll_task; struct timer_list poll_delay_timer; u8 gateway; u8 true_if_encoding; //FIXME: add driver stats as per frame relay! /* Entry in proc fs per each interface */ struct proc_dir_entry* dent; unsigned char udp_pkt_data[sizeof(wan_udp_pkt_t)+10]; atomic_t udp_pkt_len; char if_name[WAN_IFNAME_SZ+1]; netdevice_t *annexg_dev; unsigned char label[WAN_IF_LABEL_SZ+1]; } chdlc_private_area_t; /* Route Status options */ #define NO_ROUTE 0x00 #define ADD_ROUTE 0x01 #define ROUTE_ADDED 0x02 #define REMOVE_ROUTE 0x03 /* variable for keeping track of enabling/disabling FT1 monitor status */ static int rCount = 0; /* variable for tracking how many interfaces to open for WANPIPE on the two ports */ extern void disable_irq(unsigned int); extern void enable_irq(unsigned int); /****** Function Prototypes *************************************************/ /* WAN link driver entry points. These are called by the WAN router module. */ static int update (wan_device_t* wandev); static int new_if (wan_device_t* wandev, netdevice_t* dev, wanif_conf_t* conf); static int del_if(wan_device_t *wandev, netdevice_t *dev); /* Network device interface */ static int if_init (netdevice_t* dev); static int if_open (netdevice_t* dev); static int if_close (netdevice_t* dev); static int if_do_ioctl(netdevice_t *dev, struct ifreq *ifr, int cmd); static struct net_device_stats* if_stats (netdevice_t* dev); static int if_send (struct sk_buff* skb, netdevice_t* dev); /* CHDLC Firmware interface functions */ static int chdlc_configure (sdla_t* card, void* data); static int chdlc_comm_enable (sdla_t* card); static int chdlc_comm_disable (sdla_t* card); static int chdlc_read_version (sdla_t* card, char* str, int str_size); static int chdlc_set_intr_mode (sdla_t* card, unsigned mode); static int set_adapter_config (sdla_t* card); static int chdlc_send (sdla_t* card, void* data, unsigned len, unsigned char tx_bits); static int chdlc_read_comm_err_stats (sdla_t* card); static int chdlc_read_op_stats (sdla_t* card); static int chdlc_error (sdla_t *card, int err, wan_mbox_t *mb); static int chdlc_disable_comm_shutdown (sdla_t *card); static void if_tx_timeout (netdevice_t *dev); /* Miscellaneous CHDLC Functions */ static int set_chdlc_config (sdla_t* card); static void init_chdlc_tx_rx_buff( sdla_t* card); static int process_chdlc_exception(sdla_t *card); static int process_global_exception(sdla_t *card); static int update_comms_stats(sdla_t* card, chdlc_private_area_t* chdlc_priv_area); static int configure_ip (sdla_t* card, netdevice_t *dev); static int unconfigure_ip (sdla_t* card, netdevice_t *dev); static void process_route(sdla_t *card); static void port_set_state (sdla_t *card, int); static int config_chdlc (sdla_t *card, netdevice_t *dev); static void disable_comm (sdla_t *card); static void trigger_chdlc_poll (netdevice_t *); static void chdlc_poll_delay (unsigned long dev_ptr); static int chdlc_calibrate_baud (sdla_t *card); static int chdlc_read_baud_calibration (sdla_t *card); # if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)) static void chdlc_poll (void *); #else static void chdlc_poll (struct work_struct *work); #endif /* Miscellaneous asynchronous interface Functions */ static int set_asy_config (sdla_t* card); static int asy_comm_enable (sdla_t* card); /* Interrupt handlers */ static WAN_IRQ_RETVAL wpc_isr (sdla_t* card); static void rx_intr (sdla_t* card); static void timer_intr(sdla_t *); /* Bottom half handlers */ static void chdlc_bh (unsigned long data); /* Miscellaneous functions */ static int chk_bcast_mcast_addr(sdla_t* card, netdevice_t* dev, struct sk_buff *skb); static int reply_udp( unsigned char *data, unsigned int mbox_len ); static int intr_test( sdla_t* card); static int udp_pkt_type( struct sk_buff *skb , sdla_t* card); static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card, struct sk_buff *skb, netdevice_t* dev, chdlc_private_area_t* chdlc_priv_area); static int process_udp_mgmt_pkt(sdla_t* card, netdevice_t* dev, chdlc_private_area_t* chdlc_priv_area, int local_dev); static unsigned short calc_checksum (char *, int); static void s508_lock (sdla_t *card, unsigned long *smp_flags); static void s508_unlock (sdla_t *card, unsigned long *smp_flags); /* TTY Global Definitions */ #define NR_PORTS 4 #define WAN_TTY_MAJOR 240 #define WAN_TTY_MINOR 0 #define WAN_CARD(port) (tty_card_map[port]) #define MIN_PORT 0 #define MAX_PORT NR_PORTS-1 #define CRC_LENGTH 2 #define MAX_TTY_RX_BUF 30 #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) static int wanpipe_tty_init(sdla_t *card); static void wanpipe_tty_receive(sdla_t *, unsigned, unsigned int); static int wanpipe_tty_trigger_poll(sdla_t *card); static struct tty_driver serial_driver; static int tty_init_cnt=0; static struct serial_state rs_table[NR_PORTS]; #ifndef LINUX_2_6 static int serial_refcount=1; static struct tty_struct *serial_table[NR_PORTS]; static struct tty_driver callout_driver; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #endif static char tty_driver_mode=WANOPT_TTY_SYNC; #endif #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) static char *opt_decode[] = {"NONE","CRTSCTS","XONXOFF-RX", "CRTSCTS XONXOFF-RX","XONXOFF-TX", "CRTSCTS XONXOFF-TX","CRTSCTS XONXOFF"}; static char *p_decode[] = {"NONE","ODD","EVEN"}; static void* tty_card_map[NR_PORTS] = {NULL,NULL,NULL,NULL}; #endif static int chdlc_get_config_info(void* priv, struct seq_file* m, int*); static int chdlc_get_status_info(void* priv, struct seq_file* m, int*); static int chdlc_set_dev_config(struct file*, const char*, unsigned long, void *); static int chdlc_set_if_info(struct file*, const char*, unsigned long, void *); /* TE1 */ static WRITE_FRONT_END_REG_T write_front_end_reg; static READ_FRONT_END_REG_T read_front_end_reg; static void chdlc_enable_timer(void* card_id); static void chdlc_handle_front_end_state(void* card_id); /* Debugging */ static int chdlc_debugging(sdla_t* card); static unsigned long chdlc_crc_frames(sdla_t* card); static unsigned long chdlc_abort_frames(sdla_t * card); static unsigned long chdlc_tx_underun_frames(sdla_t* card); /****** Public Functions ****************************************************/ /*============================================================================ * wpc_init - Cisco HDLC protocol initialization routine. * * @card: Wanpipe card pointer * @conf: User hardware/firmware/general protocol configuration * pointer. * * This routine is called by the main WANPIPE module * during setup: ROUTER_SETUP ioctl(). * * At this point adapter is completely initialized * and firmware is running. * o read firmware version (to make sure it's alive) * o configure adapter * o initialize protocol-specific fields of the adapter data space. * * Return: 0 o.k. * < 0 failure. */ int wpc_init (sdla_t* card, wandev_conf_t* conf) { unsigned char port_num; int err; unsigned long max_permitted_baud = 0; char str[80]; volatile wan_mbox_t* mb; wan_mbox_t* mb1; unsigned long timeout; /* Verify configuration ID */ if (conf->config_id != WANCONFIG_CHDLC) { printk(KERN_INFO "%s: invalid configuration ID %u!\n", card->devname, conf->config_id); return -EINVAL; } /* Find out which Port to use */ if ((conf->comm_port == WANOPT_PRI) || (conf->comm_port == WANOPT_SEC)){ if (card->next){ if (conf->comm_port != card->next->u.c.comm_port){ card->u.c.comm_port = conf->comm_port; }else{ printk(KERN_INFO "%s: ERROR - %s port used!\n", card->wandev.name, PORT(conf->comm_port)); return -EINVAL; } }else{ card->u.c.comm_port = conf->comm_port; } }else{ printk(KERN_INFO "%s: ERROR - Invalid Port Selected!\n", card->wandev.name); return -EINVAL; } /* Initialize protocol-specific fields */ /* ALEX: Apr 8 2004 SANGOMA ISA CARD */ /* for a PCI/ISA adapters, set a pointer to the actual mailbox in the */ /* allocated virtual memory area */ if (card->u.c.comm_port == WANOPT_PRI){ card->mbox_off = PRI_BASE_ADDR_MB_STRUCT; }else{ card->mbox_off = SEC_BASE_ADDR_MB_STRUCT; } mb = &card->wan_mbox; mb1 = &card->wan_mbox; if (!card->configured){ unsigned char return_code = 0x00; /* The board will place an 'I' in the return code to indicate that it is ready to accept commands. We expect this to be completed in less than 1 second. */ timeout = jiffies; do { return_code = 0x00; card->hw_iface.peek(card->hw, card->mbox_off+offsetof(wan_mbox_t, wan_return_code), &return_code, sizeof(unsigned char)); if ((jiffies - timeout) > 1*HZ) break; }while(return_code != 'I'); if (return_code != 'I') { printk(KERN_INFO "%s: Initialization not completed by adapter\n", card->devname); printk(KERN_INFO "Please contact Sangoma representative.\n"); return -EIO; } } card->wandev.clocking = conf->clocking; card->wandev.ignore_front_end_status = conf->ignore_front_end_status; card->wandev.line_idle = conf->line_idle; card->wandev.line_coding = conf->line_coding; card->wandev.connection = conf->connection; err = (card->hw_iface.check_mismatch) ? card->hw_iface.check_mismatch(card->hw,conf->fe_cfg.media) : -EINVAL; if (err){ return err; } /* TE1 Make special hardware initialization for T1/E1 board */ if (IS_TE1_MEDIA(&conf->fe_cfg)){ memcpy(&card->fe.fe_cfg, &conf->fe_cfg, sizeof(sdla_fe_cfg_t)); sdla_te_iface_init(&card->wandev.fe_iface); card->fe.name = card->devname; card->fe.card = card; card->fe.write_fe_reg = write_front_end_reg; card->fe.read_fe_reg = read_front_end_reg; card->wandev.fe_enable_timer = chdlc_enable_timer; card->wandev.te_link_state = chdlc_handle_front_end_state; conf->interface = (IS_T1_CARD(card)) ? WANOPT_V35 : WANOPT_RS232; if (card->u.c.comm_port == WANOPT_PRI){ conf->clocking = WANOPT_EXTERNAL; } }else if (IS_56K_MEDIA(&conf->fe_cfg)){ memcpy(&card->fe.fe_cfg, &conf->fe_cfg, sizeof(sdla_fe_cfg_t)); sdla_56k_iface_init(&card->wandev.fe_iface); card->fe.name = card->devname; card->fe.card = card; card->fe.write_fe_reg = write_front_end_reg; card->fe.read_fe_reg = read_front_end_reg; if (card->u.c.comm_port == WANOPT_PRI){ conf->clocking = WANOPT_EXTERNAL; } }else{ card->fe.fe_status = FE_CONNECTED; } if (card->wandev.ignore_front_end_status == WANOPT_NO){ printk(KERN_INFO "%s: Enabling front end link monitor\n", card->devname); }else{ printk(KERN_INFO "%s: Disabling front end link monitor\n", card->devname); } /* Read firmware version. Note that when adapter initializes, it * clears the mailbox, so it may appear that the first command was * executed successfully when in fact it was merely erased. To work * around this, we execute the first command twice. */ if (chdlc_read_version(card, str, sizeof(str))) return -EIO; printk(KERN_INFO "%s: Running Cisco HDLC firmware v%s\n", card->devname, str); if (set_adapter_config(card)) { return -EIO; } card->isr = &wpc_isr; card->poll = NULL; card->exec = NULL; card->wandev.update = &update; card->wandev.new_if = &new_if; card->wandev.del_if = &del_if; card->wandev.udp_port = conf->udp_port; card->wandev.new_if_cnt = 0; atomic_set(&card->wandev.if_cnt,0); // Proc fs functions card->wandev.get_config_info = &chdlc_get_config_info; card->wandev.get_status_info = &chdlc_get_status_info; card->wandev.set_dev_config = &chdlc_set_dev_config; card->wandev.set_if_info = &chdlc_set_if_info; // Debugging card->wan_debugging = &chdlc_debugging; card->get_crc_frames = &chdlc_crc_frames; card->get_abort_frames = &chdlc_abort_frames; card->get_tx_underun_frames = &chdlc_tx_underun_frames; /* reset the number of times the 'update()' proc has been called */ card->u.c.update_call_count = 0; card->wandev.ttl = conf->ttl; card->wandev.interface = conf->interface; if ((card->u.c.comm_port == WANOPT_SEC && conf->interface == WANOPT_V35)&& card->type != SDLA_S514){ printk(KERN_INFO "%s: ERROR - V35 Interface not supported on S508 %s port \n", card->devname, PORT(card->u.c.comm_port)); return -EIO; } port_num = card->u.c.comm_port; /* in API mode, we can configure for "receive only" buffering */ if(card->type == SDLA_S514) { card->u.c.receive_only = conf->receive_only; if(conf->receive_only) { printk(KERN_INFO "%s: Configured for 'receive only' mode\n", card->devname); } } /* Setup Port Bps */ if(card->wandev.clocking) { if((port_num == WANOPT_PRI) || card->u.c.receive_only) { /* For Primary Port 0 */ max_permitted_baud = (card->type == SDLA_S514) ? PRI_MAX_BAUD_RATE_S514 : PRI_MAX_BAUD_RATE_S508; }else if(port_num == WANOPT_SEC) { /* For Secondary Port 1 */ max_permitted_baud = (card->type == SDLA_S514) ? SEC_MAX_BAUD_RATE_S514 : SEC_MAX_BAUD_RATE_S508; } if(conf->bps > max_permitted_baud) { conf->bps = max_permitted_baud; printk(KERN_INFO "%s: Baud too high!\n", card->wandev.name); printk(KERN_INFO "%s: Baud rate set to %lu bps\n", card->wandev.name, max_permitted_baud); } card->wandev.bps = conf->bps; }else{ card->wandev.bps = 0; } /* Setup the Port MTU */ if((port_num == WANOPT_PRI) || card->u.c.receive_only) { /* For Primary Port 0 */ card->wandev.mtu = (conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ? wp_min(conf->mtu, PRI_MAX_NO_DATA_BYTES_IN_FRAME) : CHDLC_DFLT_DATA_LEN; } else if(port_num == WANOPT_SEC) { /* For Secondary Port 1 */ card->wandev.mtu = (conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ? wp_min(conf->mtu, SEC_MAX_NO_DATA_BYTES_IN_FRAME) : CHDLC_DFLT_DATA_LEN; } if (conf->u.chdlc.fast_isr == WANOPT_YES){ DEBUG_EVENT("%s: Configuring Fast Interrupt Handlers\n", card->devname); card->u.c.protocol_options|=INSTALL_FAST_INT_HANDLERS; } /* Set up the interrupt status area */ /* Read the CHDLC Configuration and obtain: * Ptr to shared memory infor struct * Use this pointer to calculate the value of card->u.c.flags ! */ mb1->wan_data_len = 0; mb1->wan_command = READ_CHDLC_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb1); if(err != COMMAND_OK) { if(card->type != SDLA_S514) enable_irq(card->wandev.irq); chdlc_error(card, err, mb1); return -EIO; } /* ALEX: Apr 8 2004 SANGOMA ISA CARD */ card->flags_off = ((CHDLC_CONFIGURATION_STRUCT *)mb1->wan_data)-> ptr_shared_mem_info_struct; card->intr_type_off = card->flags_off + offsetof(SHARED_MEMORY_INFO_STRUCT, interrupt_info_struct) + offsetof(INTERRUPT_INFORMATION_STRUCT, interrupt_type); card->intr_perm_off = card->flags_off + offsetof(SHARED_MEMORY_INFO_STRUCT, interrupt_info_struct) + offsetof(INTERRUPT_INFORMATION_STRUCT, interrupt_permission); card->fe_status_off = card->flags_off + offsetof(SHARED_MEMORY_INFO_STRUCT, FT1_info_struct) + offsetof(FT1_INFORMATION_STRUCT, parallel_port_A_input); /* This is for the ports link state */ card->wandev.state = WAN_DUALPORT; card->u.c.state = WAN_DISCONNECTED; if (!card->wandev.piggyback){ int err; /* Perform interrupt testing */ err = intr_test(card); if(err || (card->timer_int_enabled < 1)) { printk(KERN_INFO "%s: Interrupt test failed (%i)\n", card->devname, card->timer_int_enabled); printk(KERN_INFO "%s: Please choose another interrupt\n", card->devname); return -EIO; } printk(KERN_INFO "%s: Interrupt test passed (%i)\n", card->devname, card->timer_int_enabled); card->configured = 1; } if ((card->tty_opt=conf->tty) == WANOPT_YES){ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) printk (KERN_INFO "%s: Driver doesnt support tty for 2.6.15 kernels and above !\n", card->devname); return -EINVAL; #endif #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) { int err; card->tty_minor = conf->tty_minor; /* On ASYNC connections internal clocking * is mandatory */ if ((card->u.c.async_mode = conf->tty_mode)){ card->wandev.clocking = 1; } err=wanpipe_tty_init(card); if (err){ return err; } } #else printk (KERN_INFO "%s: Driver doesn support tty for 2.6.X kernel!\n", card->devname); return -EINVAL; #endif }else{ if (chdlc_set_intr_mode(card, APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: Failed to set interrupt triggers!\n", card->devname); return -EIO; } /* Mask the Timer interrupt */ card->hw_iface.clear_bit(card->hw, card->intr_perm_off, APP_INT_ON_TIMER); } /* If we are using CHDLC in backup mode, this flag will * indicate not to look for IP addresses in config_chdlc()*/ card->u.c.backup = conf->backup; card->disable_comm = &disable_comm; printk(KERN_INFO "\n"); return 0; } /******* WAN Device Driver Entry Points *************************************/ /*============================================================================ * update - Update wanpipe device status & statistics * * @wandev: Wanpipe device pointer * * This procedure is called when updating the PROC file system. * It returns various communications statistics. * * cat /proc/net/wanrouter/wanpipe# (where #=1,2,3...) * * These statistics are accumulated from 3 * different locations: * 1) The 'if_stats' recorded for the device. * 2) Communication error statistics on the adapter. * 3) CHDLC operational statistics on the adapter. * * The board level statistics are read during a timer interrupt. * Note that we read the error and operational statistics * during consecitive timer ticks so as to minimize the time * that we are inside the interrupt handler. * */ static int update (wan_device_t* wandev) { sdla_t* card = wandev->private; netdevice_t *dev; chdlc_private_area_t* chdlc_priv_area; unsigned long smp_flags; #if 0 SHARED_MEMORY_INFO_STRUCT *flags; unsigned long timeout; #endif /* sanity checks */ if((wandev == NULL) || (wandev->private == NULL)) return -EFAULT; if(wandev->state == WAN_UNCONFIGURED) return -ENODEV; /* more sanity checks */ if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) return -EAGAIN; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev == NULL) return -ENODEV; if((chdlc_priv_area = wan_netif_priv(dev)) == NULL) return -ENODEV; #if 0 flags = card->u.c.flags; #endif if(test_and_set_bit(0,&chdlc_priv_area->update_comms_stats)){ return -EAGAIN; } /* TE1 Change the update_comms_stats variable to 3, * only for T1/E1 card, otherwise 2 for regular * S514/S508 card. * Each timer interrupt will update only one type * of statistics. */ #if 0 chdlc_priv_area->update_comms_stats = (IS_TE1_CARD(card) || IS_56K_CARD(card)) ? 