osmo-e1-hardware/software/e1-tracer/analyze/osmo_e1f.c

711 lines
19 KiB
C

/* Osmocom Software Defined E1
* Implements ITU-T Rec. G.704 Section 2.3
*
* (C) 2018 by Harald Welte <laforge@gnumonks.org>
* All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/linuxlist.h>
#include <osmocom/core/logging.h>
#include <osmocom/core/fsm.h>
#include "crc4itu.h"
#include "osmo_e1f.h"
#define S(x) (1 << (x))
/* Frame Alignment Signal (BIT1 may be overwritten with CRC-4) */
#define G704_E1_FAS 0x1B
static inline bool is_correct_fas(uint8_t bt) {
if ((bt & 0x7F) == G704_E1_FAS)
return true;
else
return false;
}
/* are we in SMF II (true) or I (false) */
static inline bool is_smf_II(const struct osmo_e1f_tx_state *tx) {
if (tx->frame_nr >= 8)
return true;
return false;
}
static struct osmo_fsm e1_align_fsm;
static void align_fsm_reset(struct osmo_e1f_instance *e1i);
static void notify_user(struct osmo_e1f_instance *e1i, enum osmo_e1f_notify_event evt,
bool present, void *priv)
{
if (!e1i->notify_cb)
return;
e1i->notify_cb(e1i, evt, present, priv);
}
/*! Initialize a (caller-allocated) Osmocom E1 Instance
* \param[inout] e1i E1 Instance to be initialized
* \returns 0 on success, negative on error */
int osmo_e1f_instance_init(struct osmo_e1f_instance *e1i, const char *name, e1_notify_cb cb,
bool crc4_enabled, void *priv)
{
int i;
e1i->crc4_enabled = crc4_enabled;
e1i->notify_cb = cb;
e1i->tx.sa4_sa8 = 0x00;
e1i->priv = priv;
for (i = 1; i < ARRAY_SIZE(e1i->ts); i++) {
struct osmo_e1f_instance_ts *e1t = &e1i->ts[i];
e1t->ts_nr = i;
e1t->inst = e1i;
INIT_LLIST_HEAD(&e1t->tx.queue);
e1t->rx.granularity = 256;
}
e1i->rx.fi = osmo_fsm_inst_alloc(&e1_align_fsm, NULL, e1i, LOGL_DEBUG, name);
if (!e1i->rx.fi)
return -1;
osmo_e1f_instance_reset(e1i);
return 0;
}
/*! stop E1 timeslot; release any pending rx/tx buffers
* \param[in] e1t Timeslot which we are to stop, disable and release buffers */
void osmo_e1f_ts_reset(struct osmo_e1f_instance_ts *e1t)
{
e1t->tx.underruns = 0;
msgb_queue_free(&e1t->tx.queue);
e1t->rx.enabled = false;
msgb_free(e1t->rx.msg);
e1t->rx.msg = NULL;
osmo_isdnhdlc_rcv_init(&e1t->rx.hdlc, OSMO_HDLC_F_BITREVERSE);
//osmo_isdnhdlc_rcv_init(&e1t->rx.hdlc, 0);
osmo_isdnhdlc_out_init(&e1t->tx.hdlc, 0);
}
/*! stop E1 instance; stops all timeslots and releases any pending rx/tx buffers
* \param[in] e1t E1 instance which we are to stop */
void osmo_e1f_instance_reset(struct osmo_e1f_instance *e1i)
