
X25API Programming
Manual

Author: Nenad Corbic

Important Note:
When configuring a driver for API use, make sure
that API option is selected, under the interface section.

 [interfaces]

 wp1_svc = wanpipe1, ,API, x25 svc chan

1. Introduction

The new X25API driver has been completely redesigned to take advantage of Linux socket
architecture. Due to unsecured nature of standard Linux sockets, Sangoma has developed a secure
streaming socket which guarantees packet delivery during high traffic.

2. Installation

X25API and Wanpipe Socket drivers, are included in the latest WANPIPE package, (refer
to ftp site below). Please refer to WANPIPE user manual, wanpipeForLinux.pdf, for wanpipe
package installation, kernel compilation and startup. (/usr/local/wanrouter/doc directory). The
most current WANPIPE(tm) package is located on Sangoma ftp site: ftp.sangom.com in
/linux/current_wanpipe/ directory.

Details about structures, commands and return codes can be found in the manual entitled “X.25
SUPPORT SANGOMA CARDS”; February 2000. (/usr/local/wanrouter/doc/x25.pdf)

3. Configuring X25API

Once the wanpipe package is installed, proceed to create a /etc/wanpipe#.conf
configuration file, which will be used to startup and configure wanpipe drivers/protocols.

Instead of manually configuring the wanpipe configuration file, one can use a GUI
configuration utility, called ‘wancfg’. It resides in /usr/local/wanrouter/wancfg directory. The
wancfg application contains all the help files needed to successfully create a wanpipe
configuration file. In case you need more information refer to WANPIPE user manual,
wanpipeForLinux.pdf (located in /usr/local/wanrouter/doc directory).

4. Starting up X25API

Once the wanpipe configuration file is created, start up the x25api driver using
“wanrouter start” command.

Check /var/log/messages file for configuration errors and link status. Before attempting to
send data, make sure the “link connected” message is present in the message file. If the
X25/HDLC protocol layer is not connected, no communication is possible.
For further debugging and line testing, use the xpipemon debugged and refer to the WANPIPE user
manual, wanpipeForLinux.pdf in /usr/local/wanrouter/doc directory.

5. Programming X25API

X25API programming model is closely modeled to TCP/IP socket programming.
Functions such as, sock(), bind(), listen(), accept() and connect() are used to communicate to the
X25API driver.

The /usr/local/wanrouter/api/x25 directory contains the samples code for server and client
implementations. We suggest that you edit these files and use them as a starting point in your
x25api application development.

a. socket() function

int socket(int domain, int type, int protocol);

The socket function call creates a new sock and returns
the sock file descriptor to the user. This must be done before any other BSD IPC
system call is executed. The returned file descriptor is used for the subsequent
system calls used to establish an SVC or PVC connection.

Domain: AF_WANPIPE
Type: SOCK_RAW
Protocol: 0

Ex: int sock = socket(AF_WANPIPE, SOCK_RAW, 0);

Please refer to the sample programs server.c and client.c in
/usr/local/wanrouter/api/x25 directory.

b. bind() function

int bind (int sock fh, struct sockaddr *addr, int *addrlen);

After a socket has been created, sock must be bound to a network device.
The bind() system call binds the newly created sock to the appropriate network
device. Only after the sock has been bound, can communication between the sock
and the driver take place.

During driver startup, a network device is created for each LCN; defined in
WANPIPE configuration file.

Bind function uses a wan_sockaddr_ll address structure to bind a socket to the
appropriate network device. Thus, the wan_sockaddr_ll structure must be filled in
and passed by reference to the bind system call.

struct wan_sockaddr_ll
{

unsigned short sll_family;
unsigned short sll_protocol;
int sll_ifindex;
unsigned short sll_hatype;
unsigned char sll_pkttype;
unsigned char sll_halen;
unsigned char sll_addr[8];
unsigned char sll_device[14];
unsigned char sll_card[14];

};

i. Server Process: SVC

struct wan_sockaddr_ll addr;

addr.sll_family = AF_WANPIPE;
addr.sll_protocol = htons(X25_PROT);
strcpy(addr.sll_device, “svc_listen”);
strcpy(addr.sll_card, “wanpipe1");

svc_listen: Represents a virtual network interface name, which
 is used to bind a sock to a listening queue for a
 particular wanpipe card.