3 : 2; flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER; card->u.c.timer_int_enabled = TMR_INT_ENABLED_UPDATE; /* wait a maximum of 1 second for the statistics to be updated */ timeout = jiffies; for(;;) { if(chdlc_priv_area->update_comms_stats == 0) break; if ((jiffies - timeout) > (1 * HZ)){ chdlc_priv_area->update_comms_stats = 0; card->u.c.timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE; return -EAGAIN; } } #else spin_lock_irqsave(&card->wandev.lock, smp_flags); update_comms_stats(card, chdlc_priv_area); chdlc_priv_area->update_comms_stats=0; spin_unlock_irqrestore(&card->wandev.lock, smp_flags); #endif return 0; } /*============================================================================ * new_if - Create new logical channel. * * &wandev: Wanpipe device pointer * &dev: Network device pointer * &conf: User configuration options pointer * * This routine is called by the ROUTER_IFNEW ioctl, * in wanmain.c. The ioctl passes us the user configuration * options which we use to configure the driver and * firmware. * * This functions main purpose is to allocate the * private structure for CHDLC protocol and bind it * to dev->priv pointer. * * Also the dev->init pointer should also be initialized * to the if_init() function. * * Any allocation necessary for the private strucutre * should be done here, as well as proc/ file initializetion * for the network interface. * * o parse media- and hardware-specific configuration * o make sure that a new channel can be created * o allocate resources, if necessary * o prepare network device structure for registaration. * o add network interface to the /proc/net/wanrouter * * The opposite of this function is del_if() * * Return: 0 o.k. * < 0 failure (channel will not be created) */ static int new_if (wan_device_t* wandev, netdevice_t* dev, wanif_conf_t* conf) { sdla_t* card = wandev->private; chdlc_private_area_t* chdlc_priv_area; int err = 0; printk(KERN_INFO "%s: Configuring Interface: %s\n", card->devname, conf->name); if ((conf->name[0] == '\0') || (strlen(conf->name) > WAN_IFNAME_SZ)) { printk(KERN_INFO "%s: Invalid interface name!\n", card->devname); return -EINVAL; } /* allocate and initialize private data */ chdlc_priv_area = kmalloc(sizeof(chdlc_private_area_t), GFP_KERNEL); if(chdlc_priv_area == NULL){ WAN_MEM_ASSERT(card->devname); return -ENOMEM; } memset(chdlc_priv_area, 0, sizeof(chdlc_private_area_t)); chdlc_priv_area->card = card; strcpy(chdlc_priv_area->if_name, conf->name); WAN_TASKLET_INIT((&chdlc_priv_area->common.bh_task),0,chdlc_bh,(unsigned long)chdlc_priv_area); if (atomic_read(&card->wandev.if_cnt) > 0){ err=-EEXIST; goto new_if_error; } chdlc_priv_area->TracingEnabled = 0; chdlc_priv_area->route_status = NO_ROUTE; chdlc_priv_area->route_removed = 0; card->u.c.async_mode = conf->async_mode; /* setup for asynchronous mode */ if(conf->async_mode) { printk(KERN_INFO "%s: Configuring for asynchronous mode\n", wandev->name); if(card->u.c.comm_port == WANOPT_PRI) { printk(KERN_INFO "%s:Asynchronous mode on secondary port only\n", wandev->name); err=-EINVAL; goto new_if_error; } if(strcmp(conf->usedby, "WANPIPE") == 0) { printk(KERN_INFO "%s: Running in WANIPE Async Mode\n", wandev->name); chdlc_priv_area->common.usedby = WANPIPE; }else{ chdlc_priv_area->common.usedby = API; wan_reg_api(chdlc_priv_area, dev, card->devname); } if(!card->wandev.clocking) { printk(KERN_INFO "%s: Asynch. clocking must be 'Internal'\n", wandev->name); err=-EINVAL; goto new_if_error; } if((card->wandev.bps < MIN_ASY_BAUD_RATE) || (card->wandev.bps > MAX_ASY_BAUD_RATE)) { printk(KERN_INFO "%s: Selected baud rate is invalid.\n", wandev->name); printk(KERN_INFO "Must be between %u and %u bps.\n", MIN_ASY_BAUD_RATE, MAX_ASY_BAUD_RATE); err=-EINVAL; goto new_if_error; } card->u.c.api_options = 0; if (conf->asy_data_trans == WANOPT_YES) { card->u.c.api_options |= ASY_RX_DATA_TRANSPARENT; } card->u.c.protocol_options = 0; if (conf->rts_hs_for_receive == WANOPT_YES) { card->u.c.protocol_options |= ASY_RTS_HS_FOR_RX; } if (conf->xon_xoff_hs_for_receive == WANOPT_YES) { card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_RX; } if (conf->xon_xoff_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_TX; } if (conf->dcd_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_DCD_HS_FOR_TX; } if (conf->cts_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_CTS_HS_FOR_TX; } card->u.c.tx_bits_per_char = conf->tx_bits_per_char; card->u.c.rx_bits_per_char = conf->rx_bits_per_char; card->u.c.stop_bits = conf->stop_bits; card->u.c.parity = conf->parity; card->u.c.break_timer = conf->break_timer; card->u.c.inter_char_timer = conf->inter_char_timer; card->u.c.rx_complete_length = conf->rx_complete_length; card->u.c.xon_char = conf->xon_char; } else { /* setup for synchronous mode */ if (conf->ignore_dcd == WANOPT_YES){ card->u.c.protocol_options |= IGNORE_DCD_FOR_LINK_STAT; } if (conf->ignore_cts == WANOPT_YES){ card->u.c.protocol_options |= IGNORE_CTS_FOR_LINK_STAT; } if (conf->ignore_keepalive == WANOPT_YES) { card->u.c.protocol_options |= IGNORE_KPALV_FOR_LINK_STAT; card->u.c.kpalv_tx = MIN_Tx_KPALV_TIMER; card->u.c.kpalv_rx = MIN_Rx_KPALV_TIMER; card->u.c.kpalv_err = MIN_KPALV_ERR_TOL; } else { /* Do not ignore keepalives */ card->u.c.kpalv_tx = ((conf->keepalive_tx_tmr - MIN_Tx_KPALV_TIMER) >= 0) ? wp_min(conf->keepalive_tx_tmr,MAX_Tx_KPALV_TIMER) : DEFAULT_Tx_KPALV_TIMER; card->u.c.kpalv_rx = ((conf->keepalive_rx_tmr - MIN_Rx_KPALV_TIMER) >= 0) ? wp_min(conf->keepalive_rx_tmr,MAX_Rx_KPALV_TIMER) : DEFAULT_Rx_KPALV_TIMER; card->u.c.kpalv_err = ((conf->keepalive_err_margin-MIN_KPALV_ERR_TOL) >= 0) ? wp_min(conf->keepalive_err_margin, MAX_KPALV_ERR_TOL) : DEFAULT_KPALV_ERR_TOL; } /* Setup slarp timer to control delay between slarps */ card->u.c.slarp_timer = ((conf->slarp_timer - MIN_SLARP_REQ_TIMER) >= 0) ? wp_min(conf->slarp_timer, MAX_SLARP_REQ_TIMER) : DEFAULT_SLARP_REQ_TIMER; if (conf->hdlc_streaming == WANOPT_YES) { printk(KERN_INFO "%s: Enabling HDLC STREAMING Mode\n", wandev->name); card->u.c.protocol_options |= HDLC_STREAMING_MODE; } if ((chdlc_priv_area->true_if_encoding = conf->true_if_encoding) == WANOPT_YES){ printk(KERN_INFO "%s: Enabling, true interface type encoding.\n", card->devname); } /* Setup wanpipe as a router (WANPIPE) or as an API */ if( strcmp(conf->usedby, "WANPIPE") == 0) { printk(KERN_INFO "%s: Running in WANPIPE mode!\n", wandev->name); chdlc_priv_area->common.usedby = WANPIPE; /* Option to bring down the interface when * the link goes down */ if (conf->if_down){ set_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down); printk(KERN_INFO "%s:%s: Dynamic interface configuration enabled\n", card->devname,chdlc_priv_area->if_name); } } else if( strcmp(conf->usedby, "API") == 0) { chdlc_priv_area->common.usedby = API; printk(KERN_INFO "%s:%s: Running in API mode !\n", wandev->name,chdlc_priv_area->if_name); wan_reg_api(chdlc_priv_area, dev, card->devname); }else if (strcmp(conf->usedby, "BRIDGE") == 0) { chdlc_priv_area->common.usedby = BRIDGE; printk(KERN_INFO "%s:%s: Running in WANPIPE (BRIDGE) mode.\n", card->devname,chdlc_priv_area->if_name); }else if (strcmp(conf->usedby, "BRIDGE_N") == 0) { chdlc_priv_area->common.usedby = BRIDGE_NODE; printk(KERN_INFO "%s:%s: Running in WANPIPE (BRIDGE_NODE) mode.\n", card->devname,chdlc_priv_area->if_name); }else{ printk(KERN_INFO "%s:%s: Error: Invalid operation mode [WANPIPE|API|BRIDGE|BRIDGE_N]\n", card->devname,chdlc_priv_area->if_name); err=-EINVAL; goto new_if_error; } } /* Tells us that if this interface is a * gateway or not */ if ((chdlc_priv_area->gateway = conf->gateway) == WANOPT_YES){ printk(KERN_INFO "%s: Interface %s is set as a gateway.\n", card->devname,chdlc_priv_area->if_name); } if (conf->single_tx_buf) { DEBUG_EVENT("%s: Enabling Single Tx Buffer \n",chdlc_priv_area->if_name); card->u.c.protocol_options|=SINGLE_TX_BUFFER; } /* Get Multicast Information */ chdlc_priv_area->mc = conf->mc; /* prepare network device data space for registration */ /* Initialize the polling task routine */ WAN_TASKQ_INIT((&chdlc_priv_area->poll_task),0,chdlc_poll,dev); /* Initialize the polling delay timer */ init_timer(&chdlc_priv_area->poll_delay_timer); chdlc_priv_area->poll_delay_timer.data = (unsigned long)dev; chdlc_priv_area->poll_delay_timer.function = chdlc_poll_delay; /* * Create interface file in proc fs. * Once the proc file system is created, the new_if() function * should exit successfuly. * * DO NOT place code under this function that can return * anything else but 0. */ err = wanrouter_proc_add_interface(wandev, &chdlc_priv_area->dent, chdlc_priv_area->if_name, dev); if (err){ printk(KERN_INFO "%s: can't create /proc/net/router/fr/%s entry!\n", card->devname, chdlc_priv_area->if_name); goto new_if_error; } /* Only setup the dev pointer once the new_if function has * finished successfully. DO NOT place any code below that * can return an error */ dev->init = &if_init; dev->priv = chdlc_priv_area; set_bit(0,&chdlc_priv_area->config_chdlc); atomic_inc(&card->wandev.if_cnt); printk(KERN_INFO "\n"); return 0; new_if_error: WAN_TASKLET_KILL(&chdlc_priv_area->common.bh_task); wan_unreg_api(chdlc_priv_area, card->devname); kfree(chdlc_priv_area); dev->priv=NULL; return err; } /*============================================================================ * del_if - Delete logical channel. * * @wandev: Wanpipe private device pointer * @dev: Netowrk interface pointer * * This function is called by ROUTER_DELIF ioctl call * to deallocate the network interface. * * The network interface and the private structure are * about to be deallocated by the upper layer. * We have to clean and deallocate any allocated memory. * */ static int del_if (wan_device_t* wandev, netdevice_t* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; WAN_TASKLET_KILL(&chdlc_priv_area->common.bh_task); wan_unreg_api(chdlc_priv_area, card->devname); /* Delete interface name from proc fs. */ wanrouter_proc_delete_interface(wandev, chdlc_priv_area->if_name); atomic_dec(&card->wandev.if_cnt); return 0; } /****** Network Device Interface ********************************************/ /*============================================================================ * if_init - Initialize Linux network interface. * * @dev: Network interface pointer * * During "ifconfig up" the upper layer calls this function * to initialize dev access pointers. Such as transmit, * stats and header. * * It is called only once for each interface, * during Linux network interface registration. * * Returning anything but zero will fail interface * registration. */ static int if_init (netdevice_t* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; wan_device_t* wandev = &card->wandev; /* Initialize device driver entry points */ dev->open = &if_open; dev->stop = &if_close; dev->hard_header = NULL; dev->rebuild_header = NULL; dev->hard_start_xmit = &if_send; dev->get_stats = &if_stats; #if defined(LINUX_2_4)||defined(LINUX_2_6) dev->tx_timeout = &if_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; #endif dev->do_ioctl = if_do_ioctl; if (chdlc_priv_area->common.usedby == BRIDGE || chdlc_priv_area->common.usedby == BRIDGE_NODE){ /* Setup the interface for Bridging */ int hw_addr=0; ether_setup(dev); /* Use a random number to generate the MAC address */ memcpy(dev->dev_addr, "\xFE\xFC\x00\x00\x00\x00", 6); get_random_bytes(&hw_addr, sizeof(hw_addr)); *(int *)(dev->dev_addr + 2) += hw_addr; }else{ /* Initialize media-specific parameters */ dev->flags |= IFF_POINTOPOINT; dev->flags |= IFF_NOARP; /* Enable Mulitcasting if user selected */ if (chdlc_priv_area->mc == WANOPT_YES){ dev->flags |= (IFF_MULTICAST|IFF_ALLMULTI); } if (chdlc_priv_area->true_if_encoding){ dev->type = ARPHRD_HDLC; /* This breaks the tcpdump */ }else{ dev->type = ARPHRD_PPP; } dev->mtu = card->wandev.mtu; /* for API usage, add the API header size to the requested MTU size */ if(chdlc_priv_area->common.usedby == API) { dev->mtu += sizeof(api_tx_hdr_t); } dev->hard_header_len = 0; } /* Initialize hardware parameters */ dev->irq = wandev->irq; dev->dma = wandev->dma; dev->base_addr = wandev->ioport; card->hw_iface.getcfg(card->hw, SDLA_MEMBASE, &dev->mem_start); card->hw_iface.getcfg(card->hw, SDLA_MEMEND, &dev->mem_end); /* Set transmit buffer queue length * If too low packets will not be retransmitted * by stack. */ dev->tx_queue_len = 100; return 0; } /*============================================================================ * if_open - Open network interface. * * @dev: Network device pointer * * On ifconfig up, this function gets called in order * to initialize and configure the private area. * Driver should be configured to send and receive data. * * This functions starts a timer that will call * chdlc_config() function. This function must be called * because the IP addresses could have been changed * for this interface. * * Return 0 if O.k. or errno. */ static int if_open (netdevice_t* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; struct timeval tv; int err = 0; /* Only one open per interface is allowed */ if (open_dev_check(dev)) return -EBUSY; do_gettimeofday(&tv); chdlc_priv_area->router_start_time = tv.tv_sec; netif_start_queue(dev); /* Increment the module usage count */ wanpipe_open(card); /* TTY is configured during wanpipe_set_termios * call, not here */ if (card->tty_opt) return err; /* Each time we bring the interface up we must * run chdlc_config() because the ip addresses might * have changed and we must report those to * firmware. Thus, we delay the config until the * interface starts up and all ip information has * been setup */ set_bit(0,&chdlc_priv_area->config_chdlc); chdlc_priv_area->config_chdlc_timeout=jiffies; del_timer(&chdlc_priv_area->poll_delay_timer); /* Start the CHDLC configuration after 1sec delay. * This will give the interface initilization time * to finish its configuration */ chdlc_priv_area->poll_delay_timer.expires=jiffies+HZ; add_timer(&chdlc_priv_area->poll_delay_timer); return err; } /*============================================================================ * if_close - Close network interface. * * @dev: Network device pointer * * On ifconfig down, this function gets called in order * to cleanup interace private area. * * IMPORTANT: * * No deallocation or unconfiguration should ever occur in this * function, because the interface can come back up * (via ifconfig up). * * Furthermore, in dynamic interfacace configuration mode, the * interface will come up and down to reflect the protocol state. * * Any private deallocation and cleanup can occur in del_if() * function. That function is called before the dev interface * itself is deallocated. * * Thus, we should only stop the net queue and decrement * the wanpipe usage counter via wanpipe_close() function. */ static int if_close (netdevice_t* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; stop_net_queue(dev); #if defined(LINUX_2_1) dev->start=0; #endif wanpipe_close(card); del_timer(&chdlc_priv_area->poll_delay_timer); if (chdlc_priv_area->common.usedby == API){ unsigned long smp_flags; spin_lock_irqsave(&card->wandev.lock,smp_flags); wan_unbind_api_from_svc(chdlc_priv_area, chdlc_priv_area->common.sk); spin_unlock_irqrestore(&card->wandev.lock,smp_flags); } return 0; } /*============================================================= * disable_comm - Main shutdown function * * @card: Wanpipe device pointer * * The command 'wanrouter stop' has been called * and the whole wanpipe device is going down. * This is the last function called to disable * all comunications and deallocate any memory * that is still allocated. * * o Disable communications, turn off interrupts * o Deallocate memory used * o Unconfigure TE1 card */ static void disable_comm (sdla_t *card) { unsigned long smp_flags; struct serial_state * state; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); if (card->u.c.comm_enabled){ chdlc_disable_comm_shutdown (card); }else{ card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); } wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); /* TE1 - Unconfiging, only on shutdown */ if (IS_TE1_CARD(card)) { if (card->wandev.fe_iface.unconfig){ card->wandev.fe_iface.unconfig(&card->fe); } } #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) if (card->tty_opt){ if (!tty_init_cnt){ return; } if (!