{
int i;
align_fsm_reset(e1i);
e1i->tx.remote_alarm = false;
e1i->tx.crc4_error = false;
e1i->tx.frame_nr = 0;
e1i->tx.crc4_last_smf = 0;
e1i->tx.crc4 = crc4itu_init();
e1i->rx.frame_nr = 0;
memset(&e1i->rx.ts0_history, 0, sizeof(e1i->rx.ts0_history));
e1i->rx.ts0_hist_len = 0;
e1i->rx.remote_alarm = false;
e1i->rx.remote_crc4_error = false;
e1i->rx.num_ts0_in_mframe_search = 0;
for (i = 1; i < ARRAY_SIZE(e1i->ts); i++) {
struct osmo_e1f_instance_ts *e1t = &e1i->ts[i];
osmo_e1f_ts_reset(e1t);
}
}
/*! obtain pointer to TS given by instance + timeslot number
* \param[in] e1i E1 intance on which we work
* \param[in] ts_nr E1 timeslot number (1..31)
* \returns pointer to timeslot; NULL on error */
struct osmo_e1f_instance_ts *osmo_e1f_instance_ts(struct osmo_e1f_instance *e1i, uint8_t ts_nr)
{
if (ts_nr == 0 || ts_nr >= ARRAY_SIZE(e1i->ts))
return NULL;
return &e1i->ts[ts_nr];
}
/*! configure an E1 timeslot
* \param[in] e1t Timeslot which we are to configure
* \param[in] granularity granularity (buffer size) to use on Rx
* \param[in] enable enable (true) or disalble (false) receiving on this TS
* \param[in] mode the mode for this timeslot (raw or hdlc)
* \return 0 on success; negative on error */
int osmo_e1f_ts_config(struct osmo_e1f_instance_ts *e1t, e1_data_cb cb, unsigned int granularity,
bool enable, enum osmo_e1f_ts_mode mode)
{
e1t->rx.data_cb = cb;
e1t->rx.enabled = enable;
e1t->rx.granularity = granularity;
e1t->mode = mode;
return 0;
}
const struct value_string osmo_e1f_notifv_evt_names[] = {
{ E1_NTFY_EVT_ALIGN_FRAME, "Aligned to Frame" },
{ E1_NTFY_EVT_ALIGN_CRC_MFRAME, "Aligned to CRC4-Multiframe" },
{ E1_NTFY_EVT_CRC_ERROR, "CRC Error detected (local)" },
{ E1_NTFY_EVT_REMOTE_CRC_ERROR, "CRC Error reported (remote)" },
{ E1_NTFY_EVT_REMOTE_ALARM, "Remote Alarm condition repoorted" },
{ 0, NULL }
};
/***********************************************************************
* Transmit Side
***********************************************************************/
/*! Enqueue a message buffer of to-be-transmitted data for a timeslot
* \param[in] e1i E1 instance for which to enqueue
* \param[in] ts_nr Timeslot number on which data is to be transmitted
* \param[in] msg Message buffer storing the to-be-transmitted data
* \returns 0 on success; negative in case of error.
*
* Ownership of \a msg is transferred from caller into this function, but only
* in case of successful execution (return 0)!