wanpipe#: Wanpipe card name. It is used to bind a sock to a
 correct WANPIPE card. This prevents problems in
 multiple card systems.
 # = 1,2,3 ... 16 : Card number

ii. Client Process: SVC

struct wan_sockaddr_ll addr;

addr.sll_family = AF_WANPIPE;
addr.sll_protocol = htons(X25_PROT);

strcpy(addr.sll_device, “svc_connect”);
strcpy(addr.sll_card, “wanpipe1");

svc_listen: Represents a virtual network interface name, which
 is used to bind a sock to a next available network
 device on a particular wanpipe card.

wanpipe#: Wanpipe card name. It is used to bind a sock to a
 correct WANPIPE card. This prevents problems in
 multiple card systems.
 # = 1,2,3 ... 16 : Card number

Please refer to the sample files, server.c and client.c in
/usr/local/wanrouter/api/x25 directory.

c. listen() system call

int listen (int sockfh, int backlog);

The listen() system call prepares a socket to receive CALL INDICATION packets.
All CALL_INDICATION packets are put into this queue for a particular wanpipe
card. The server cannot receive a connection request until it has executed a listen()
system call.

After a socket has been set into a listening mode, it cannot be used to transmit or
receive data, it can only be used to accept incoming calls.

Refer to the /usr/local/wanrouter/api/x25/server.c example code.

d. accept() system call

int accept (int sock fh, struct sockaddr *addr, int *addr_len);

Before accept() system call can be executed, the socket be in listening mode,
otherwise an error will be generated.

The accept() system call returns a socket descriptor for a socket associated
with an SVC connection. The accept() system call doesn’t establish the x25
connection, instead it’s up to the user to analyze call data and respond accordingly:
accept or reject the call.

The accept() call blocks the socket until a CALL REQUEST packet arrives.

The addr and addrlen fields in accept() system call are optional, they can be set to
NULL. Up on a successful CALL INDICATION, the addr structure will contain the
network device the call came in on. This information is not very useful thus, it is
recommended that the accept() call is used with addr and addrlen fileds set to

NULL.

Ex: int sock1 = accept(sock, NULL, NULL);

 where sock variable is a file descriptor of the listeing socket.

To establish a connection, the user application must execute an ACCEPT command
through an ioctl call

Ex: int ioctl(SIOC_WANPIPE_ACCEPT_CALL ,&accept_data);

Please refer to the IOCTL section of the manual.

e. connect() system call

int connect (int sock fh, struct sockaddr *addr, int *addrlen);

Once a socket was bound to a “svc_connect” virtual network device (refer to
bind() system call), client application may request the X.25 connection using
connect() system call.

Before connect() system call, the user must supply, call data information through an
IOCTL call.

int ioctl (sock,SIOC_WANPIPE_SET_CALL_DATA,&data);

The “data” structure is as follows: “x25api_t data”;
typedef struct {

unsigned char qdm PACKED; /* Q/D/M bits */
unsigned char cause PACKED; /* cause field */
unsigned char diagn PACKED; /* diagnostics */
unsigned char pktType PACKED;
unsigned short length PACKED;
unsigned char result PACKED;
unsigned short lcn PACKED;
char reserved[7] PACKED;

}x25api_hdr_t;

typedef struct {
x25api_hdr_t hdr PACKED;
char data[X25_MAX_DATA] PACKED;

}x25api_t;

Therefore, before the ioctl() call is executed, fill in the call data information in the
above structure. Please refer to the sample client application in
/usr/local/wanrouter/api/x25 directory.

x25api_t api_data;
memset(&api_data,0,sizeof(x25api_t));
sprintf(api_data.data, “-d1234 -s2345 -f3232 -uC21010");
api_data.hdr.length = strlen(api_data.data);

Once the call data has been properly set, we can request x25 link establishment
using the connect() system call.

int connect(sock, NULL, NULL);

On a successful call establishment, the addr structure will contain the network
device on which the connection took place. This information is not very useful;
thus, it is recommended that addr and addrlen variables are set to NULL.

f. Socket ioctl() system calls

int ioctl (int sock_fh, int x25api_cmd, unsigned long data);

x25api ioctl commands are as follows:

SIOC_WANPIPE_SET_CALL_DATA :
Set the call information data into a socket mailbox. This mailbox is used to
send the command down to the driver.
This command must be executed, before a client requests connection
establishment using connect() system call.