(--tty_init_cnt)){ int e1; #ifndef LINUX_2_6 *serial_driver.refcount=0; #endif if ((e1 = tty_unregister_driver(&serial_driver))) printk(KERN_INFO "SERIAL: failed to unregister serial driver (%d)\n", e1); #ifndef LINUX_2_6 if ((e1 = tty_unregister_driver(&callout_driver))) printk(KERN_INFO "SERIAL: failed to unregister callout driver (%d)\n", e1); #endif printk(KERN_INFO "%s: Unregistering TTY Driver, Major %i\n", card->devname,WAN_TTY_MAJOR); } wan_spin_lock_irq(&card->wandev.lock,&smp_flags); card->tty=NULL; tty_card_map[card->tty_minor]=NULL; state = &rs_table[card->tty_minor]; memset(state,0,sizeof(*state)); wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); } #endif return; } /*============================================================================ * Handle transmit timeout event from netif watchdog */ static void if_tx_timeout (netdevice_t *dev) { chdlc_private_area_t* chan = dev->priv; sdla_t *card = chan->card; /* If our device stays busy for at least 5 seconds then we will * kick start the device by making dev->tbusy = 0. We expect * that our device never stays busy more than 5 seconds. So this * is only used as a last resort. */ ++card->wandev.stats.collisions; printk (KERN_INFO "%s: Transmit timed out on %s\n", card->devname,dev->name); netif_wake_queue (dev); } /*============================================================================ * if_send - Send a packet on a network interface. * * @dev: Network interface pointer * @skb: Packet obtained from the stack or API * that should be sent out the port. * * o set tbusy flag (marks start of the transmission) to * block a timer-based transmit from overlapping. * o check link state. If link is not up, then drop the packet. * o execute adapter send command. * o free socket buffer if the send is successful, otherwise * return non zero value and push the packet back into * the stack. Also set the tx interrupt to wake up the * stack when the firmware is able to send. * * Return: 0 complete (socket buffer must be freed) * non-0 packet may be re-transmitted (tbusy must be set) * * Notes: * 1. This routine is called either by the protocol stack or by the "net * bottom half" (with interrupts enabled). * 2. Setting tbusy flag will inhibit further transmit requests from the * protocol stack and can be used for flow control with protocol layer. */ static int if_send (struct sk_buff* skb, netdevice_t* dev) { chdlc_private_area_t *chdlc_priv_area = dev->priv; sdla_t *card = chdlc_priv_area->card; int udp_type = 0; unsigned long smp_flags=0; int err=0; unsigned char misc_Tx_bits = 0; #if defined(LINUX_2_4)||defined(LINUX_2_6) netif_stop_queue(dev); #endif if (skb == NULL){ /* If we get here, some higher layer thinks we've missed an * tx-done interrupt. */ printk(KERN_INFO "%s: interface %s got kicked!\n", card->devname, dev->name); wake_net_dev(dev); return 0; } #if defined(LINUX_2_1) if (dev->tbusy){ ++card->wandev.stats.collisions; if((jiffies - chdlc_priv_area->tick_counter) < (5 * HZ)) { return 1; } if_tx_timeout (dev); } #endif if (chdlc_priv_area->common.usedby != ANNEXG && skb->protocol != htons(PVC_PROT)){ /* check the udp packet type */ udp_type = udp_pkt_type(skb, card); if (udp_type == UDP_CPIPE_TYPE){ if(store_udp_mgmt_pkt(UDP_PKT_FRM_STACK, card, skb, dev, chdlc_priv_area)){ card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TIMER); } start_net_queue(dev); return 0; } /* check to see if the source IP address is a broadcast or */ /* multicast IP address */ if(chdlc_priv_area->common.usedby == WANPIPE && chk_bcast_mcast_addr(card, dev, skb)){ ++card->wandev.stats.tx_dropped; wan_skb_free(skb); start_net_queue(dev); return 0; } } /* Lock the 508 Card: SMP is supported */ if(card->type != SDLA_S514){ s508_lock(card,&smp_flags); } if(test_and_set_bit(SEND_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Critical in if_send: %lx\n", card->wandev.name,card->wandev.critical); ++card->wandev.stats.tx_dropped; goto if_send_exit_crit; } if(card->wandev.state != WAN_CONNECTED){ ++card->wandev.stats.tx_dropped; }else if(!skb->protocol){ ++card->wandev.stats.tx_errors; }else { void* data = skb->data; unsigned len = skb->len; unsigned char attr; /* If it's an API packet pull off the API * header. Also check that the packet size * is larger than the API header */ if (chdlc_priv_area->common.usedby == API){ api_tx_hdr_t* api_tx_hdr; /* discard the frame if we are configured for */ /* 'receive only' mode or if there is no data */ if (card->u.c.receive_only || (len <= sizeof(api_tx_hdr_t))) { ++card->wandev.stats.tx_dropped; goto if_send_exit_crit; } api_tx_hdr = (api_tx_hdr_t *)data; attr = api_tx_hdr->attr; misc_Tx_bits = api_tx_hdr->misc_Tx_bits; data += sizeof(api_tx_hdr_t); len -= sizeof(api_tx_hdr_t); } err=chdlc_send(card, data, len, misc_Tx_bits); if(err) { err=-1; }else{ ++card->wandev.stats.tx_packets; card->wandev.stats.tx_bytes += len; #if defined(LINUX_2_4)||defined(LINUX_2_6) dev->trans_start = jiffies; #endif } } if_send_exit_crit: if (err==0){ wan_skb_free(skb); start_net_queue(dev); }else{ stop_net_queue(dev); chdlc_priv_area->tick_counter = jiffies; card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TX_FRAME); } clear_bit(SEND_CRIT, (void*)&card->wandev.critical); if(card->type != SDLA_S514){ s508_unlock(card,&smp_flags); } return err; } /*============================================================================ * chk_bcast_mcast_addr - Check for source broadcast addresses * * Check to see if the packet to be transmitted contains a broadcast or * multicast source IP address. */ static int chk_bcast_mcast_addr(sdla_t *card, netdevice_t* dev, struct sk_buff *skb) { u32 src_ip_addr; u32 broadcast_ip_addr = 0; chdlc_private_area_t *chdlc_priv_area=dev->priv; struct in_device *in_dev; /* read the IP source address from the outgoing packet */ src_ip_addr = *(u32 *)(skb->data + 12); if (chdlc_priv_area->common.usedby != WANPIPE){ return 0; } /* read the IP broadcast address for the device */ in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa= in_dev->ifa_list; if(ifa != NULL) broadcast_ip_addr = ifa->ifa_broadcast; else return 0; } /* check if the IP Source Address is a Broadcast address */ if((dev->flags & IFF_BROADCAST) && (src_ip_addr == broadcast_ip_addr)) { printk(KERN_INFO "%s: Broadcast Source Address silently discarded\n", card->devname); return 1; } /* check if the IP Source Address is a Multicast address */ if((ntohl(src_ip_addr) >= 0xE0000001) && (ntohl(src_ip_addr) <= 0xFFFFFFFE)) { printk(KERN_INFO "%s: Multicast Source Address silently discarded\n", card->devname); return 1; } return 0; } /*============================================================================ * Reply to UDP Management system. * Return length of reply. */ static int reply_udp( unsigned char *data, unsigned int mbox_len ) { unsigned short len, udp_length, temp, ip_length; unsigned long ip_temp; int even_bound = 0; wan_udp_pkt_t *c_udp_pkt = (wan_udp_pkt_t *)data; /* Set length of packet */ len = sizeof(struct iphdr)+ sizeof(struct udphdr)+ sizeof(wan_mgmt_t)+ sizeof(wan_cmd_t)+ sizeof(wan_trace_info_t)+ mbox_len; /* fill in UDP reply */ c_udp_pkt->wan_udp_request_reply = UDPMGMT_REPLY; /* fill in UDP length */ udp_length = sizeof(struct udphdr)+ sizeof(wan_mgmt_t)+ sizeof(wan_cmd_t)+ sizeof(wan_trace_info_t)+ mbox_len; /* put it on an even boundary */ if ( udp_length & 0x0001 ) { udp_length += 1; len += 1; even_bound = 1; } temp = (udp_length<<8)|(udp_length>>8); c_udp_pkt->wan_udp_len = temp; /* swap UDP ports */ temp = c_udp_pkt->wan_udp_sport; c_udp_pkt->wan_udp_sport = c_udp_pkt->wan_udp_dport; c_udp_pkt->wan_udp_dport = temp; /* add UDP pseudo header */ temp = 0x1100; *((unsigned short *)(c_udp_pkt->wan_udp_data+mbox_len+even_bound)) = temp; temp = (udp_length<<8)|(udp_length>>8); *((unsigned short *)(c_udp_pkt->wan_udp_data+mbox_len+even_bound+2)) = temp; /* calculate UDP checksum */ c_udp_pkt->wan_udp_sum = 0; c_udp_pkt->wan_udp_sum = calc_checksum(&data[UDP_OFFSET],udp_length+UDP_OFFSET); /* fill in IP length */ ip_length = len; temp = (ip_length<<8)|(ip_length>>8); c_udp_pkt->wan_ip_len = temp; /* swap IP addresses */ ip_temp = c_udp_pkt->wan_ip_src; c_udp_pkt->wan_ip_src = c_udp_pkt->wan_ip_dst; c_udp_pkt->wan_ip_dst = ip_temp; /* fill in IP checksum */ c_udp_pkt->wan_ip_sum = 0; c_udp_pkt->wan_ip_sum = calc_checksum(data,sizeof(struct iphdr)); return len; } /* reply_udp */ unsigned short calc_checksum (char *data, int len) { unsigned short temp; unsigned long sum=0; int i; for( i = 0; i > 16 ) { sum = (sum & 0xffffUL) + (sum >> 16); } temp = (unsigned short)sum; temp = ~temp; if( temp == 0 ) temp = 0xffff; return temp; } /*============================================================================ * Get ethernet-style interface statistics. * Return a pointer to struct enet_statistics. */ static struct net_device_stats* if_stats (netdevice_t* dev) { sdla_t *my_card; chdlc_private_area_t* chdlc_priv_area; if ((chdlc_priv_area=dev->priv) == NULL) return NULL; my_card = chdlc_priv_area->card; return &my_card->wandev.stats; } /****** Cisco HDLC Firmware Interface Functions *******************************/ /*============================================================================ * Read firmware code version. * Put code version as ASCII string in str. */ static int chdlc_read_version (sdla_t* card, char* str, int str_size) { wan_mbox_t* mb = &card->wan_mbox; int len; char err; mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_CODE_VERSION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != COMMAND_OK) { chdlc_error(card,err,mb); }else if (str) { /* is not null */ len = mb->wan_data_len; if (len < str_size){ memcpy(str, mb->wan_data, len); str[len] = '\0'; }else{ DEBUG_EVENT("%s: Error: Version Length greater than max %i>%i!\n", card->devname,len,str_size); } } return (err); } /*----------------------------------------------------------------------------- * Configure CHDLC firmware. */ static int chdlc_configure (sdla_t* card, void* data) { int err; wan_mbox_t *mb = &card->wan_mbox; int data_length = sizeof(CHDLC_CONFIGURATION_STRUCT); mb->wan_data_len = data_length; memcpy(mb->wan_data, data, data_length); mb->wan_command = SET_CHDLC_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } /*============================================================================ * Set interrupt mode -- HDLC Version. */ static int chdlc_set_intr_mode (sdla_t* card, unsigned mode) { wan_mbox_t* mb = &card->wan_mbox; CHDLC_INT_TRIGGERS_STRUCT* int_data = (CHDLC_INT_TRIGGERS_STRUCT *)mb->wan_data; int err; int_data->CHDLC_interrupt_triggers = mode; int_data->IRQ = card->wandev.irq; int_data->interrupt_timer = 1; mb->wan_data_len = sizeof(CHDLC_INT_TRIGGERS_STRUCT); mb->wan_command = SET_CHDLC_INTERRUPT_TRIGGERS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } /*=========================================================== * chdlc_disable_comm_shutdown * * Shutdown() disables the communications. We must * have a sparate functions, because we must not * call chdlc_error() hander since the private * area has already been replaced */ static int chdlc_disable_comm_shutdown (sdla_t *card) { wan_mbox_t* mb = &card->wan_mbox; int err; CHDLC_INT_TRIGGERS_STRUCT* int_data = (CHDLC_INT_TRIGGERS_STRUCT *)mb->wan_data; /* Disable Interrutps */ int_data->CHDLC_interrupt_triggers = 0; int_data->IRQ = card->wandev.irq; int_data->interrupt_timer = 1; mb->wan_data_len = sizeof(CHDLC_INT_TRIGGERS_STRUCT); mb->wan_command = SET_CHDLC_INTERRUPT_TRIGGERS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); /* Disable Communications */ if (card->u.c.async_mode) { mb->wan_command = DISABLE_ASY_COMMUNICATIONS; }else{ mb->wan_command = DISABLE_CHDLC_COMMUNICATIONS; } mb->wan_data_len = 0; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); card->u.c.comm_enabled = 0; /* TE1 - Unconfiging, only on shutdown */ if (IS_TE1_CARD(card)) { if (card->wandev.fe_iface.unconfig){ card->wandev.fe_iface.unconfig(&card->fe); } } return 0; } /*============================================================================ * Enable communications. */ static int chdlc_comm_enable (sdla_t* card) { int err; wan_mbox_t* mb = &card->wan_mbox; mb->wan_data_len = 0; mb->wan_command = ENABLE_CHDLC_COMMUNICATIONS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error(card, err, mb); else card->u.c.comm_enabled = 1; return err; } /*============================================================================ * Enable communications. */ static int chdlc_comm_disable (sdla_t* card) { int err; wan_mbox_t* mb = &card->wan_mbox; mb->wan_data_len = 0; mb->wan_command = DISABLE_CHDLC_COMMUNICATIONS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error(card, err, mb); else card->u.c.comm_enabled = 0; return err; } /*============================================================================ * Read communication error statistics. */ static int chdlc_read_comm_err_stats (sdla_t* card) { int err; wan_mbox_t* mb = &card->wan_mbox; mb->wan_data_len = 0; mb->wan_command = READ_COMMS_ERROR_STATS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error(card,err,mb); return err; } /*============================================================================ * Read CHDLC operational statistics. */ static int chdlc_read_op_stats (sdla_t* card) { int err; wan_mbox_t* mb = &card->wan_mbox; mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_OPERATIONAL_STATS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error(card,err,mb); return err; } /*============================================================================ * Update communications error and general packet statistics. */ static int update_comms_stats(sdla_t* card, chdlc_private_area_t* chdlc_priv_area) { wan_mbox_t* mb = &card->wan_mbox; COMMS_ERROR_STATS_STRUCT* err_stats; CHDLC_OPERATIONAL_STATS_STRUCT *op_stats; /* 1. On the first timer interrupt, update T1/E1 alarms * and PMON counters (only for T1/E1 card) (TE1) */ /* TE1 Update T1/E1 alarms */ if (IS_TE1_CARD(card)) { card->wandev.fe_iface.read_alarm(&card->fe, 0); /* TE1 Update T1/E1 perfomance counters */ card->wandev.fe_iface.read_pmon(&card->fe, 0); }else if (IS_56K_CARD(card)) { /* 56K Update CSU/DSU alarms */ card->wandev.fe_iface.read_alarm(&card->fe, 1); } if(chdlc_read_comm_err_stats(card)) return 1; err_stats = (COMMS_ERROR_STATS_STRUCT *)mb->wan_data; card->wandev.stats.rx_over_errors = err_stats->Rx_overrun_err_count; card->wandev.stats.rx_crc_errors = err_stats->CRC_err_count; card->wandev.stats.rx_frame_errors = err_stats->Rx_abort_count; card->wandev.stats.rx_fifo_errors = err_stats->Rx_dis_pri_bfrs_full_count; card->wandev.stats.rx_missed_errors = card->wandev.stats.rx_fifo_errors; card->wandev.stats.tx_aborted_errors = err_stats->sec_Tx_abort_count; /* on the third timer interrupt, read the operational * statistics */ if(chdlc_read_op_stats(card)) return 1; op_stats = (CHDLC_OPERATIONAL_STATS_STRUCT *)mb->wan_data; card->wandev.stats.rx_length_errors = (op_stats->Rx_Data_discard_short_count + op_stats->Rx_Data_discard_long_count); return 0; } /*============================================================================ * Send packet. * Return: 0 - o.k. * 1 - no transmit buffers available */ static int chdlc_send (sdla_t* card, void* data, unsigned len, unsigned char tx_bits) { CHDLC_DATA_TX_STATUS_EL_STRUCT txbuf; card->hw_iface.peek(card->hw, card->u.c.txbuf_off, &txbuf, sizeof(txbuf)); if (txbuf.opp_flag){ return 1; } card->hw_iface.poke(card->hw, txbuf.ptr_data_bfr, data, len); txbuf.frame_length = len; txbuf.misc_Tx_bits = tx_bits; card->hw_iface.poke(card->hw, card->u.c.txbuf_off, &txbuf, sizeof(txbuf)); txbuf.opp_flag = 1; /* start transmission */ card->hw_iface.poke_byte(card->hw, card->u.c.txbuf_off+ offsetof(CHDLC_DATA_TX_STATUS_EL_STRUCT, opp_flag), txbuf.opp_flag); /* Update transmit buffer control fields */ card->u.c.txbuf_off += sizeof(txbuf); if (card->u.c.txbuf_off > card->u.c.txbuf_last_off){ card->u.c.txbuf_off = card->u.c.txbuf_base_off; } return 0; } /*============================================================================ * Read TE1/56K Front end registers */ //static unsigned char read_front_end_reg (void* card1, unsigned short reg) static unsigned char read_front_end_reg (void* card1, ...) { va_list args; sdla_t *card = (sdla_t*)card1; wan_mbox_t *mb = &card->wan_mbox; char *data = mb->wan_data; u16 reg, line_no; int err; va_start(args, card1); line_no = (u16)va_arg(args, int); reg = (u16)va_arg(args, int); va_end(args); ((FRONT_END_REG_STRUCT *)data)->register_number = (unsigned short)reg; mb->wan_data_len = sizeof(FRONT_END_REG_STRUCT); mb->wan_command = READ_FRONT_END_REGISTER; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK){ chdlc_error(card,err,mb); } return(((FRONT_END_REG_STRUCT *)data)->register_value); } /*============================================================================ * Write to TE1/56K Front end registers */ //static unsigned char write_front_end_reg (void* card1, unsigned short reg, unsigned char value) static int write_front_end_reg (void* card1, ...) { va_list args; sdla_t *card = (sdla_t*)card1; wan_mbox_t *mb = &card->wan_mbox; char *data = mb->wan_data; u16 reg, line_no; u8 value; int err; int retry=15; va_start(args, card1); line_no = (u16)va_arg(args, int); reg = (u16)va_arg(args, int); value = (u8)va_arg(args, int); va_end(args); do { ((FRONT_END_REG_STRUCT *)data)->register_number = (unsigned short)reg; ((FRONT_END_REG_STRUCT *)data)->register_value = value; mb->wan_data_len = sizeof(FRONT_END_REG_STRUCT); mb->wan_command = WRITE_FRONT_END_REGISTER; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK){ chdlc_error(card,err,mb); } }while(err && --retry); return err; } /*============================================================================ * Enable timer interrupt */ static void chdlc_enable_timer (void* card_id) { sdla_t *card = (sdla_t*)card_id; netdevice_t *dev; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); DEBUG_TEST("%s: Chdlc enabling timer %s\n",card->devname, dev ? wan_netif_name(dev) : "No DEV"); card->u.c.timer_int_enabled |= TMR_INT_ENABLED_TE; card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TIMER); return; } /****** Firmware Error Handler **********************************************/ /*============================================================================ * Firmware error handler. * This routine is called whenever firmware command returns non-zero * return code. * * Return zero if previous command has to be cancelled. */ static int chdlc_error (sdla_t *card, int err, wan_mbox_t *mb) { unsigned cmd = mb->wan_command; switch (err) { case CMD_TIMEOUT: printk(KERN_INFO "%s: command 0x%02X timed out!\n", card->devname, cmd); break; case S514_BOTH_PORTS_SAME_CLK_MODE: if(cmd == SET_CHDLC_CONFIGURATION) { printk(KERN_INFO "%s: Configure both ports for the same clock source\n", card->devname); break; } default: printk(KERN_INFO "%s: command 0x%02X returned 0x%02X!\n", card->devname, cmd, err); } return 0; } /********** Bottom Half Handlers ********************************************/ /* NOTE: There is no API, BH support for Kernels lower than 2.2.X. * DO NOT INSERT ANY CODE HERE, NOTICE THE * PREPROCESSOR STATEMENT ABOVE, UNLESS YOU KNOW WHAT YOU ARE * DOING */ static void chdlc_bh (unsigned long data) { chdlc_private_area_t* chan = (chdlc_private_area_t*)data; sdla_t *card = chan->card; struct sk_buff *skb; int len=0; while ((skb=wan_api_dequeue_skb(chan)) != NULL){ len=skb->len; if (chan->common.usedby == API){ if (wan_api_rx(chan,skb) == 0){ card->wandev.stats.rx_packets++; card->wandev.stats.rx_bytes += len; }else{ ++card->wandev.stats.rx_dropped; wan_skb_free(skb); } }else{ wan_skb_free(skb); ++card->wandev.stats.rx_dropped; } } WAN_TASKLET_END((&chan->common.bh_task)); return; } /* END OF API BH Support */ /****** Interrupt Handlers **************************************************/ /*============================================================================ * Cisco HDLC interrupt service routine. */ static WAN_IRQ_RETVAL wpc_isr (sdla_t* card) { netdevice_t* dev; SHARED_MEMORY_INFO_STRUCT flags; int i; /* Check for which port the interrupt has been generated * Since Secondary Port is piggybacking on the Primary * the check must be done here. */ if (!card->hw){ WAN_IRQ_RETURN(WAN_IRQ_HANDLED); } card->hw_iface.peek(card->hw, card->flags_off, &flags, sizeof(flags)); /* Start card isr critical area */ set_bit(0,&card->in_isr); dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); /* If we get an interrupt with no network device, stop the interrupts * and issue an error */ if (!card->tty_opt && !dev && flags.interrupt_info_struct.interrupt_type != COMMAND_COMPLETE_APP_INT_PEND){ goto isr_done; } /* if critical due to peripheral operations * ie. update() or getstats() then reset the interrupt and * wait for the board to retrigger. */ if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Chdlc ISR: Critical with PERI_CRIT!\n", card->devname); goto isr_done; } /* On a 508 Card, if critical due to if_send * Major Error !!! */ if(card->type != SDLA_S514) { if(test_bit(SEND_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Chdlc ISR: Critical with SEND_CRIT!\n", card->devname); card->in_isr = 0; card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); WAN_IRQ_RETURN(WAN_IRQ_HANDLED); } } switch(flags.interrupt_info_struct.interrupt_type){ case RX_APP_INT_PEND: /* 0x01: receive interrupt */ rx_intr(card); break; case TX_APP_INT_PEND: /* 0x02: transmit interrupt */ card->hw_iface.clear_bit(card->hw, card->intr_perm_off, APP_INT_ON_TX_FRAME); if (card->tty_opt){ set_bit(TX_INTR,(void*)&card->wandev.critical); /* If we fail to trigger the task, try the * interrupt */ #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) if (wanpipe_tty_trigger_poll(card) != 0){ card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TX_FRAME); } #endif break; } if (dev && is_queue_stopped(dev)){ chdlc_private_area_t* chdlc_priv_area=dev->priv; if (chdlc_priv_area->common.usedby == API){ start_net_queue(dev); wan_wakeup_api(chdlc_priv_area); }else{ wake_net_dev(dev); } } break; case COMMAND_COMPLETE_APP_INT_PEND:/* 0x04: cmd cplt */ ++ card->timer_int_enabled; break; case CHDLC_EXCEP_COND_APP_INT_PEND: /* 0x20 */ process_chdlc_exception(card); break; case GLOBAL_EXCEP_COND_APP_INT_PEND: process_global_exception(card); /* Reset the 56k or T1/E1 front end exception condition */ if(IS_56K_CARD(card) || IS_TE1_CARD(card)) { FRONT_END_STATUS_STRUCT FE_status; card->hw_iface.peek(card->hw, card->fe_status_off, &FE_status, sizeof(FE_status)); FE_status.opp_flag = 0x01; card->hw_iface.poke(card->hw, card->fe_status_off, &FE_status, sizeof(FE_status)); } break; case TIMER_APP_INT_PEND: timer_intr(card); break; default: if (card->next){ set_bit(0,&card->spurious); }else{ printk(KERN_INFO "%s: spurious interrupt 0x%02X!\n", card->devname, flags.interrupt_info_struct.interrupt_type); printk(KERN_INFO "Code name: "); for(i = 0; i < 4; i ++){ printk("%c", flags.global_info_struct.codename[i]); } printk("\n"); printk(KERN_INFO "Code version: "); for(i = 0; i < 4; i ++){ printk("%c", flags.global_info_struct.codeversion[i]); } printk("\n"); } break; } isr_done: card->in_isr = 0; card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); WAN_IRQ_RETURN(WAN_IRQ_HANDLED); } /*============================================================================ * Receive interrupt handler. */ static void rx_intr (sdla_t* card) { netdevice_t *dev; chdlc_private_area_t *chdlc_priv_area; SHARED_MEMORY_INFO_STRUCT flags; CHDLC_DATA_RX_STATUS_EL_STRUCT rxbuf; struct sk_buff *skb; unsigned addr; unsigned len; void *buf; int i,udp_type; card->hw_iface.peek(card->hw, card->flags_off, &flags, sizeof(flags)); card->hw_iface.peek(card->hw, card->u.c.rxmb_off, &rxbuf, sizeof(rxbuf)); addr = rxbuf.ptr_data_bfr; if (rxbuf.opp_flag != 0x01) { printk(KERN_INFO "%s: corrupted Rx buffer @ 0x%X, flag = 0x%02X!\n", card->devname, (unsigned)card->u.c.rxmb_off, rxbuf.opp_flag); printk(KERN_INFO "Code name: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags.global_info_struct.codename[i]); printk(KERN_INFO "\n"); printk(KERN_INFO "Code version: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags.global_info_struct.codeversion[i]); printk(KERN_INFO "\n"); /* Bug Fix: Mar 6 2000 * If we get a corrupted mailbox, it measn that driver * is out of sync with the firmware. There is no recovery. * If we don't turn off all interrupts for this card * the machine will crash. */ printk(KERN_INFO "%s: Critical router failure ...!!!\n", card->devname); printk(KERN_INFO "Please contact Sangoma Technologies !\n"); chdlc_set_intr_mode(card,0); return; } len = rxbuf.frame_length; #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) if (card->tty_opt){ if (rxbuf.error_flag){ goto rx_exit; } if (len <= CRC_LENGTH){ goto rx_exit; } if (!card->u.c.async_mode){ len -= CRC_LENGTH; } wanpipe_tty_receive(card,addr,len); goto rx_exit; } #endif dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (!dev || !wan_netif_priv(dev)) goto rx_exit; if (!is_dev_running(dev)) goto rx_exit; chdlc_priv_area = wan_netif_priv(dev); if (chdlc_priv_area->common.usedby == ANNEXG){ if (rxbuf.error_flag){ printk(KERN_INFO "Bad Rx Frame\n"); goto rx_exit; } /* Take off two CRC bytes */ if (rxbuf.frame_length <= 2 || rxbuf.frame_length > 1506 ){ printk(KERN_INFO "Bad Rx Frame Length %i\n", rxbuf.frame_length); goto rx_exit; } len = rxbuf.frame_length - CRC_LENGTH; } /* Allocate socket buffer */ skb = dev_alloc_skb(len+2); if (skb == NULL) { printk(KERN_INFO "%s: no socket buffers available!\n", card->devname); ++card->wandev.stats.rx_dropped; goto rx_exit; } /* Align IP on 16 byte */ skb_reserve(skb,2); /* Copy data to the socket buffer */ if((addr + len) > card->u.c.rx_top_off + 1) { unsigned tmp = card->u.c.rx_top_off - addr + 1; buf = skb_put(skb, tmp); card->hw_iface.peek(card->hw, addr, buf, tmp); addr = card->u.c.rx_base_off; len -= tmp; } buf = skb_put(skb, len); card->hw_iface.peek(card->hw, addr, buf, len); skb->protocol = htons(ETH_P_IP); udp_type = udp_pkt_type( skb, card ); if(udp_type == UDP_CPIPE_TYPE) { if(store_udp_mgmt_pkt(UDP_PKT_FRM_NETWORK, card, skb, dev, chdlc_priv_area)) { card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TIMER); } } else if(chdlc_priv_area->common.usedby == API) { api_rx_hdr_t* api_rx_hdr; struct timeval tv; skb_push(skb, sizeof(api_rx_hdr_t)); api_rx_hdr = (api_rx_hdr_t*)&skb->data[0x00]; api_rx_hdr->error_flag = rxbuf.error_flag; api_rx_hdr->time_stamp = rxbuf.time_stamp; do_gettimeofday(&tv); api_rx_hdr->sec=tv.tv_sec; api_rx_hdr->usec=tv.tv_usec; skb->protocol = htons(WP_PVC_PROT); wan_skb_reset_mac_header(skb); skb->dev = dev; skb->pkt_type = WAN_PACKET_DATA; if (wan_api_enqueue_skb(chdlc_priv_area,skb) < 0){ wan_skb_free(skb); ++card->wandev.stats.rx_dropped; goto rx_exit; } WAN_TASKLET_SCHEDULE(&chdlc_priv_area->common.bh_task); } else if (chdlc_priv_area->common.usedby == ANNEXG){ if (chdlc_priv_area->annexg_dev){ skb->protocol = htons(ETH_P_X25); skb->dev = chdlc_priv_area->annexg_dev; wan_skb_reset_mac_header(skb); if (wan_api_enqueue_skb(chdlc_priv_area,skb) < 0){ wan_skb_free(skb); ++card->wandev.stats.rx_dropped; goto rx_exit; } WAN_TASKLET_SCHEDULE(&chdlc_priv_area->common.bh_task); }else{ wan_skb_free(skb); ++card->wandev.stats.rx_errors; } }else if (chdlc_priv_area->common.usedby == BRIDGE || chdlc_priv_area->common.usedby == BRIDGE_NODE){ /* Make sure it's an Ethernet frame, otherwise drop it */ if (skb->len <= ETH_ALEN) { wan_skb_free(skb); ++card->wandev.stats.rx_errors; goto rx_exit; } card->wandev.stats.rx_packets ++; card->wandev.stats.rx_bytes += skb->len; skb->dev = dev; skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); }else{ /* FIXME: we should check to see if the received packet is a multicast packet so that we can increment the multicast statistic ++ chdlc_priv_area->if_stats.multicast; */ /* Pass it up the protocol stack */ card->wandev.stats.rx_packets ++; card->wandev.stats.rx_bytes += skb->len; skb->protocol = htons(ETH_P_IP); skb->dev = dev; wan_skb_reset_mac_header(skb); netif_rx(skb); } rx_exit: /* Release buffer element and calculate a pointer to the next one */ rxbuf.opp_flag = 0x00; card->hw_iface.poke_byte(card->hw, card->u.c.rxmb_off+offsetof(CHDLC_DATA_RX_STATUS_EL_STRUCT, opp_flag), rxbuf.opp_flag); card->u.c.rxmb_off += sizeof(rxbuf); if (card->u.c.rxmb_off > card->u.c.rxbuf_last_off){ card->u.c.rxmb_off = card->u.c.rxbuf_base_off; } } /*============================================================================ * Timer interrupt handler. * The timer interrupt is used for two purposes: * 1) Processing udp calls from 'cpipemon'. * 2) Reading board-level statistics for updating the proc file system. */ void timer_intr(sdla_t *card) { netdevice_t* dev=NULL; chdlc_private_area_t* chdlc_priv_area = NULL; /* TE timer interrupt */ if (card->u.c.timer_int_enabled & TMR_INT_ENABLED_TE) { card->wandev.fe_iface.polling(&card->fe); card->u.c.timer_int_enabled &= ~TMR_INT_ENABLED_TE; } dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (!dev || !wan_netif_priv(dev)){ goto timer_isr_exit; } chdlc_priv_area = dev->priv; /* Configure hardware */ if (card->u.c.timer_int_enabled & TMR_INT_ENABLED_CONFIG) { config_chdlc(card, dev); card->u.c.timer_int_enabled &= ~TMR_INT_ENABLED_CONFIG; } /* process a udp call if pending */ if(card->u.c.timer_int_enabled & TMR_INT_ENABLED_UDP) { process_udp_mgmt_pkt(card, dev, chdlc_priv_area,0); card->u.c.timer_int_enabled &= ~TMR_INT_ENABLED_UDP; } /* read the communications statistics if required */ if(card->u.c.timer_int_enabled & TMR_INT_ENABLED_UPDATE) { update_comms_stats(card, chdlc_priv_area); if(!(-- chdlc_priv_area->update_comms_stats)) { card->u.c.timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE; } } timer_isr_exit: /* only disable the timer interrupt if there are no udp or statistic */ /* updates pending */ if(!card->u.c.timer_int_enabled) { card->hw_iface.clear_bit(card->hw, card->intr_perm_off, APP_INT_ON_TIMER); } } /*------------------------------------------------------------------------------ Miscellaneous Functions - set_chdlc_config() used to set configuration options on the board ------------------------------------------------------------------------------*/ static int set_chdlc_config(sdla_t* card) { netdevice_t *dev; CHDLC_CONFIGURATION_STRUCT cfg; memset(&cfg, 0, sizeof(CHDLC_CONFIGURATION_STRUCT)); if(card->wandev.clocking){ cfg.baud_rate = card->wandev.bps; } cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ? INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35; if (card->wandev.line_coding == WANOPT_NRZI){ printk(KERN_INFO "%s: Configuring for NRZI encoding\n", card->devname); cfg.line_config_options |= NRZI_ENCODING; } if (card->wandev.line_idle == WANOPT_IDLE_MARK){ printk(KERN_INFO "%s: Configuring for Idle Mark\n", card->devname); cfg.line_config_options |= IDLE_MARK; } if (card->wandev.connection == WANOPT_SWITCHED){ printk(KERN_INFO "%s: Configuring for Switched CTS/RTS\n", card->devname); cfg.modem_config_options = SWITCHED_CTS_RTS; }else{ cfg.modem_config_options = 0; } cfg.modem_status_timer = 100; cfg.CHDLC_protocol_options = card->u.c.protocol_options; if (card->tty_opt){ cfg.CHDLC_API_options = DISCARD_RX_ERROR_FRAMES; } cfg.percent_data_buffer_for_Tx = (card->u.c.receive_only) ? 0 : 50; cfg.CHDLC_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT | CHDLC_RX_DATA_BYTE_COUNT_STAT); if (card->tty_opt){ card->wandev.mtu = TTY_CHDLC_MAX_MTU; } cfg.max_CHDLC_data_field_length = card->wandev.mtu; cfg.transmit_keepalive_timer = card->u.c.kpalv_tx; cfg.receive_keepalive_timer = card->u.c.kpalv_rx; cfg.keepalive_error_tolerance = card->u.c.kpalv_err; cfg.SLARP_request_timer = card->u.c.slarp_timer; if (cfg.SLARP_request_timer) { cfg.IP_address = 0; cfg.IP_netmask = 0; } dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev){ chdlc_private_area_t *chdlc_priv_area = wan_netif_priv(dev); struct in_device *in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa = in_dev->ifa_list; if (ifa != NULL ) { cfg.IP_address = ntohl(ifa->ifa_local); cfg.IP_netmask = ntohl(ifa->ifa_mask); chdlc_priv_area->IP_address = ntohl(ifa->ifa_local); chdlc_priv_area->IP_netmask = ntohl(ifa->ifa_mask); } } /* FIXME: We must re-think this message in next release if((cfg.IP_address & 0x000000FF) > 2) { printk(KERN_WARNING "\n"); printk(KERN_WARNING " WARNING:%s configured with an\n", card->devname); printk(KERN_WARNING " invalid local IP address.\n"); printk(KERN_WARNING " Slarp pragmatics will fail.\n"); printk(KERN_WARNING " IP address should be of the\n"); printk(KERN_WARNING " format A.B.C.1 or A.B.C.2.\n"); } */ } return chdlc_configure(card, &cfg); } static int chdlc_calibrate_baud (sdla_t *card) { wan_mbox_t* mb = &card->wan_mbox; int err; int enable_again=0; sdla_t *tmp_card=NULL; if (card->wandev.connection == WANOPT_SWITCHED && card->wandev.clocking == WANOPT_EXTERNAL && card->next) { tmp_card=card->next; if (tmp_card->wandev.connection == WANOPT_SWITCHED && tmp_card->wandev.clocking == WANOPT_EXTERNAL && tmp_card->u.c.comm_enabled ) { DEBUG_EVENT("%s: Next comm enabled -> disabling!\n",tmp_card->devname); chdlc_comm_disable (tmp_card); enable_again=1; } } mb->wan_data_len = 0; mb->wan_command = START_BAUD_CALIBRATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error (card, err, mb); if (enable_again && tmp_card) { DEBUG_EVENT("%s: Next comm enabled -> re-enabling!\n",tmp_card->devname); chdlc_comm_enable (tmp_card); } return err; } static int chdlc_read_baud_calibration (sdla_t *card) { wan_mbox_t* mb = &card->wan_mbox; int err; read_baud_again: mb->wan_data_len = 0; mb->wan_command = READ_BAUD_CALIBRATION_RESULT; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); switch (err){ case COMMAND_OK: mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err == COMMAND_OK){ card->wandev.bps = ((CHDLC_CONFIGURATION_STRUCT*)mb->wan_data)->baud_rate; printk(KERN_INFO "%s: Baud Rate calibrated at: %i bps\n", card->devname,card->wandev.bps); } break; case BAUD_CALIBRATION_NOT_DONE: case BUSY_WITH_BAUD_CALIBRATION: goto read_baud_again; case BAUD_CAL_FAILED_NO_TX_CLK: printk(KERN_INFO "%s: Baud Rate calibration failed: No Tx Clock!\n", card->devname); return -EINVAL; case BAUD_CAL_FAILED_BAUD_HI: printk(KERN_INFO "%s: Baud Rate calibration failed: Baud to High!\n", card->devname); return -EINVAL; case CANNOT_DO_BAUD_CAL: printk(KERN_INFO "%s: Baud Rate calibration cannot be performed!\n", card->devname); return -EINVAL; default: chdlc_error(card,err,mb); return -EINVAL; } return err; } /*----------------------------------------------------------------------------- set_asy_config() used to set asynchronous configuration options on the board ------------------------------------------------------------------------------*/ static int set_asy_config(sdla_t* card) { ASY_CONFIGURATION_STRUCT cfg; wan_mbox_t *mb = &card->wan_mbox; int err; memset(&cfg, 0, sizeof(ASY_CONFIGURATION_STRUCT)); if(card->wandev.clocking) cfg.baud_rate = card->wandev.bps; cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ? INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35; cfg.modem_config_options = 0; cfg.asy_API_options = card->u.c.api_options; cfg.asy_protocol_options = card->u.c.protocol_options; cfg.Tx_bits_per_char = card->u.c.tx_bits_per_char; cfg.Rx_bits_per_char = card->u.c.rx_bits_per_char; cfg.stop_bits = card->u.c.stop_bits; cfg.parity = card->u.c.parity; cfg.break_timer = card->u.c.break_timer; cfg.asy_Rx_inter_char_timer = card->u.c.inter_char_timer; cfg.asy_Rx_complete_length = card->u.c.rx_complete_length; cfg.XON_char = card->u.c.xon_char; cfg.XOFF_char = card->u.c.xoff_char; cfg.asy_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT | CHDLC_RX_DATA_BYTE_COUNT_STAT); mb->wan_data_len = sizeof(ASY_CONFIGURATION_STRUCT); memcpy(mb->wan_data, &cfg, mb->wan_data_len); mb->wan_command = SET_ASY_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } /*============================================================================ * Enable asynchronous communications. */ static int asy_comm_enable (sdla_t* card) { netdevice_t *dev; int err; wan_mbox_t *mb = &card->wan_mbox; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev == NULL){ return -EINVAL; } mb->wan_data_len = 0; mb->wan_command = ENABLE_ASY_COMMUNICATIONS; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK && dev) chdlc_error(card, err, mb); if (!err) card->u.c.comm_enabled = 1; return err; } /*============================================================================ * Process global exception condition */ static int process_global_exception(sdla_t *card) { wan_mbox_t* mb = &card->wan_mbox; int err; mb->wan_data_len = 0; mb->wan_command = READ_GLOBAL_EXCEPTION_CONDITION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != CMD_TIMEOUT ){ switch(mb->wan_return_code) { case EXCEP_MODEM_STATUS_CHANGE: if (IS_56K_CARD(card)) { FRONT_END_STATUS_STRUCT FE_status; card->hw_iface.peek(card->hw, card->fe_status_off, &FE_status, sizeof(FE_status)); card->fe.fe_param.k56_param.RR8_reg_56k = FE_status.FE_U.stat_56k.RR8_56k; card->fe.fe_param.k56_param.RRA_reg_56k = FE_status.FE_U.stat_56k.RRA_56k; card->fe.fe_param.k56_param.RRC_reg_56k = FE_status.FE_U.stat_56k.RRC_56k; card->wandev.fe_iface.read_alarm(&card->fe, 0); chdlc_handle_front_end_state(card); break; } if (IS_TE1_CARD(card)) { /* TE1 T1/E1 interrupt */ card->wandev.fe_iface.isr(&card->fe); chdlc_handle_front_end_state(card); break; } if ((mb->wan_data[0] & (DCD_HIGH | CTS_HIGH)) == (DCD_HIGH | CTS_HIGH)){ card->fe.fe_status = FE_CONNECTED; }else{ card->fe.fe_status = FE_DISCONNECTED; } printk(KERN_INFO "%s: Modem status change\n", card->devname); switch(mb->wan_data[0] & (DCD_HIGH | CTS_HIGH)) { case ((DCD_HIGH | CTS_HIGH)): printk(KERN_INFO "%s: DCD high, CTS high\n",card->devname); break; case (DCD_HIGH): printk(KERN_INFO "%s: DCD high, CTS low\n",card->devname); break; case (CTS_HIGH): printk(KERN_INFO "%s: DCD low, CTS high\n",card->devname); break; default: printk(KERN_INFO "%s: DCD low, CTS low\n",card->devname); break; } chdlc_handle_front_end_state(card); break; case EXCEP_TRC_DISABLED: printk(KERN_INFO "%s: Line trace disabled\n", card->devname); break; case EXCEP_IRQ_TIMEOUT: printk(KERN_INFO "%s: IRQ timeout occurred\n", card->devname); break; case EXCEP_CSU_DSU_STATE_CHANGE: /* NC * Ignore this for now * because we don't know if the CSU/DSU * state change. printk(KERN_INFO "%s: CSU/DSU In Service alarm state change\n", card->devname); */ break; case 0x17: if (card->tty_opt){ if (card->tty && card->tty_open){ printk(KERN_INFO "%s: Modem Hangup Exception: Hanging Up!\n", card->devname); tty_hangup(card->tty); } break; } /* If TTY is not used just drop throught */ default: printk(KERN_INFO "%s: Global exception %x\n", card->devname, mb->wan_return_code); break; } } return 0; } /*============================================================================ * Process chdlc exception condition */ static int process_chdlc_exception(sdla_t *card) { netdevice_t *dev; wan_mbox_t *mb = &card->wan_mbox; int err; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev == NULL){ return -EINVAL; } mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_EXCEPTION_CONDITION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != CMD_TIMEOUT) { switch (err) { case EXCEP_LINK_ACTIVE: card->u.c.state = WAN_CONNECTED; if (card->wandev.ignore_front_end_status == WANOPT_YES || card->fe.fe_status == FE_CONNECTED){ port_set_state(card, WAN_CONNECTED); trigger_chdlc_poll(dev); } break; case EXCEP_LINK_INACTIVE_MODEM: card->u.c.state = WAN_DISCONNECTED; port_set_state(card, WAN_DISCONNECTED); unconfigure_ip(card, dev); trigger_chdlc_poll(dev); /* Start debugging */ WAN_DEBUG_START(card); break; case EXCEP_LINK_INACTIVE_KPALV: card->u.c.state = WAN_DISCONNECTED; port_set_state(card, WAN_DISCONNECTED); printk(KERN_INFO "%s: Keepalive timer expired.\n", card->devname); unconfigure_ip(card, dev); trigger_chdlc_poll(dev); /* Start debugging */ WAN_DEBUG_START(card); break; case EXCEP_IP_ADDRESS_DISCOVERED: if (configure_ip(card, dev)) return -1; break; case EXCEP_LOOPBACK_CONDITION: printk(KERN_INFO "%s: Loopback Condition Detected.\n", card->devname); break; case NO_CHDLC_EXCEP_COND_TO_REPORT: printk(KERN_INFO "%s: No exceptions reported.\n", card->devname); break; } } return 0; } /*============================================================================ * Configure IP from SLARP negotiation * This adds dynamic routes when SLARP has provided valid addresses */ static int configure_ip (sdla_t* card, netdevice_t* dev) { chdlc_private_area_t *chdlc_priv_area; char err; if (!dev) return 0; chdlc_priv_area = dev->priv; /* set to discover */ if(card->u.c.slarp_timer != 0x00) { wan_mbox_t* mb = &card->wan_mbox; CHDLC_CONFIGURATION_STRUCT *cfg; mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != COMMAND_OK) { chdlc_error(card,err,mb); return -1; } cfg = (CHDLC_CONFIGURATION_STRUCT *)mb->wan_data; chdlc_priv_area->IP_address = cfg->IP_address; chdlc_priv_area->IP_netmask = cfg->IP_netmask; /* Set flag to add route */ chdlc_priv_area->route_status = ADD_ROUTE; /* The idea here is to add the route in the poll routine. This way, we aren't in interrupt context when adding routes */ trigger_chdlc_poll(dev); } return 0; } /*============================================================================ * Un-Configure IP negotiated by SLARP * This removes dynamic routes when the link becomes inactive. */ static int unconfigure_ip (sdla_t* card, netdevice_t *dev) { chdlc_private_area_t *chdlc_priv_area; if (!dev) return 0; chdlc_priv_area= dev->priv; if (chdlc_priv_area->route_status == ROUTE_ADDED) { /* Note: If this function is called, the * port state has been DISCONNECTED. This state * change will trigger a poll_disconnected * function, that will check for this condition. */ chdlc_priv_area->route_status = REMOVE_ROUTE; } return 0; } /*============================================================================ * Routine to add/remove routes * Called like a polling routine when Routes are flagged to be added/removed. */ static void process_route (sdla_t *card) { netdevice_t *dev; unsigned char port_num; chdlc_private_area_t *chdlc_priv_area = NULL; u32 local_IP_addr = 0; u32 remote_IP_addr = 0; u32 IP_netmask, IP_addr; int err = 0; struct in_device *in_dev; mm_segment_t fs; struct ifreq if_info; struct sockaddr_in *if_data1, *if_data2; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (!dev || !wan_netif_priv(dev)){ return; } chdlc_priv_area = wan_netif_priv(dev); port_num = card->u.c.comm_port; /* Bug Fix Mar 16 2000 * AND the IP address to the Mask before checking * the last two bits. */ if((chdlc_priv_area->route_status == ADD_ROUTE) && ((chdlc_priv_area->IP_address & ~chdlc_priv_area->IP_netmask) > 2)) { unsigned long tmp_ip; printk(KERN_INFO "%s: Dynamic route failure.\n",card->devname); tmp_ip=ntohl(chdlc_priv_area->IP_address); if(card->u.c.slarp_timer) { printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u received\n", card->devname, NIPQUAD(tmp_ip)); printk(KERN_INFO "%s: from remote station.\n", card->devname); }else{ printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u issued\n", card->devname, NIPQUAD(tmp_ip)); printk(KERN_INFO "%s: to remote station. Local\n", card->devname); printk(KERN_INFO "%s: IP address must be A.B.C.1\n", card->devname); printk(KERN_INFO "%s: or A.B.C.2.\n",card->devname); } /* remove the route due to the IP address error condition */ chdlc_priv_area->route_status = REMOVE_ROUTE; err = 1; } /* If we are removing a route with bad IP addressing, then use the */ /* locally configured IP addresses */ if((chdlc_priv_area->route_status == REMOVE_ROUTE) && err) { /* do not remove a bad route that has already been removed */ if(chdlc_priv_area->route_removed) { return; } in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa = in_dev->ifa_list; if (ifa != NULL ) { local_IP_addr = ifa->ifa_local; IP_netmask = ifa->ifa_mask; } } }else{ /* According to Cisco HDLC, if the point-to-point address is A.B.C.1, then we are the opposite (A.B.C.2), and vice-versa. */ IP_netmask = ntohl(chdlc_priv_area->IP_netmask); remote_IP_addr = ntohl(chdlc_priv_area->IP_address); /* If Netmask is 255.255.255.255 the local address * calculation will fail. Default it back to 255.255.255.0 */ if (IP_netmask == 0xffffffff) IP_netmask &= 0x00ffffff; /* Bug Fix Mar 16 2000 * AND the Remote IP address with IP netmask, instead * of static netmask of 255.255.255.0 */ local_IP_addr = (remote_IP_addr & IP_netmask) + (~remote_IP_addr & ntohl(0x0003)); if(!card->u.c.slarp_timer) { IP_addr = local_IP_addr; local_IP_addr = remote_IP_addr; remote_IP_addr = IP_addr; } } fs = get_fs(); /* Save file system */ set_fs(get_ds()); /* Get user space block */ /* Setup a structure for adding/removing routes */ memset(&if_info, 0, sizeof(if_info)); strcpy(if_info.ifr_name, dev->name); switch (chdlc_priv_area->route_status) { case ADD_ROUTE: if(!card->u.c.slarp_timer) { if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = remote_IP_addr; if_data2->sin_family = AF_INET; err = wp_devinet_ioctl(SIOCSIFDSTADDR, &if_info); } else { if_data1 = (struct sockaddr_in *)&if_info.ifr_addr; if_data1->sin_addr.s_addr = local_IP_addr; if_data1->sin_family = AF_INET; if(!(err = wp_devinet_ioctl(SIOCSIFADDR, &if_info))){ if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = remote_IP_addr; if_data2->sin_family = AF_INET; err = wp_devinet_ioctl(SIOCSIFDSTADDR, &if_info); } } if(err) { printk(KERN_INFO "%s: Add route %u.%u.%u.%u failed (%d)\n", card->devname, NIPQUAD(remote_IP_addr), err); } else { ((chdlc_private_area_t *)dev->priv)->route_status = ROUTE_ADDED; printk(KERN_INFO "%s: Dynamic route added.\n", card->devname); printk(KERN_INFO "%s: Local IP addr : %u.%u.%u.%u\n", card->devname, NIPQUAD(local_IP_addr)); printk(KERN_INFO "%s: Remote IP addr: %u.%u.%u.%u\n", card->devname, NIPQUAD(remote_IP_addr)); chdlc_priv_area->route_removed = 0; } break; case REMOVE_ROUTE: /* Change the local ip address of the interface to 0. * This will also delete the destination route. */ if(!card->u.c.slarp_timer) { if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = 0; if_data2->sin_family = AF_INET; err = wp_devinet_ioctl(SIOCSIFDSTADDR, &if_info); } else { if_data1 = (struct sockaddr_in *)&if_info.ifr_addr; if_data1->sin_addr.s_addr = 0; if_data1->sin_family = AF_INET; err = wp_devinet_ioctl(SIOCSIFADDR,&if_info); } if(err) { printk(KERN_INFO "%s: Remove route %u.%u.%u.%u failed, (err %d)\n", card->devname, NIPQUAD(remote_IP_addr), err); } else { ((chdlc_private_area_t *)dev->priv)->route_status = NO_ROUTE; printk(KERN_INFO "%s: Dynamic route removed: %u.%u.%u.%u\n", card->devname, NIPQUAD(local_IP_addr)); chdlc_priv_area->route_removed = 1; } break; } set_fs(fs); /* Restore file system */ } /** * if_do_ioctl - Ioctl handler for fr * @dev: Device subject to ioctl * @ifr: Interface request block from the user * @cmd: Command that is being issued * * This function handles the ioctls that may be issued by the user * to control the settings of a FR. It does both busy * and security checks. This function is intended to be wrapped by * callers who wish to add additional ioctl calls of their own. */ /* SNMP */ static int if_do_ioctl(netdevice_t *dev, struct ifreq *ifr, int cmd) { chdlc_private_area_t* chan= (chdlc_private_area_t*)dev->priv; unsigned long smp_flags; sdla_t *card; wan_udp_pkt_t *wan_udp_pkt; int err=0; if (!chan){ return -ENODEV; } card=chan->card; switch(cmd) { case SIOC_WANPIPE_BIND_SK: if (!ifr){ err= -EINVAL; break; } spin_lock_irqsave(&card->wandev.lock,smp_flags); err=wan_bind_api_to_svc(chan,ifr->ifr_data); spin_unlock_irqrestore(&card->wandev.lock,smp_flags); break; case SIOC_WANPIPE_UNBIND_SK: if (!ifr){ err= -EINVAL; break; } spin_lock_irqsave(&card->wandev.lock,smp_flags); err=wan_unbind_api_from_svc(chan,ifr->ifr_data); spin_unlock_irqrestore(&card->wandev.lock,smp_flags); break; case SIOC_WANPIPE_CHECK_TX: case SIOC_ANNEXG_CHECK_TX: err=0; break; case SIOC_WANPIPE_DEV_STATE: err = chan->common.state; break; case SIOC_ANNEXG_KICK: err=0; break; case SIOC_WANPIPE_PIPEMON: NET_ADMIN_CHECK(); if (atomic_read(&chan->udp_pkt_len) != 0){ return -EBUSY; } atomic_set(&chan->udp_pkt_len,MAX_LGTH_UDP_MGNT_PKT); /* For performance reasons test the critical * here before spin lock */ if (test_bit(0,&card->in_isr)){ atomic_set(&chan->udp_pkt_len,0); return -EBUSY; } wan_udp_pkt=(wan_udp_pkt_t*)chan->udp_pkt_data; if (copy_from_user(&wan_udp_pkt->wan_udp_hdr,ifr->ifr_data,sizeof(wan_udp_hdr_t))){ atomic_set(&chan->udp_pkt_len,0); return -EFAULT; } spin_lock_irqsave(&card->wandev.lock, smp_flags); /* We have to check here again because we don't know * what happened during spin_lock */ if (test_bit(0,&card->in_isr)) { printk(KERN_INFO "%s:%s Pipemon command failed, Driver busy: try again.\n", card->devname,dev->name); atomic_set(&chan->udp_pkt_len,0); spin_unlock_irqrestore(&card->wandev.lock, smp_flags); return -EBUSY; } process_udp_mgmt_pkt(card,dev,chan,1); spin_unlock_irqrestore(&card->wandev.lock, smp_flags); /* This area will still be critical to other * PIPEMON commands due to udp_pkt_len * thus we can release the irq */ if (atomic_read(&chan->udp_pkt_len) > sizeof(wan_udp_pkt_t)){ printk(KERN_INFO "%s: Error: Pipemon buf too bit on the way up! %i\n", card->devname,atomic_read(&chan->udp_pkt_len)); atomic_set(&chan->udp_pkt_len,0); return -EINVAL; } if (copy_to_user(ifr->ifr_data,&wan_udp_pkt->wan_udp_hdr,sizeof(wan_udp_hdr_t))){ atomic_set(&chan->udp_pkt_len,0); return -EFAULT; } atomic_set(&chan->udp_pkt_len,0); return 0; default: return -EOPNOTSUPP; } return err; } /*============================================================================= * Store a UDP management packet for later processing. */ static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card, struct sk_buff *skb, netdevice_t* dev, chdlc_private_area_t* chdlc_priv_area ) { int udp_pkt_stored = 0; if(!atomic_read(&chdlc_priv_area->udp_pkt_len) && (skb->len <= MAX_LGTH_UDP_MGNT_PKT)) { atomic_set(&chdlc_priv_area->udp_pkt_len, skb->len); chdlc_priv_area->udp_pkt_src = udp_pkt_src; memcpy(chdlc_priv_area->udp_pkt_data, skb->data, skb->len); card->u.c.timer_int_enabled = TMR_INT_ENABLED_UDP; udp_pkt_stored = 1; } wan_skb_free(skb); return(udp_pkt_stored); } /*============================================================================= * Process UDP management packet. */ static int process_udp_mgmt_pkt(sdla_t* card, netdevice_t* dev, chdlc_private_area_t* chdlc_priv_area, int local_dev ) { unsigned char *buf; unsigned int frames, len; struct sk_buff *new_skb; unsigned short buffer_length, real_len; volatile unsigned long data_ptr; unsigned data_length; int udp_mgmt_req_valid = 1; SHARED_MEMORY_INFO_STRUCT flags; wan_mbox_t *mb = &card->wan_mbox; wan_udp_pkt_t *wan_udp_pkt; struct timeval tv; int err; wan_udp_pkt = (wan_udp_pkt_t *) chdlc_priv_area->udp_pkt_data; if (!local_dev){ if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){ /* Only these commands are support for remote debugging. * All others are not */ switch(wan_udp_pkt->wan_udp_command) { case READ_GLOBAL_STATISTICS: case READ_MODEM_STATUS: case READ_CHDLC_LINK_STATUS: case CPIPE_ROUTER_UP_TIME: case READ_COMMS_ERROR_STATS: case READ_CHDLC_OPERATIONAL_STATS: /* These two commands are executed for * each request */ case READ_CHDLC_CONFIGURATION: case READ_CHDLC_CODE_VERSION: case WAN_GET_MEDIA_TYPE: case WAN_FE_GET_CFG: case WAN_FE_GET_STAT: case WAN_GET_PROTOCOL: case WAN_GET_PLATFORM: udp_mgmt_req_valid = 1; break; default: udp_mgmt_req_valid = 0; break; } } } if(!udp_mgmt_req_valid) { /* set length to 0 */ wan_udp_pkt->wan_udp_data_len = 0; /* set return code */ wan_udp_pkt->wan_udp_return_code = 0xCD; if (net_ratelimit()){ printk(KERN_INFO "%s: Warning, Illegal UDP command attempted from network: %x\n", card->devname,wan_udp_pkt->wan_udp_command); } } else { unsigned long trace_status_cfg_addr = 0; TRACE_STATUS_EL_CFG_STRUCT trace_cfg_struct; TRACE_STATUS_ELEMENT_STRUCT trace_element_struct; wan_udp_pkt->wan_udp_opp_flag = 0; switch(wan_udp_pkt->wan_udp_command) { case CPIPE_ENABLE_TRACING: if (!chdlc_priv_area->TracingEnabled) { /* OPERATE_DATALINE_MONITOR */ mb->wan_data_len = sizeof(LINE_TRACE_CONFIG_STRUCT); mb->wan_command = SET_TRACE_CONFIGURATION; ((LINE_TRACE_CONFIG_STRUCT *)mb->wan_data)-> trace_config = TRACE_ACTIVE; /* Trace delay mode is not used because it slows down transfer and results in a standoff situation when there is a lot of data */ /* Configure the Trace based on user inputs */ ((LINE_TRACE_CONFIG_STRUCT *)mb->wan_data)->trace_config |= wan_udp_pkt->wan_udp_data[0]; ((LINE_TRACE_CONFIG_STRUCT *)mb->wan_data)-> trace_deactivation_timer = 4000; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) { chdlc_error(card,err,mb); card->TracingEnabled = 0; wan_udp_pkt->wan_udp_return_code = err; mb->wan_data_len = 0; break; } /* Get the base address of the trace element list */ mb->wan_data_len = 0; mb->wan_command = READ_TRACE_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) { chdlc_error(card,err,mb); chdlc_priv_area->TracingEnabled = 0; wan_udp_pkt->wan_udp_return_code = err; mb->wan_data_len = 0; break; } trace_status_cfg_addr =((LINE_TRACE_CONFIG_STRUCT *) mb->wan_data) -> ptr_trace_stat_el_cfg_struct; card->hw_iface.peek(card->hw, trace_status_cfg_addr, &trace_cfg_struct, sizeof(trace_cfg_struct)); chdlc_priv_area->start_trace_addr = trace_cfg_struct. base_addr_trace_status_elements; chdlc_priv_area->number_trace_elements = trace_cfg_struct.number_trace_status_elements; chdlc_priv_area->end_trace_addr = (unsigned long) ((TRACE_STATUS_ELEMENT_STRUCT *) chdlc_priv_area->start_trace_addr + (chdlc_priv_area->number_trace_elements - 1)); chdlc_priv_area->base_addr_trace_buffer = trace_cfg_struct.base_addr_trace_buffer; chdlc_priv_area->end_addr_trace_buffer = trace_cfg_struct.end_addr_trace_buffer; chdlc_priv_area->curr_trace_addr = trace_cfg_struct.next_trace_element_to_use; chdlc_priv_area->available_buffer_space = 2000 - sizeof(struct iphdr) - sizeof(struct udphdr) - sizeof(wan_mgmt_t)- sizeof(wan_cmd_t)- sizeof(wan_trace_info_t); } wan_udp_pkt->wan_udp_return_code = COMMAND_OK; mb->wan_data_len = 0; chdlc_priv_area->TracingEnabled = 1; break; case CPIPE_DISABLE_TRACING: if (chdlc_priv_area->TracingEnabled) { /* OPERATE_DATALINE_MONITOR */ mb->wan_data_len = sizeof(LINE_TRACE_CONFIG_STRUCT); mb->wan_command = SET_TRACE_CONFIGURATION; ((LINE_TRACE_CONFIG_STRUCT *)mb->wan_data)-> trace_config = TRACE_INACTIVE; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); } chdlc_priv_area->TracingEnabled = 0; wan_udp_pkt->wan_udp_return_code = COMMAND_OK; mb->wan_data_len = 0; break; case CPIPE_GET_TRACE_INFO: if (!chdlc_priv_area->TracingEnabled) { wan_udp_pkt->wan_udp_return_code = 1; mb->wan_data_len = 0; break; } wan_udp_pkt->wan_udp_chdlc_ismoredata = 0x00; buffer_length = 0; /* offset of packet already occupied */ for (frames=0; frames < chdlc_priv_area->number_trace_elements; frames++){ wan_trace_pkt_t *trace_pkt = (wan_trace_pkt_t *) &wan_udp_pkt->wan_udp_data[buffer_length]; card->hw_iface.peek(card->hw, chdlc_priv_area->curr_trace_addr, (unsigned char *)&trace_element_struct, sizeof(TRACE_STATUS_ELEMENT_STRUCT)); if (trace_element_struct.opp_flag == 0x00) { break; } /* get pointer to real data */ data_ptr = trace_element_struct.ptr_data_bfr; /* See if there is actual data on the trace buffer */ if (data_ptr){ data_length = trace_element_struct.trace_length; }else{ data_length = 0; wan_udp_pkt->wan_udp_chdlc_ismoredata = 0x01; } if( (chdlc_priv_area->available_buffer_space - buffer_length) < ( sizeof(wan_trace_pkt_t) + data_length) ) { /* indicate there are more frames on board & exit */ wan_udp_pkt->wan_udp_chdlc_ismoredata = 0x01; break; } trace_pkt->status = trace_element_struct.trace_type; trace_pkt->time_stamp = trace_element_struct.trace_time_stamp; trace_pkt->real_length = trace_element_struct.trace_length; do_gettimeofday(&tv); trace_pkt->sec=tv.tv_sec; trace_pkt->usec=tv.tv_usec; /* see if we can fit the frame into the user buffer */ real_len = trace_pkt->real_length; if (data_ptr == 0) { trace_pkt->data_avail = 0x00; } else { unsigned tmp = 0; /* get the data from circular buffer must check for end of buffer */ trace_pkt->data_avail = 0x01; if ((data_ptr + real_len) > chdlc_priv_area->end_addr_trace_buffer + 1){ tmp = chdlc_priv_area->end_addr_trace_buffer - data_ptr + 1; card->hw_iface.peek(card->hw, data_ptr, trace_pkt->data,tmp); data_ptr = chdlc_priv_area->base_addr_trace_buffer; } card->hw_iface.peek(card->hw, data_ptr, &trace_pkt->data[tmp], real_len - tmp); } /* zero the opp flag to show we got the frame */ card->hw_iface.poke_byte(card->hw, chdlc_priv_area->curr_trace_addr, 0x00); /* now move onto the next frame */ chdlc_priv_area->curr_trace_addr += sizeof(TRACE_STATUS_ELEMENT_STRUCT); /* check if we went over the last address */ if ( chdlc_priv_area->curr_trace_addr > chdlc_priv_area->end_trace_addr ) { chdlc_priv_area->curr_trace_addr = chdlc_priv_area->start_trace_addr; } if(trace_pkt->data_avail == 0x01) { buffer_length += real_len; } /* for the header */ buffer_length += sizeof(wan_trace_pkt_t); } /* For Loop */ if (frames == chdlc_priv_area->number_trace_elements){ wan_udp_pkt->wan_udp_chdlc_ismoredata = 0x01; } wan_udp_pkt->wan_udp_chdlc_num_frames = frames; mb->wan_data_len = buffer_length; wan_udp_pkt->wan_udp_data_len = buffer_length; wan_udp_pkt->wan_udp_return_code = COMMAND_OK; break; case CPIPE_FT1_READ_STATUS: card->hw_iface.peek(card->hw, card->flags_off, &flags, sizeof(flags)); ((unsigned char *)wan_udp_pkt->wan_udp_data )[0] = flags.FT1_info_struct.parallel_port_A_input; ((unsigned char *)wan_udp_pkt->wan_udp_data )[1] = flags.FT1_info_struct.parallel_port_B_input; wan_udp_pkt->wan_udp_return_code = COMMAND_OK; wan_udp_pkt->wan_udp_data_len = 2; mb->wan_data_len = 2; break; case CPIPE_ROUTER_UP_TIME: do_gettimeofday( &tv ); chdlc_priv_area->router_up_time = tv.tv_sec - chdlc_priv_area->router_start_time; *(unsigned long *)&wan_udp_pkt->wan_udp_data = chdlc_priv_area->router_up_time; mb->wan_data_len = sizeof(unsigned long); wan_udp_pkt->wan_udp_data_len = sizeof(unsigned long); wan_udp_pkt->wan_udp_return_code = COMMAND_OK; break; case FT1_MONITOR_STATUS_CTRL: /* Enable FT1 MONITOR STATUS */ if ((wan_udp_pkt->wan_udp_data[0] & ENABLE_READ_FT1_STATUS) || (wan_udp_pkt->wan_udp_data[0] & ENABLE_READ_FT1_OP_STATS)) { if( rCount++ != 0 ) { wan_udp_pkt->wan_udp_return_code = COMMAND_OK; mb->wan_data_len = 1; break; } } /* Disable FT1 MONITOR STATUS */ if( wan_udp_pkt->wan_udp_data[0] == 0) { if( --rCount != 0) { wan_udp_pkt->wan_udp_return_code = COMMAND_OK; mb->wan_data_len = 1; break; } } goto dflt_1; case WAN_GET_MEDIA_TYPE: case WAN_FE_GET_STAT: case WAN_FE_SET_LB_MODE: case WAN_FE_FLUSH_PMON: case WAN_FE_GET_CFG: if (IS_TE1_CARD(card)){ card->wandev.fe_iface.process_udp( &card->fe, &wan_udp_pkt->wan_udp_cmd, &wan_udp_pkt->wan_udp_data[0]); }else if (IS_56K_CARD(card)){ card->wandev.fe_iface.process_udp( &card->fe, &wan_udp_pkt->wan_udp_cmd, &wan_udp_pkt->wan_udp_data[0]); }else{ if (wan_udp_pkt->wan_udp_command == WAN_GET_MEDIA_TYPE){ wan_udp_pkt->wan_udp_data_len = sizeof(unsigned char); wan_udp_pkt->wan_udp_return_code = CMD_OK; }else{ wan_udp_pkt->wan_udp_return_code = WAN_UDP_INVALID_CMD; } } mb->wan_data_len = wan_udp_pkt->wan_udp_data_len; break; case WAN_GET_PROTOCOL: wan_udp_pkt->wan_udp_chdlc_num_frames = card->wandev.config_id; wan_udp_pkt->wan_udp_return_code = CMD_OK; mb->wan_data_len = wan_udp_pkt->wan_udp_data_len = 1; break; case WAN_GET_PLATFORM: wan_udp_pkt->wan_udp_data[0] = WAN_LINUX_PLATFORM; wan_udp_pkt->wan_udp_return_code = CMD_OK; mb->wan_data_len = wan_udp_pkt->wan_udp_data_len = 1; break; default: dflt_1: /* it's a board command */ mb->wan_command = wan_udp_pkt->wan_udp_command; mb->wan_data_len = wan_udp_pkt->wan_udp_data_len; if (mb->wan_data_len) { memcpy(&mb->wan_data, (unsigned char *) wan_udp_pkt-> wan_udp_data, mb->wan_data_len); } /* run the command on the board */ err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) { chdlc_error(card,err,mb); wan_udp_pkt->wan_udp_return_code = mb->wan_return_code; break; } /* copy the result back to our buffer */ memcpy(&wan_udp_pkt->wan_udp_hdr.wan_cmd, mb, sizeof(wan_cmd_t)); if (mb->wan_data_len) { memcpy(&wan_udp_pkt->wan_udp_data, &mb->wan_data, mb->wan_data_len); } } /* end of switch */ } /* end of else */ /* Fill UDP TTL */ wan_udp_pkt->wan_ip_ttl= card->wandev.ttl; if (local_dev){ wan_udp_pkt->wan_udp_request_reply = UDPMGMT_REPLY; return 1; } len = reply_udp(chdlc_priv_area->udp_pkt_data, mb->wan_data_len); if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){ /* Must check if we interrupted if_send() routine. The * tx buffers might be used. If so drop the packet */ if (!test_bit(SEND_CRIT,&card->wandev.critical)) { if(!chdlc_send(card, chdlc_priv_area->udp_pkt_data, len, 0)) { ++ card->wandev.stats.tx_packets; card->wandev.stats.tx_bytes += len; } } } else { /* Pass it up the stack Allocate socket buffer */ if ((new_skb = dev_alloc_skb(len)) != NULL) { /* copy data into new_skb */ buf = skb_put(new_skb, len); memcpy(buf, chdlc_priv_area->udp_pkt_data, len); /* Decapsulate pkt and pass it up the protocol stack */ new_skb->protocol = htons(ETH_P_IP); new_skb->dev = dev; wan_skb_reset_mac_header(new_skb); netif_rx(new_skb); } else { printk(KERN_INFO "%s: no socket buffers available!\n", card->devname); } } atomic_set(&chdlc_priv_area->udp_pkt_len,0); return 0; } /*============================================================================ * Initialize Receive and Transmit Buffers. */ static void init_chdlc_tx_rx_buff( sdla_t* card) { wan_mbox_t *mb = &card->wan_mbox; unsigned long tx_config_off; unsigned long rx_config_off; CHDLC_TX_STATUS_EL_CFG_STRUCT tx_config; CHDLC_RX_STATUS_EL_CFG_STRUCT rx_config; char err; mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != COMMAND_OK) { netdevice_t *dev; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev){ chdlc_error(card,err,mb); } return; } /* ALEX: Apr 8 2004 SANGOMA ISA CARD */ tx_config_off = ((CHDLC_CONFIGURATION_STRUCT *)mb->wan_data)-> ptr_CHDLC_Tx_stat_el_cfg_struct; rx_config_off = ((CHDLC_CONFIGURATION_STRUCT *)mb->wan_data)-> ptr_CHDLC_Rx_stat_el_cfg_struct; /* Setup Head and Tails for buffers */ card->hw_iface.peek(card->hw, tx_config_off, &tx_config, sizeof(tx_config)); card->u.c.txbuf_base_off = tx_config.base_addr_Tx_status_elements; card->u.c.txbuf_last_off = card->u.c.txbuf_base_off + (tx_config.number_Tx_status_elements - 1) * sizeof(CHDLC_DATA_TX_STATUS_EL_STRUCT); card->hw_iface.peek(card->hw, rx_config_off, &rx_config, sizeof(rx_config)); card->u.c.rxbuf_base_off = rx_config.base_addr_Rx_status_elements; card->u.c.rxbuf_last_off = card->u.c.rxbuf_base_off + (rx_config.number_Rx_status_elements - 1) * sizeof(CHDLC_DATA_RX_STATUS_EL_STRUCT); /* Set up next pointer to be used */ card->u.c.txbuf_off = tx_config.next_Tx_status_element_to_use; card->u.c.rxmb_off = rx_config.next_Rx_status_element_to_use; /* Setup Actual Buffer Start and end addresses */ card->u.c.rx_base_off = rx_config.base_addr_Rx_buffer; card->u.c.rx_top_off = rx_config.end_addr_Rx_buffer; } /*============================================================================= * Perform Interrupt Test by running READ_CHDLC_CODE_VERSION command MAX_INTR * _TEST_COUNTER times. */ static int intr_test( sdla_t* card) { wan_mbox_t* mb = &card->wan_mbox; int err,i; card->timer_int_enabled = 0; err = chdlc_set_intr_mode(card, APP_INT_ON_COMMAND_COMPLETE); if (err == CMD_OK) { for (i = 0; i < MAX_INTR_TEST_COUNTER; i ++) { mb->wan_data_len = 0; mb->wan_command = READ_CHDLC_CODE_VERSION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != CMD_OK) chdlc_error(card, err, mb); } }else{ return err; } // udelay(2000); // schedule(); // udelay(2000); card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); err = chdlc_set_intr_mode(card, 0); if (err != CMD_OK) return err; return 0; } /*============================================================================== * Determine what type of UDP call it is. CPIPEAB ? */ static int udp_pkt_type(struct sk_buff *skb, sdla_t* card) { wan_udp_pkt_t *wan_udp_pkt = (wan_udp_pkt_t *)skb->data; if (skb->len < sizeof(wan_udp_pkt_t)){ return UDP_INVALID_TYPE; } #ifdef _WAN_UDP_DEBUG printk(KERN_INFO "SIG %s = %s\n\ UPP %x = %x\n\ PRT %x = %x\n\ REQ %i = %i\n\ 36 th = %x 37th = %x\n", wan_udp_pkt->wan_udp_signature, UDPMGMT_SIGNATURE, wan_udp_pkt->wan_udp_dport, ntohs(card->wandev.udp_port), wan_udp_pkt->wan_ip_p, UDPMGMT_UDP_PROTOCOL, wan_udp_pkt->wan_udp_request_reply, UDPMGMT_REQUEST, skb->data[36], skb->data[37]); #endif if ((wan_udp_pkt->wan_udp_dport == ntohs(card->wandev.udp_port)) && (wan_udp_pkt->wan_ip_p == UDPMGMT_UDP_PROTOCOL) && (wan_udp_pkt->wan_udp_request_reply == UDPMGMT_REQUEST)) { if (!strncmp(wan_udp_pkt->wan_udp_signature,UDPMGMT_SIGNATURE,8)){ return UDP_CPIPE_TYPE; } if (!strncmp(wan_udp_pkt->wan_udp_signature,GLOBAL_UDP_SIGNATURE,8)){ return UDP_CPIPE_TYPE; } } return UDP_INVALID_TYPE; } /*============================================================================ * Set PORT state. */ static void port_set_state (sdla_t *card, int state) { netdevice_t *dev; if (card->wandev.state != state) { switch (state) { case WAN_CONNECTED: printk (KERN_INFO "%s: Link connected!\n", card->devname); break; case WAN_CONNECTING: printk (KERN_INFO "%s: Link connecting...\n", card->devname); break; case WAN_DISCONNECTED: printk (KERN_INFO "%s: Link disconnected!\n", card->devname); break; } card->wandev.state = state; dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (dev && wan_netif_priv(dev)){ chdlc_private_area_t *chdlc_priv_area = wan_netif_priv(dev); chdlc_priv_area->common.state = state; if (chdlc_priv_area->common.usedby == API){ wan_update_api_state(chdlc_priv_area); } } } } /*=========================================================================== * config_chdlc * * Configure the chdlc protocol and enable communications. * * The if_open() function binds this function to the poll routine. * Therefore, this function will run every time the chdlc interface * is brought up. We cannot run this function from the if_open * because if_open does not have access to the remote IP address. * * If the communications are not enabled, proceed to configure * the card and enable communications. * * If the communications are enabled, it means that the interface * was shutdown by ether the user or driver. In this case, we * have to check that the IP addresses have not changed. If * the IP addresses have changed, we have to reconfigure the firmware * and update the changed IP addresses. Otherwise, just exit. * */ static int config_chdlc (sdla_t *card, netdevice_t *dev) { chdlc_private_area_t *chdlc_priv_area = wan_netif_priv(dev); if (card->u.c.comm_enabled){ /* Jun 20. 2000: NC * IP addresses are not used in the API mode */ if ((chdlc_priv_area->ip_local_tmp != chdlc_priv_area->ip_local || chdlc_priv_area->ip_remote_tmp != chdlc_priv_area->ip_remote) && chdlc_priv_area->common.usedby == WANPIPE) { /* The IP addersses have changed, we must * stop the communications and reconfigure * the card. Reason: the firmware must know * the local and remote IP addresses. */ disable_comm(card); card->u.c.state = WAN_DISCONNECTED; port_set_state(card, WAN_DISCONNECTED); printk(KERN_INFO "%s: IP addresses changed!\n", card->devname); printk(KERN_INFO "%s: Restarting communications ...\n", card->devname); }else{ /* IP addresses are the same and the link is up, * we dont have to do anything here. Therefore, exit */ return 0; } } chdlc_priv_area->ip_local = chdlc_priv_area->ip_local_tmp; chdlc_priv_area->ip_remote = chdlc_priv_area->ip_remote_tmp; /* Setup the Board for asynchronous mode */ if (card->u.c.async_mode){ if (set_asy_config(card)) { printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n", card->devname); return 0; } }else{ /* Setup the Board for CHDLC */ if (set_chdlc_config(card)) { printk (KERN_INFO "%s: Failed CHDLC configuration!\n", card->devname); return 0; } /* If baud rate external and set to * idle mark or switching cts/rts then * calibrate baud rate */ if (card->wandev.clocking == WANOPT_EXTERNAL && (card->wandev.line_idle == WANOPT_IDLE_MARK || card->wandev.connection == WANOPT_SWITCHED)){ printk(KERN_INFO "%s: Calibrating Baud Rate ...\n",card->devname); if (chdlc_calibrate_baud(card) != COMMAND_OK) return -EINVAL; if (chdlc_read_baud_calibration(card)!= COMMAND_OK) return -EINVAL; } } card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); if (IS_TE1_CARD(card)) { int err = -EINVAL; printk(KERN_INFO "%s: Configuring onboard %s CSU/DSU\n", card->devname, (IS_T1_CARD(card))?"T1":"E1"); if (card->wandev.fe_iface.config){ err = card->wandev.fe_iface.config(&card->fe); } if (err){ printk(KERN_INFO "%s: Failed %s configuratoin!\n", card->devname, (IS_T1_CARD(card))?"T1":"E1"); return -EINVAL; } } if (IS_56K_CARD(card)) { int err = -EINVAL; printk(KERN_INFO "%s: Configuring 56K onboard CSU/DSU\n", card->devname); if (card->wandev.fe_iface.config){ err = card->wandev.fe_iface.config(&card->fe); } if(err) { printk (KERN_INFO "%s: Failed 56K configuration!\n", card->devname); return -EINVAL; } } /* Set interrupt mode and mask */ if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_TX_FRAME | APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: Failed to set interrupt triggers!\n", card->devname); return -EINVAL; } /* Mask All interrupts */ card->hw_iface.clear_bit(card->hw, card->intr_perm_off, (APP_INT_ON_RX_FRAME | APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_CHDLC_EXCEP_COND)); /* In TTY mode, receive interrupt will be enabled during * wanpipe_tty_open() operation */ if (card->tty_opt){ card->hw_iface.clear_bit(card->hw, card->intr_perm_off, APP_INT_ON_RX_FRAME); } if(IS_TE1_CARD(card) && card->wandev.ignore_front_end_status == WANOPT_NO) { /* Do not enable comms here, wait for TE1 * to come up first */ }else{ /* Enable communications */ if (card->u.c.async_mode){ if (asy_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable async commnunication!\n", card->devname); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } }else{ if (chdlc_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable chdlc communications!\n", card->devname); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } } DEBUG_EVENT("%s: Communications enabled on startup\n", card->devname); } /* Initialize Rx/Tx buffer control fields */ init_chdlc_tx_rx_buff(card); card->u.c.state = WAN_CONNECTING; port_set_state(card, WAN_CONNECTING); /* Manually poll the 56K CSU/DSU to get the status */ if (IS_56K_CARD(card)) { /* 56K Update CSU/DSU alarms */ card->wandev.fe_iface.read_alarm(&card->fe, 1); } /* Unmask all interrupts except the Transmit and Timer interrupts */ card->hw_iface.set_bit(card->hw, card->intr_perm_off, (APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_CHDLC_EXCEP_COND)); card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); return 0; } /*============================================================ * chdlc_poll * * Rationale: * We cannot manipulate the routing tables, or * ip addresses withing the interrupt. Therefore * we must perform such actons outside an interrupt * at a later time. * * Description: * CHDLC polling routine, responsible for * shutting down interfaces upon disconnect * and adding/removing routes. * * Usage: * This function is executed for each CHDLC * interface through a tq_schedule bottom half. * * trigger_chdlc_poll() function is used to kick * the chldc_poll routine. */ # if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)) static void chdlc_poll (void *dev_ptr) #else static void chdlc_poll (struct work_struct *work) #endif { sdla_t *card; u8 check_gateway=0; SHARED_MEMORY_INFO_STRUCT flags; # if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)) netdevice_t *dev; chdlc_private_area_t *chdlc_priv_area = container_of(work, chdlc_private_area_t, poll_task); dev = chdlc_priv_area->common.dev; if (!dev) { return; } #else netdevice_t *dev=dev_ptr; chdlc_private_area_t *chdlc_priv_area; if (!dev || (chdlc_priv_area = wan_netif_priv(dev)) == NULL){ return; } #endif card = chdlc_priv_area->card; card->hw_iface.peek(card->hw, card->flags_off, &flags, sizeof(flags)); /* (Re)Configuraiton is in progress, stop what you are * doing and get out */ if (test_bit(PERI_CRIT,&card->wandev.critical)){ clear_bit(POLL_CRIT,&card->wandev.critical); return; } /* if_open() function has triggered the polling routine * to determine the configured IP addresses. Once the * addresses are found, trigger the chdlc configuration */ if (test_bit(0,&chdlc_priv_area->config_chdlc)){ chdlc_priv_area->ip_local_tmp = get_ip_address(dev,WAN_LOCAL_IP); chdlc_priv_area->ip_remote_tmp = get_ip_address(dev,WAN_POINTOPOINT_IP); /* Jun 20. 