SIOC_WANPIPE_GET_CALL_DATA:

Get the incoming call data for the socket mailbox. Once accept() system
call returns a new socket descriptor, the above commands must be executed
to retrieve the incoming call information. Then it is up the the user to
accept or clear the pending call.

SIOC_WANPIPE_ACCEPT_CALL:

Accept the incoming call. Once the incoming call data has been approved,
the above command will establish the call. Note, that data filed is optional
for this command, thus, data filed can be set to zero.

SIOC_WANPIPE_CLEAR_CALL:

The user can clear the call at any time using the above command. The data
filed is optional; Thus, it can be set to zero in most cases.

SIOC_WANPIPE_RESET:

The user can send a reset any time once the connection is established by
executing the above command. The data filed is optional; Thus, it can be
set to zero in most cases.

SIOC_WANPIPE_SET_NONBLOCK:

This option will set the socket into a non blocking mode. The socket can be
set for non-blocking only in conjunction with connect() system call. In
which case connect() call will not block until the connection is confirmed.
Using this option, a single process can place multiple calls without waiting
for connection establishment.

 SIOC_WANPIPE_CHECK_TX:

This option will return the number of bytes pending for transmission. One
can use this ioctl call to check whether there is data waiting in the sock
transmit queue, before the socket is closed. If data acknowledgement is not
used, this ioctl must be implemented so that is not lost on close() system
call. Note: This command is usually used in PVC systems.

SIOC_WANPIPE_SOCK_STATE:

This commad will return 0 if socket is in CONNECTED state, otherwise
the return code will be 1. This command can be used after an OOB
message to test whether the link is still up.

Data structure for ioctl() system calls is, x25api_t:

typedef struct {
unsigned char qdm PACKED; /* Q/D/M bits */
unsigned char cause PACKED; /* cause field */
unsigned char diagn PACKED; /* diagnostics */
unsigned char pktType PACKED; /* OOB packet type */
unsigned short length PACKED; /* data length */
unsigned char result PACKED; /* command result */
unsigned short lcn PACKED; /* bound lcn number */
char reserved[7] PACKED;

}x25api_hdr_t;

typedef struct {
x25api_hdr_t hdr PACKED;
char data[X25_MAX_DATA] PACKED;

}x25api_t;

i. QDM Bits

QDM Bits are bit mapped into one byte of data.
This filed is optional and should be set to zero in most cases.

Q: Is a bit which marks a data packet as a special kind of packet.
 Eg: Async PAD use the Q bit packets to negotiate PAD parameters

 after call setup.

D: Is used for confirmation of delivery of important packets.

M: Used to fragment the messages which are larger than the maximum
 packet size.

ii. Cause and Diagnostic Fields

Cause and diagnostic fields are used to relay information to the remote user
in regards to a asynchronous event. These fields are optional and should be
set to zero in most cases.

Eg: When clear call is issued due to invalid call data, cause and
 diagnostic fields should be set appropriately. Thus, when the
 remote side receives an asynchronous message it will know the
 reason for it.

iii. Packet Type Field

Packet type field should be used as read_only information. Upon receiving
an OOB asynchronous message, the packet type field will indicate which
asynchronous event occurred. Thus, based on the event, the state of the link
can be established.

iv. Length Field

Length field indicates the size of the data buffer associated with the
command or the OOB event. Any time data buffer is used, the length field
must be set the data buffer length.

v. Result Field

Result field should be used as read_only information. Result of every
command executed will be stored in this field. This field should be used
for statistic purposes only.

vi. LCN Field

This field should be used as read_only information. Upon successful link
establishment the LCN field will indicate the link number currently used.

g. select() system call

int select(int sock_fh, fd_set *read, fd_set *write, fd_set *oob,
 struct timeval *timeout)

Select() system call blocks and polls single or multiple sockets for receiving data,
writing data or receiving OOB data. Select is the key factor in Sangoma secure
socket architecture. It must be used to guarantee that no data will be lost. The
select method is tied to the socket flow control code, which will block if transmit
buffers become full.