2000 Bug Fix * Only perform this check in WANPIPE mode, since * IP addresses are not used in the API mode. */ if (chdlc_priv_area->ip_local_tmp == chdlc_priv_area->ip_remote_tmp && card->u.c.slarp_timer == 0x00 && !card->u.c.backup && chdlc_priv_area->common.usedby == WANPIPE){ if (++chdlc_priv_area->ip_error > MAX_IP_ERRORS){ printk(KERN_INFO "\n"); printk(KERN_INFO "%s: --- WARNING ---\n", card->devname); printk(KERN_INFO "%s: The local IP address is the same as the\n", card->devname); printk(KERN_INFO "%s: Point-to-Point IP address.\n", card->devname); printk(KERN_INFO "%s: --- WARNING ---\n\n", card->devname); }else{ clear_bit(POLL_CRIT,&card->wandev.critical); chdlc_priv_area->poll_delay_timer.expires = jiffies+HZ; add_timer(&chdlc_priv_area->poll_delay_timer); return; } } clear_bit(0,&chdlc_priv_area->config_chdlc); clear_bit(POLL_CRIT,&card->wandev.critical); card->u.c.timer_int_enabled |= TMR_INT_ENABLED_CONFIG; flags.interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER; card->hw_iface.poke(card->hw, card->flags_off, &flags, sizeof(flags)); return; } /* Dynamic interface implementation, as well as dynamic * routing. */ switch (card->wandev.state){ case WAN_DISCONNECTED: /* If the dynamic interface configuration is on, and interface * is up, then bring down the netowrk interface */ if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) && !test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) && dev->flags & IFF_UP){ printk(KERN_INFO "%s: Interface %s down.\n", card->devname,dev->name); change_dev_flags(dev,(dev->flags&~IFF_UP)); set_bit(DEV_DOWN,&chdlc_priv_area->interface_down); chdlc_priv_area->route_status = NO_ROUTE; }else{ /* We need to check if the local IP address is * zero. If it is, we shouldn't try to remove it. */ if (dev->flags & IFF_UP && get_ip_address(dev,WAN_LOCAL_IP) && chdlc_priv_area->route_status != NO_ROUTE && card->u.c.slarp_timer){ process_route(card); } } break; case WAN_CONNECTED: /* In SMP machine this code can execute before the interface * comes up. In this case, we must make sure that we do not * try to bring up the interface before dev_open() is finished */ /* DEV_DOWN will be set only when we bring down the interface * for the very first time. This way we know that it was us * that brought the interface down */ if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) && test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) && !(dev->flags & IFF_UP)){ printk(KERN_INFO "%s: Interface %s up.\n", card->devname,dev->name); change_dev_flags(dev,(dev->flags|IFF_UP)); clear_bit(DEV_DOWN,&chdlc_priv_area->interface_down); check_gateway=1; } if (chdlc_priv_area->route_status == ADD_ROUTE && card->u.c.slarp_timer){ process_route(card); check_gateway=1; } if (chdlc_priv_area->gateway && check_gateway) add_gateway(card,dev); break; } clear_bit(POLL_CRIT,&card->wandev.critical); } /*============================================================ * trigger_chdlc_poll * * Description: * Add a chdlc_poll() task into a tq_scheduler bh handler * for a specific dlci/interface. This will kick * the fr_poll() routine at a later time. * * Usage: * Interrupts use this to defer a taks to * a polling routine. * */ static void trigger_chdlc_poll (netdevice_t *dev) { chdlc_private_area_t *chdlc_priv_area; sdla_t *card; if (!dev) return; if ((chdlc_priv_area = dev->priv)==NULL) return; card = chdlc_priv_area->card; if (test_and_set_bit(POLL_CRIT,&card->wandev.critical)){ return; } if (test_bit(PERI_CRIT,&card->wandev.critical)){ return; } WAN_TASKQ_SCHEDULE((&chdlc_priv_area->poll_task)); return; } static void chdlc_poll_delay (unsigned long dev_ptr) { netdevice_t *dev = (netdevice_t *)dev_ptr; trigger_chdlc_poll(dev); } static int set_adapter_config (sdla_t* card) { wan_mbox_t* mb = &card->wan_mbox; ADAPTER_CONFIGURATION_STRUCT* cfg = (ADAPTER_CONFIGURATION_STRUCT*)mb->wan_data; int err; card->hw_iface.getcfg(card->hw, SDLA_ADAPTERTYPE, &cfg->adapter_type); cfg->adapter_config = 0x00; cfg->operating_frequency = 00; mb->wan_data_len = sizeof(ADAPTER_CONFIGURATION_STRUCT); mb->wan_command = SET_ADAPTER_CONFIGURATION; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if(err != COMMAND_OK) { chdlc_error(card,err,mb); } return (err); } void s508_lock (sdla_t *card, unsigned long *smp_flags) { spin_lock_irqsave(&card->wandev.lock, *smp_flags); if (card->next){ spin_lock(&card->next->wandev.lock); } } void s508_unlock (sdla_t *card, unsigned long *smp_flags) { if (card->next){ spin_unlock(&card->next->wandev.lock); } spin_unlock_irqrestore(&card->wandev.lock, *smp_flags); } //*********** TTY SECTION **************** #if 1 //defined(LINUX_2_4) || defined(LINUX_2_1) static void wanpipe_tty_trigger_tx_irq(sdla_t *card) { card->hw_iface.set_bit(card->hw, card->intr_perm_off, APP_INT_ON_TX_FRAME); } static int wanpipe_tty_trigger_poll(sdla_t *card) { if (test_and_set_bit(TASK_POLL,(void*)&card->wandev.critical)){ return 0; } if (wanpipe_queue_tq(&card->tty_task_queue) != 0){ clear_bit(TASK_POLL,(void*)&card->wandev.critical); return -EINVAL; } if (wanpipe_mark_bh() != 0){ clear_bit(TASK_POLL,(void*)&card->wandev.critical); return -EINVAL; } return 0; } # if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)) static void tty_poll_task (void* data) #else static void tty_poll_task (struct work_struct *work) #endif { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)) sdla_t *card = (sdla_t *)container_of(work, sdla_t, tty_task_queue); #else sdla_t *card = (sdla_t *)data; #endif struct tty_struct *tty; struct sk_buff *skb; char fp=0; clear_bit(TASK_POLL,(void*)&card->wandev.critical); if ((tty=card->tty)==NULL) return; while ((skb=skb_dequeue(&card->tty_rx_full)) != NULL){ if (tty->ldisc.receive_buf){ tty->ldisc.receive_buf(tty,skb->data,&fp,skb->len); } skb_trim(skb,0); skb_queue_tail(&card->tty_rx_empty,skb); } if (test_and_clear_bit(TX_INTR,(void*)&card->wandev.critical)){ if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup){ (tty->ldisc.write_wakeup)(tty); } wake_up_interruptible(&tty->write_wait); #if defined(SERIAL_HAVE_POLL_WAIT) || \ (defined LINUX_2_1 && LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,15)) wake_up_interruptible(&tty->poll_wait); #endif } return; } static void wanpipe_tty_close(struct tty_struct *tty, struct file * filp) { sdla_t *card; unsigned long smp_flags; if (!tty || !tty->driver_data){ return; } card = (sdla_t*)tty->driver_data; if (!card) return; printk(KERN_INFO "%s: Closing TTY Driver!\n", card->devname); /* Sanity Check */ if (!card->tty_open) return; wanpipe_close(card); if (--card->tty_open == 0){ struct sk_buff *skb; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); card->tty=NULL; chdlc_disable_comm_shutdown(card); if (card->tty_buf){ kfree(card->tty_buf); card->tty_buf=NULL; } while ((skb=skb_dequeue(&card->tty_rx_empty)) != NULL){ wan_skb_free(skb); } while ((skb=skb_dequeue(&card->tty_rx_full)) != NULL){ wan_skb_free(skb); } /* BUGFIX: Moved down here */ wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); } return; } static int wanpipe_tty_open(struct tty_struct *tty, struct file * filp) { unsigned long smp_flags; sdla_t *card; if (!tty){ return -ENODEV; } if (!tty->driver_data){ int port; #ifdef LINUX_2_6 port = tty->index; #else port = MINOR(tty->device) - tty->driver.minor_start; #endif if ((port < 0) || (port >= NR_PORTS)) return -ENODEV; tty->driver_data = WAN_CARD(port); if (!tty->driver_data) return -ENODEV; } card = (sdla_t*)tty->driver_data; if (!card){ wan_spin_lock_irq(&card->wandev.lock,&smp_flags); card->tty=NULL; wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); return -ENODEV; } printk(KERN_INFO "%s: Opening TTY Driver!\n", card->devname); if (card->tty_open == 0){ struct sk_buff *skb; int i; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); card->tty=tty; wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); if (!card->tty_buf){ card->tty_buf = kmalloc(TTY_CHDLC_MAX_MTU, GFP_KERNEL); if (!card->tty_buf){ card->tty_buf=NULL; card->tty=NULL; return -ENOMEM; } } skb_queue_head_init(&card->tty_rx_empty); skb_queue_head_init(&card->tty_rx_full); for (i=0;itty_rx_empty)) != NULL){ wan_skb_free(skb); } kfree(card->tty_buf); card->tty_buf=NULL; card->tty=NULL; return -ENOMEM; } skb_queue_tail(&card->tty_rx_empty,skb); } clear_bit(TTY_HANGUP,&card->wandev.critical); } ++card->tty_open; wanpipe_open(card); return 0; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10) static int wanpipe_tty_write(struct tty_struct * tty, const unsigned char *buf, int count) #else static int wanpipe_tty_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) #endif { unsigned long smp_flags=0; sdla_t *card=NULL; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10) int from_user=0; #endif if (!tty){ DEBUG_TEST("NO TTY in Write\n"); return -ENODEV; } card = (sdla_t *)tty->driver_data; if (!card){ DEBUG_TEST("No Card in TTY Write\n"); return -ENODEV; } if (count > card->wandev.mtu){ DEBUG_TEST("Frame too big in Write %i Max: %i\n", count,card->wandev.mtu); return -EINVAL; } if (card->wandev.state != WAN_CONNECTED){ DEBUG_TEST("Card not connected in TTY Write\n"); return -EINVAL; } /* Lock the 508 Card: SMP is supported */ if(card->type != SDLA_S514){ s508_lock(card,&smp_flags); } if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){ printk(KERN_INFO "%s: Critical in TTY Write\n", card->devname); /* Lock the 508 Card: SMP is supported */ if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return -EINVAL; } if (from_user) { unsigned char *tmp_buf; if ((tmp_buf=card->tty_buf)==NULL){ DEBUG_TEST("No TTY BUF in Write\n"); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return -ENOMEM; } if (copy_from_user(tmp_buf,buf,count)){ DEBUG_TEST("%s: Failed to copy from user!\n", card->devname); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return -EINVAL; } if (chdlc_send(card,(void*)tmp_buf,count,0)){ DEBUG_TEST("%s: Failed to send, retry later: user!\n", card->devname); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); wanpipe_tty_trigger_tx_irq(card); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return 0; } }else{ if (chdlc_send(card,(void*)buf,count,0)){ DEBUG_TEST("%s: Failed to send, retry later: kernel!\n", card->devname); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); wanpipe_tty_trigger_tx_irq(card); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return 0; } } DEBUG_TEST("%s: Packet sent OK: %i\n",card->devname,count); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return count; } static void wanpipe_tty_receive(sdla_t *card, unsigned addr, unsigned int len) { unsigned offset=0; struct tty_struct *tty; int i; i=0; if (!card->tty_open){ DEBUG_TEST("%s: TTY not open during receive\n", card->devname); return; } if ((tty=card->tty) == NULL){ DEBUG_TEST("%s: No TTY on receive\n", card->devname); return; } if (!tty->driver_data){ DEBUG_TEST("%s: No Driver Data, or Flip on receive\n", card->devname); return; } if (card->u.c.async_mode){ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) #if 0 unsigned char *buf; struct sk_buff *skb; #endif #if 1 # warning "FIXME: Compilation error on 2.6.15 kernel" #else if (len > TTY_CHDLC_MAX_MTU){ if (net_ratelimit()){ printk(KERN_INFO "%s: Received packet size too big: %i bytes, Max: %i!\n", card->devname,len,TTY_FLIPBUF_SIZE); } return; } skb=skb_dequeue(&card->tty_rx_empty); if (skb == NULL){ return; } #endif #else if ((tty->flip.count+len) >= TTY_FLIPBUF_SIZE){ if (net_ratelimit()){ printk(KERN_INFO "%s: Received packet size too big: %i bytes, Max: %i!\n", card->devname,len,TTY_FLIPBUF_SIZE); } return; } #endif if((addr + len) > card->u.c.rx_top_off + 1) { offset = card->u.c.rx_top_off - addr + 1; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) #if 1 # warning "FIXME: Compilation error on 2.6.15 kernel" #else buf=skb_put(skb,offset); card->hw_iface.peek(card->hw, addr, buf, offset); addr = card->u.c.rx_base_off; len -= offset; tty_insert_flip_string(tty,buf,offset); #endif #else card->hw_iface.peek(card->hw, addr, tty->flip.char_buf_ptr, offset); addr = card->u.c.rx_base_off; len -= offset; tty->flip.char_buf_ptr+=offset; tty->flip.count+=offset; for (i=0;iflip.flag_buf_ptr = 0; tty->flip.flag_buf_ptr++; } #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) #if 1 # warning "FIXME: Compilation error on 2.6.15 kernel" #else buf=skb_put(skb,len); card->hw_iface.peek(card->hw, addr, buf, len); tty_insert_flip_string(tty,buf,len); skb_trim(skb,0); skb_queue_tail(&card->tty_rx_empty,skb); #endif #else card->hw_iface.peek(card->hw, addr, tty->flip.char_buf_ptr, len); tty->flip.char_buf_ptr+=len; card->tty->flip.count+=len; for (i=0;iflip.flag_buf_ptr = 0; tty->flip.flag_buf_ptr++; } #endif tty->low_latency=1; tty_flip_buffer_push(tty); }else{ if (len > TTY_CHDLC_MAX_MTU){ if (net_ratelimit()){ printk(KERN_INFO "%s: Received packet size too big: %i bytes, Max: %i!\n", card->devname,len,TTY_FLIPBUF_SIZE); } return; } { unsigned char *buf; struct sk_buff *skb; /* If there are no free buffers, then * drop the incoming packet. This is ok * though because TCP/IP will recover */ skb=skb_dequeue(&card->tty_rx_empty); if (skb == NULL){ wanpipe_tty_trigger_poll(card); return; } if((addr + len) > card->u.c.rx_top_off + 1) { offset = card->u.c.rx_top_off - addr + 1; buf=skb_put(skb,offset); card->hw_iface.peek(card->hw, addr, buf, offset); addr = card->u.c.rx_base_off; len -= offset; } buf=skb_put(skb,len); card->hw_iface.peek(card->hw, addr, buf, len); skb_queue_tail(&card->tty_rx_full,skb); wanpipe_tty_trigger_poll(card); } } return; } #if 0 static int wanpipe_tty_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } #endif static void wanpipe_tty_stop(struct tty_struct *tty) { return; } static void wanpipe_tty_start(struct tty_struct *tty) { return; } static int config_tty (sdla_t *card) { /* Setup the Board for asynchronous mode */ if (card->u.c.async_mode){ if (set_asy_config(card)) { printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n", card->devname); return -EINVAL; } }else{ /* Setup the Board for CHDLC */ if (set_chdlc_config(card)) { printk (KERN_INFO "%s: Failed CHDLC configuration!\n", card->devname); return -EINVAL; } } card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); if (IS_TE1_CARD(card)) { int err = -EINVAL; printk(KERN_INFO "%s: Configuring onboard %s CSU/DSU\n", card->devname, (IS_T1_CARD(card))?"T1":"E1"); if (card->wandev.fe_iface.config){ err = card->wandev.fe_iface.config(&card->fe); } if (err){ printk(KERN_INFO "%s: Failed %s configuratoin!\n", card->devname, (IS_T1_CARD(card))?"T1":"E1"); return -EINVAL; } } if (IS_56K_CARD(card)) { int err = -EINVAL; printk(KERN_INFO "%s: Configuring 56K onboard CSU/DSU\n", card->devname); if (card->wandev.fe_iface.config){ err = card->wandev.fe_iface.config(&card->fe); } if(err){ printk (KERN_INFO "%s: Failed 56K configuration!\n", card->devname); return -EINVAL; } } /* Set interrupt mode and mask */ if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_TX_FRAME | APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: Failed to set interrupt triggers!\n", card->devname); return -EINVAL; } /* Mask All interrupts */ card->hw_iface.clear_bit(card->hw, card->intr_perm_off, (APP_INT_ON_RX_FRAME | APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_CHDLC_EXCEP_COND)); /* Enable communications */ if(IS_TE1_CARD(card) && card->wandev.ignore_front_end_status == WANOPT_NO) { }else{ if (card->u.c.async_mode){ if (asy_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable async commnunication!\n", card->devname); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } }else{ if (chdlc_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable chdlc communications!