Please refer to the x25api example code.

h. send() system call

int send (int sockfh, void *buf, int len, unsigned int flags)

Send() system call, can only be used when the connection is established, otherwise
an error will be returned. If send is successful the return code will indicate the
number of bytes transmitted. On error the return code is set to -1.

Every packet transmitted must contain a 16 byte Header (x25api_hdr_t, refer to the
above data structure in section 5.f). The header data will not be passed out the
port. It should be used to convey special information to the driver. For example,
setting QDM bits. Details can be found in “X.25 SUPPORT SANGOMA CARDS”.

flags : set to zero.

i. recv() system call

int recv (int sockfh, void *buf, int len, unsigned int flags);

Recv() system call, receives packets from the sock, if receive is successful the
recv() will return number of bytes read. On error the return code is set to -1.

Every receive packet comes with 16 byte (x25api_hdr_t refer to section 5.f),
application should remove the header before using the data. Furthermore, the
header will contain special bits which were transmitted by the remote switch, for
example QDM bits. Details can be found in “X.25 SUPPORT SANGOMA
CARDS”.

flags : set to zero, for regular data.
 set to MSG_OOB, for reading synchronous message

Note: The select() method will indicate that OOB message is waiting,
 the recv() system call should be used with flags set to MSG_OOB.
 Once the OOB message is received, use the packet type to
 determine the asynchronous event.

6. Sending and Receiving Data

C Once the connection is established, the socket is ready to receive and transmit data.

C Regardless of the application, the driver will start sending data up the socket as
soon as it arrives.

C It is up the application to wait for the data and receive packets from the socket.

Once the packet is received by the user, the packet is flushed out of the socket;
Thus, only one process should read a single socket a time.

C If the driver fills up the socket, receive interrupt will be turned off, which will
block all the other channels from receiving data. If this occurs, after X number of
seconds, the HDLC protocol will generate a protocol violation followed by the
restart request, which will bring down all active channels. Therefore, make sure
that the application is waiting to receive data all the time. Note, socket has a 64KB
buffer and driver has 10 packet local buffer to prevent this from ever happening.

C In order to provide secure packet delivery to and from the application, the select()
system call must be implemented. It will indicate when a data packet or OOB
packet is pending, or when the socket is ready to transmit.

C The select must be setup to poll OOB events, otherwise the send() system call will
fail when trying to send on a disconnected socket: in case of restart.

C Every transmitted packet must contain a 16 byte header which is to be used to
convey important information to the driver : ex: QDM bits. Please refer to section
5.f, structure x25api_hdr_t. Details can be found in “X.25 SUPPORT SANGOMA
CARDS”.

C Every received packet has a 16 byte header which contains important information
such as QDM bits. Please refer to section 5.f, structure x25api_hdr_t.. Details can
be found in “X.25 SUPPORT SANGOMA CARDS”.

7. X25API Programming Strategies

Most of the x25api application fall into ether server or client programming style.

C The server application usually waits for the incoming calls. On incoming call it ether
spawns off children to handle the pending connection, or handles the connection itself after
which it returns to listen state. The later option is a more robust solution, especially in
Linux multi-tasking environment. Under heavy-load conditions no incoming calls will
timeout, since most of the work is distributed to the children.

C On the other hand, client application usually requests the x25api connection. Upon

successful connection, the client handles the call after which the session is terminated, or
another connection is requested.

C The two programming model implementations can be found in /usr/local/wanrouter/api/x25
directory: server.c and client.c

C We suggest that these programs be used as the starting point of the x25api application
development. The user is free to modify change or use the code in any way which will
provide the fastest time to market and ease of use.

C The program xpipemon allows you to monitor the X.25 statistics, debug line problems and
it will help you debug your programs. If you use the trace feature, you can see both your
own data and the incoming data.