\n", card->devname); card->hw_iface.poke_byte(card->hw, card->intr_perm_off, 0x00); card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } } DEBUG_EVENT("%s: Communications enabled on startup\n", card->devname); } /* Initialize Rx/Tx buffer control fields */ init_chdlc_tx_rx_buff(card); card->u.c.state = WAN_CONNECTING; port_set_state(card, WAN_CONNECTING); /* Manually poll the 56K CSU/DSU to get the status */ if (IS_56K_CARD(card)) { /* 56K Update CSU/DSU alarms */ card->wandev.fe_iface.read_alarm(&card->fe, 1); } /* Unmask all interrupts except the Transmit and Timer interrupts */ card->hw_iface.set_bit(card->hw, card->intr_perm_off, (APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_CHDLC_EXCEP_COND)); card->hw_iface.poke_byte(card->hw, card->intr_type_off, 0x00); return 0; } static int change_speed(sdla_t *card, struct tty_struct *tty, struct termios *old_termios) { int baud, ret=0; unsigned cflag; int dbits,sbits,parity,handshaking; cflag = tty->termios->c_cflag; /* There is always one stop bit */ sbits=WANOPT_ONE; /* Parity is defaulted to NONE */ parity = WANOPT_NONE; handshaking=0; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: dbits = 5; break; case CS6: dbits = 6; break; case CS7: dbits = 7; break; case CS8: dbits = 8; break; /* Never happens, but GCC is too dumb to figure it out */ default: dbits = 8; break; } /* One more stop bit should be supported, thus increment * the number of stop bits Max=2 */ if (cflag & CSTOPB) { sbits = WANOPT_TWO; } if (cflag & PARENB) { parity = WANOPT_EVEN; } if (cflag & PARODD){ parity = WANOPT_ODD; } /* Determine divisor based on baud rate */ baud = tty_get_baud_rate(tty); if (!baud) baud = 9600; /* B0 transition handled in rs_set_termios */ if (cflag & CRTSCTS) { handshaking|=ASY_RTS_HS_FOR_RX; } /*NC: Aug 1 2003 iflag ignore parity has nothing do with parity configuration. indicates whether we should monitory parity errors. Thus, comment out the code below if (I_IGNPAR(tty)) parity = WANOPT_NONE; */ if (I_IXOFF(tty)){ handshaking|=ASY_XON_XOFF_HS_FOR_RX; handshaking|=ASY_XON_XOFF_HS_FOR_TX; } if (I_IXON(tty)){ handshaking|=ASY_XON_XOFF_HS_FOR_RX; handshaking|=ASY_XON_XOFF_HS_FOR_TX; } if (card->u.c.async_mode){ if (card->wandev.bps != baud) ret=1; card->wandev.bps = baud; } if (card->u.c.async_mode){ if (card->u.c.protocol_options != handshaking) ret=1; card->u.c.protocol_options = handshaking; if (card->u.c.tx_bits_per_char != dbits) ret=1; card->u.c.tx_bits_per_char = dbits; if (card->u.c.rx_bits_per_char != dbits) ret=1; card->u.c.rx_bits_per_char = dbits; if (card->u.c.stop_bits != sbits) ret=1; card->u.c.stop_bits = sbits; if (card->u.c.parity != parity) ret=1; card->u.c.parity = parity; card->u.c.break_timer = 50; card->u.c.inter_char_timer = 10; card->u.c.rx_complete_length = 100; card->u.c.xon_char = 0xFE; }else{ card->u.c.protocol_options |= HDLC_STREAMING_MODE; } return ret; } static void wanpipe_tty_set_termios(struct tty_struct *tty, struct termios *old_termios) { sdla_t *card; int err=1; if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; if (change_speed(card, tty, old_termios) || !card->u.c.comm_enabled){ unsigned long smp_flags; if (card->u.c.comm_enabled){ wan_spin_lock_irq(&card->wandev.lock,&smp_flags); chdlc_disable_comm_shutdown(card); wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); } wan_spin_lock_irq(&card->wandev.lock,&smp_flags); err = config_tty(card); wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); if (card->u.c.async_mode){ printk(KERN_INFO "%s: TTY Async Configuration:\n" " Baud =%i\n" " Handshaking =%s\n" " Tx Dbits =%i\n" " Rx Dbits =%i\n" " Parity =%s\n" " Stop Bits =%i\n", card->devname, card->wandev.bps, opt_decode[card->u.c.protocol_options], card->u.c.tx_bits_per_char, card->u.c.rx_bits_per_char, p_decode[card->u.c.parity] , card->u.c.stop_bits); }else{ printk(KERN_INFO "%s: TTY Sync Configuration:\n" " Baud =%i\n" " Protocol =HDLC_STREAMING\n", card->devname,card->wandev.bps); } if (!err){ card->u.c.state = WAN_CONNECTED; port_set_state(card,WAN_CONNECTED); }else{ card->u.c.state = WAN_DISCONNECTED; port_set_state(card,WAN_DISCONNECTED); } } return; } static void wanpipe_tty_put_char(struct tty_struct *tty, unsigned char ch) { sdla_t *card; unsigned long smp_flags=0; if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; if (card->wandev.state != WAN_CONNECTED) return; if(card->type != SDLA_S514) s508_lock(card,&smp_flags); if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){ wanpipe_tty_trigger_tx_irq(card); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return; } if (chdlc_send(card,(void*)&ch,1,0)){ wanpipe_tty_trigger_tx_irq(card); DEBUG_TEST("%s: Failed to TX char!\n",card->devname); }else{ DEBUG_TEST("%s: Char TX OK\n",card->devname); } clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->type != SDLA_S514) s508_unlock(card,&smp_flags); return; } static void wanpipe_tty_flush_chars(struct tty_struct *tty) { return; } static void wanpipe_tty_flush_buffer(struct tty_struct *tty) { if (!tty) return; wake_up_interruptible(&tty->write_wait); #if defined(SERIAL_HAVE_POLL_WAIT) || \ (defined LINUX_2_1 && LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,15)) wake_up_interruptible(&tty->poll_wait); #endif if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); return; } /* * This function is used to send a high-priority XON/XOFF character to * the device */ #ifndef LINUX_2_6 static void wanpipe_tty_send_xchar(struct tty_struct *tty, char ch) { return; } #endif static int wanpipe_tty_chars_in_buffer(struct tty_struct *tty) { return 0; } static int wanpipe_tty_write_room(struct tty_struct *tty) { sdla_t *card; DEBUG_TEST("TTY Write Room\n"); if (!tty){ return 0; } card = (sdla_t *)tty->driver_data; if (!card) return 0; if (card->wandev.state != WAN_CONNECTED) return 0; return SEC_MAX_NO_DATA_BYTES_IN_FRAME; } static int set_modem_status(sdla_t *card, unsigned char data) { wan_mbox_t *mb = &card->wan_mbox; int err; mb->wan_data_len=1; mb->wan_command=SET_MODEM_STATUS; mb->wan_data[0]=data; err = card->hw_iface.cmd(card->hw, card->mbox_off, mb); if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } static void wanpipe_tty_hangup(struct tty_struct *tty) { sdla_t *card; unsigned long smp_flags; printk(KERN_INFO "TTY Hangup!\n"); if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); set_modem_status(card,0); wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); return; } #ifndef LINUX_2_6 static void wanpipe_tty_break(struct tty_struct *tty, int break_state) { return; } static void wanpipe_tty_wait_until_sent(struct tty_struct *tty, int timeout) { return; } #endif static void wanpipe_tty_throttle(struct tty_struct * tty) { return; } static void wanpipe_tty_unthrottle(struct tty_struct * tty) { return; } int wanpipe_tty_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { return 0; } #ifdef LINUX_2_6 static struct tty_operations wanpipe_tty_ops = { .open = wanpipe_tty_open, .close = wanpipe_tty_close, .write = wanpipe_tty_write, .put_char = wanpipe_tty_put_char, .flush_chars = wanpipe_tty_flush_chars, .write_room = wanpipe_tty_write_room, .chars_in_buffer = wanpipe_tty_chars_in_buffer, .flush_buffer = wanpipe_tty_flush_buffer, // .ioctl = wanpipe_tty_ioctl, .throttle = wanpipe_tty_throttle, .unthrottle = wanpipe_tty_unthrottle, .set_termios = wanpipe_tty_set_termios, .stop = wanpipe_tty_stop, .start = wanpipe_tty_start, .hangup = wanpipe_tty_hangup, }; #endif /* * The serial driver boot-time initialization code! */ int wanpipe_tty_init(sdla_t *card) { struct serial_state * state; /* Initialize the tty_driver structure */ if (card->tty_minor < 0 || card->tty_minor > NR_PORTS){ printk(KERN_INFO "%s: Illegal Minor TTY number (0-4): %i\n", card->devname,card->tty_minor); return -EINVAL; } if (WAN_CARD(card->tty_minor)){ printk(KERN_INFO "%s: TTY Minor %i, already in use\n", card->devname,card->tty_minor); return -EBUSY; } if (tty_init_cnt==0){ printk(KERN_INFO "%s: TTY %s Driver Init: Major %i, Minor Range %i-%i\n", card->devname, card->u.c.async_mode ? "ASYNC" : "SYNC", WAN_TTY_MAJOR,MIN_PORT,MAX_PORT); tty_driver_mode = card->u.c.async_mode; memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)) serial_driver.owner = THIS_MODULE; #endif serial_driver.driver_name = "wanpipe_tty"; #if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS)) serial_driver.name = "ttyWP/%d"; #else serial_driver.name = "ttyWP"; #endif serial_driver.major = WAN_TTY_MAJOR; serial_driver.minor_start = WAN_TTY_MINOR; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; #ifdef LINUX_2_6 tty_set_operations(&serial_driver, &wanpipe_tty_ops); #else serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = wanpipe_tty_open; serial_driver.close = wanpipe_tty_close; serial_driver.write = wanpipe_tty_write; serial_driver.put_char = wanpipe_tty_put_char; serial_driver.flush_chars = wanpipe_tty_flush_chars; serial_driver.write_room = wanpipe_tty_write_room; serial_driver.chars_in_buffer = wanpipe_tty_chars_in_buffer; serial_driver.flush_buffer = wanpipe_tty_flush_buffer; //serial_driver.ioctl = wanpipe_tty_ioctl; serial_driver.throttle = wanpipe_tty_throttle; serial_driver.unthrottle = wanpipe_tty_unthrottle; serial_driver.send_xchar = wanpipe_tty_send_xchar; serial_driver.set_termios = wanpipe_tty_set_termios; serial_driver.stop = wanpipe_tty_stop; serial_driver.start = wanpipe_tty_start; serial_driver.hangup = wanpipe_tty_hangup; serial_driver.break_ctl = wanpipe_tty_break; serial_driver.wait_until_sent = wanpipe_tty_wait_until_sent; serial_driver.read_proc = wanpipe_tty_read_proc; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; #if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS)) callout_driver.name = "cuwp/%d"; #else callout_driver.name = "cuwp"; #endif callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; callout_driver.read_proc = 0; callout_driver.proc_entry = 0; #endif if (tty_register_driver(&serial_driver)){ printk(KERN_INFO "%s: Failed to register serial driver!\n", card->devname); } #ifndef LINUX_2_6 if (tty_register_driver(&callout_driver)){ printk(KERN_INFO "%s: Failed to register callout driver!\n", card->devname); } #endif } /* The subsequent ports must comply to the initial configuration */ if (tty_driver_mode != card->u.c.async_mode){ printk(KERN_INFO "%s: Error: TTY Driver operation mode mismatch!\n", card->devname); printk(KERN_INFO "%s: The TTY driver is configured for %s!\n", card->devname, tty_driver_mode ? "ASYNC" : "SYNC"); return -EINVAL; } tty_init_cnt++; #if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS)) printk(KERN_INFO "%s: Initializing TTY %s Driver Minor %i : /dev/ttyWP/%i\n", card->devname, tty_driver_mode ? "ASYNC" : "SYNC", card->tty_minor,card->tty_minor); #else printk(KERN_INFO "%s: Initializing TTY %s Driver Minor %i : /dev/ttyWP%i\n", card->devname, tty_driver_mode ? "ASYNC" : "SYNC", card->tty_minor,card->tty_minor); #endif tty_card_map[card->tty_minor] = card; state = &rs_table[card->tty_minor]; state->magic = SSTATE_MAGIC; state->line = 0; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; #ifndef LINUX_2_6 state->callout_termios = callout_driver.init_termios; state->normal_termios = serial_driver.init_termios; #endif state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; state->irq = card->wandev.irq; WAN_TASKQ_INIT((&card->tty_task_queue),0,tty_poll_task,card); return 0; } #endif /* * ****************************************************************** * Proc FS function */ #define PROC_CFG_FRM "%-15s| %-12s|\n" #define PROC_STAT_FRM "%-15s| %-12s| %-14s|\n" static char chdlc_config_hdr[] = "Interface name | Device name |\n"; static char chdlc_status_hdr[] = "Interface name | Device name | Status |\n"; static int chdlc_get_config_info(void* priv, struct seq_file* m, int* stop_cnt) { chdlc_private_area_t* chdlc_priv_area = priv; sdla_t* card = NULL; if (chdlc_priv_area == NULL) return m->count; card = chdlc_priv_area->card; if ((m->from == 0 && m->count == 0) || (m->from && m->from == *stop_cnt)){ PROC_ADD_LINE(m, "%s", chdlc_config_hdr); } PROC_ADD_LINE(m, PROC_CFG_FRM, chdlc_priv_area->if_name, card->devname); return m->count; } static int chdlc_get_status_info(void* priv, struct seq_file* m, int* stop_cnt) { chdlc_private_area_t* chdlc_priv_area = priv; sdla_t* card = NULL; if (chdlc_priv_area == NULL) return m->count; card = chdlc_priv_area->card; if ((m->from == 0 && m->count == 0) || (m->from && m->from == *stop_cnt)){ PROC_ADD_LINE(m, "%s", chdlc_status_hdr); } PROC_ADD_LINE(m, PROC_STAT_FRM, chdlc_priv_area->if_name, card->devname, STATE_DECODE(chdlc_priv_area->common.state)); return m->count; } #define PROC_DEV_FR_S_FRM "%-20s| %-14s|\n" #define PROC_DEV_FR_D_FRM "%-20s| %-14d|\n" #define PROC_DEV_SEPARATE "=====================================\n" static int chdlc_set_dev_config(struct file *file, const char *buffer, unsigned long count, void *data) { int cnt = 0; wan_device_t* wandev = (void*)data; sdla_t* card = NULL; if (wandev == NULL) return cnt; card = (sdla_t*)wandev->private; printk(KERN_INFO "%s: New device config (%s)\n", wandev->name, buffer); /* Parse string */ return count; } #define PROC_IF_FR_S_FRM "%-30s\t%-14s\n" #define PROC_IF_FR_D_FRM "%-30s\t%-14d\n" #define PROC_IF_FR_L_FRM "%-30s\t%-14ld\n" #define PROC_IF_SEPARATE "====================================================\n" static int chdlc_set_if_info(struct file *file, const char *buffer, unsigned long count, void *data) { netdevice_t* dev = (void*)data; chdlc_private_area_t* chdlc_priv_area = NULL; if (dev == NULL || dev->priv == NULL) return count; chdlc_priv_area = (chdlc_private_area_t*)dev->priv; printk(KERN_INFO "%s: New interface config (%s)\n", chdlc_priv_area->if_name, buffer); /* Parse string */ return count; } static void chdlc_handle_front_end_state(void* card_id) { netdevice_t *dev; int rc; sdla_t* card = (sdla_t*)card_id; if (card->tty_opt){ if (card->fe.fe_status == FE_CONNECTED){ set_bit(TTY_HANGUP,&card->wandev.critical); if(card->u.c.comm_enabled == 0) { rc=chdlc_comm_enable(card); if (rc==0){ init_chdlc_tx_rx_buff(card); DEBUG_EVENT("%s: Communications enabled\n", card->devname); port_set_state(card, WAN_CONNECTING); card->u.c.state = WAN_CONNECTING; }else{ DEBUG_EVENT("%s: Critical Error: Failed to enable comms 0x%X\n", card->devname,rc); port_set_state(card, WAN_DISCONNECTED); } } }else{ if (card->wandev.ignore_front_end_status == WANOPT_NO && card->u.c.comm_enabled){ printk(KERN_INFO "%s: Communications disabled\n", card->devname); chdlc_comm_disable (card); card->u.c.state = WAN_DISCONNECTED; port_set_state(card, WAN_DISCONNECTED); } if (card->tty && card->tty_open){ if (test_and_clear_bit(TTY_HANGUP,&card->wandev.critical)){ printk(KERN_INFO "%s: Hanging up TTY: physical link down.\n", card->devname); tty_hangup(card->tty); } } } return; } if (card->wandev.ignore_front_end_status == WANOPT_YES){ return; } dev = WAN_DEVLE2DEV(WAN_LIST_FIRST(&card->wandev.dev_head)); if (IS_TE1_CARD(card)){ if (card->fe.fe_status == FE_CONNECTED) { if (card->u.c.state != WAN_CONNECTED) { if(card->u.c.comm_enabled == 0) { rc=chdlc_comm_enable(card); if (rc==0){ init_chdlc_tx_rx_buff(card); DEBUG_EVENT("%s: Communications enabled\n", card->devname); port_set_state(card, WAN_CONNECTING); card->u.c.state = WAN_CONNECTING; }else{ DEBUG_EVENT("%s: Critical Error: Failed to enable comms 0x%X\n", card->devname,rc); port_set_state(card, WAN_DISCONNECTED); } } }else{ DEBUG_TEST("%s: Warning: Comms are already enabled!\n", card->devname); } }else{ port_set_state(card, WAN_DISCONNECTED); if (dev){ trigger_chdlc_poll(dev); } if (card->u.c.comm_enabled){ printk(KERN_INFO "%s: Communications disabled\n", card->devname); chdlc_comm_disable (card); card->u.c.state = WAN_DISCONNECTED; } } }else{ if (card->fe.fe_status == FE_CONNECTED){ if (card->u.c.state == WAN_CONNECTED){ port_set_state(card,WAN_CONNECTED); if (dev){ trigger_chdlc_poll(dev); } } }else{ if (!(card->u.c.protocol_options & IGNORE_KPALV_FOR_LINK_STAT)){ port_set_state(card,WAN_DISCONNECTED); if (dev){ trigger_chdlc_poll(dev); } /* Start debugging */ WAN_DEBUG_START(card); } } } } /*************************************************************************** ** ** ** */ static int chdlc_debugging(sdla_t* card) { wan_mbox_t* mb = &card->wan_mbox; CHDLC_OPERATIONAL_STATS_STRUCT* op_stats = NULL; static unsigned long rx_keepalives = 0; unsigned long smp_flags; int err = 0; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); err = chdlc_read_op_stats(card); wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); if (err) return 0; op_stats = (CHDLC_OPERATIONAL_STATS_STRUCT *)mb->wan_data; if (card->wan_debugging_state == WAN_DEBUGGING_CONT){ rx_keepalives = op_stats->CHDLC_SLARP_REPLY_Rx_count; card->wan_debugging_state = WAN_DEBUGGING_PROTOCOL; return 15; } if (op_stats->CHDLC_SLARP_REPLY_Rx_count != rx_keepalives){ if (card->wan_debug_last_msg != WAN_DEBUG_CHDLC_UNKNWN_MSG){ DEBUG_EVENT("%s: Unknown CHDLC problem!\n", card->devname); DEBUG_EVENT("%s: Contact your dealer.\n", card->devname); } card->wan_debug_last_msg = WAN_DEBUG_CHDLC_UNKNWN_MSG; }else{ if (card->wan_debug_last_msg != WAN_DEBUG_CHDLC_KPLV_MSG){ DEBUG_EVENT("%s: No replies to Keepalive packets!\n", card->devname); DEBUG_EVENT("%s: Check remote router or ISP.\n", card->devname); } card->wan_debug_last_msg = WAN_DEBUG_CHDLC_KPLV_MSG; } return 0; } static unsigned long chdlc_crc_frames(sdla_t* card) { wan_mbox_t* mb = &card->wan_mbox; COMMS_ERROR_STATS_STRUCT* stats = NULL; unsigned long smp_flags; unsigned long crc_err_count = 0; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); if (!chdlc_read_comm_err_stats(card)){ stats = (COMMS_ERROR_STATS_STRUCT *)mb->wan_data; crc_err_count = stats->CRC_err_count; } wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); return crc_err_count; } static unsigned long chdlc_abort_frames(sdla_t * card) { wan_mbox_t* mb = &card->wan_mbox; COMMS_ERROR_STATS_STRUCT* stats = NULL; unsigned long smp_flags; unsigned long rx_abort_count = 0; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); if (!chdlc_read_comm_err_stats(card)){ stats = (COMMS_ERROR_STATS_STRUCT *)mb->wan_data; rx_abort_count = stats->Rx_abort_count; } wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); return rx_abort_count; } static unsigned long chdlc_tx_underun_frames(sdla_t* card) { wan_mbox_t* mb = &card->wan_mbox; COMMS_ERROR_STATS_STRUCT* stats = NULL; unsigned long smp_flags; unsigned long tx_underruns = 0; wan_spin_lock_irq(&card->wandev.lock,&smp_flags); if (!chdlc_read_comm_err_stats(card)){ stats = (COMMS_ERROR_STATS_STRUCT *)mb->wan_data; tx_underruns = stats->sec_Tx_abort_msd_Tx_int_count; } wan_spin_unlock_irq(&card->wandev.lock,&smp_flags); return tx_underruns; } /****** End ****************************************************************/