*/
void osmo_e1f_ts_enqueue(struct osmo_e1f_instance_ts *e1t, struct msgb *msg)
{
msgb_enqueue(&e1t->tx.queue, msg);
}
/* obtain a CRC4 bit for the current frame number */
static uint8_t e1_pull_crc4_bit(struct osmo_e1f_instance *e1i)
{
/* If CRC-4 is disabled, all CRC bits shall be '1' */
if (e1i->crc4_enabled == 0)
return 0x01;
/* CRC is transmitted MSB first */
switch (e1i->tx.frame_nr % 8) {
case 0:
return (e1i->tx.crc4_last_smf >> 3) & 1;
case 2:
return (e1i->tx.crc4_last_smf >> 2) & 1;
case 4:
return (e1i->tx.crc4_last_smf >> 1) & 1;
case 6:
return (e1i->tx.crc4_last_smf >> 0) & 1;
default:
OSMO_ASSERT(0);
}
}
/* pull a single to-be-transmitted byte for TS0 */
static uint8_t e1_pull_ts0(struct osmo_e1f_instance *e1i)
{
uint8_t ret;
/* according to Table 5B/G.704 - CRC-4 multiframe structure */
if ((e1i->tx.frame_nr % 2) == 0) {
/* FAS */
ret = G704_E1_FAS | (e1_pull_crc4_bit(e1i) << 7);
} else {
switch (e1i->tx.frame_nr) {
case 1:
case 3:
case 7:
ret = 0x40;
break;
case 5:
case 9:
case 11:
ret = 0xC0;
break;
case 13:
case 15:
ret = 0x40;
if (e1i->tx.crc4_error)
ret |= 0x80;
break;
}
ret |= e1i->tx.sa4_sa8;
if (e1i->tx.remote_alarm)
ret |= 0x20;
}
/* re-set CRC4 at start of sub-multiframe */
if (e1i->tx.frame_nr == 0 || e1i->tx.frame_nr == 8) {
e1i->tx.crc4_last_smf = e1i->tx.crc4;
e1i->tx.crc4 = 0;
}
/* increment frame number modulo 16 */
e1i->tx.frame_nr = (e1i->tx.frame_nr + 1) % 16;
return ret;
}
/* pull a single to-be-transmitted byte for TS1..31 */
static uint8_t e1_pull_tsN(struct osmo_e1f_instance_ts *e1t)
{
struct msgb *msg = llist_first_entry_or_null(&e1t->tx.queue, struct msgb, list);
uint8_t *cur;
retry:
/* if there's no message to transmit */
if (!msg) {
e1t->tx.underruns++;
return 0xFF;
}
if (msgb_length(msg) <= 0) {
llist_del(&msg->list);
msgb_free(msg);
msg = llist_first_entry_or_null(&e1t->tx.queue, struct msgb, list);
goto retry;
}
cur = msgb_pull(msg, 1);
return *cur;
}
/* update the current in-progress CRC4 value with data from \a out_frame */
static void e1_tx_update_crc4(struct osmo_e1f_instance *e1i, const uint8_t *out_frame)
{
uint8_t ts0;
ts0 = out_frame[0];
/* mask off the C bits */
if (is_correct_fas(ts0))
ts0 &= 0x7F;
e1i->tx.crc4 = crc4itu_update(e1i->tx.crc4, &ts0, 1);
/* add the remaining bytes/bits */
e1i->tx.crc4 = crc4itu_update(e1i->tx.crc4, out_frame+1, ARRAY_SIZE(e1i->ts)-1);
}
/*! Pull one to-be-transmitted E1 frame (256bits) from the E1 instance
* \param e1i E1 instance for which the frame shall be generated
* \param[out] out_frame callee-allocated buffer to which function stores 32 bytes
* \returns 0 on success, negative on error */
int osmo_e1f_pull_tx_frame(struct osmo_e1f_instance *e1i, uint8_t *out_frame)
{
int i;
/* generate TS0 */
out_frame[0] = e1_pull_ts0(e1i);
/* generate TS1..31 */
for (i = 1; i < ARRAY_SIZE(e1i->ts); i++) {
struct osmo_e1f_instance_ts *e1t = &e1i->ts[i];
/* get next to-be-transmitted byte from the TS */
out_frame[i] = e1_pull_tsN(e1t);
}
/* update our CRC4 computation */
e1_tx_update_crc4(e1i, out_frame);
return 0;
}
/***********************************************************************
* Receiver Side
***********************************************************************/
/* According to Figure 2 / ITU-T G.706 */
enum e1_align_state {
/* Frame Alignment Search */
E1_AS_SEARCH_FRAME,
/* CRC multiframe alignment search */
E1_AS_SEARCH_CRC_MFRAME,
/* monitoring for incorrect frame alignment and error performance using CRC */
E1_AS_ALIGNED_CRC_MFRAME,
/* no CRC: just frame alignment loss check */
E1_AS_ALIGNED_BASIC,
};
enum e1_align_event {
/* received a TS0 octet */
E1_AE_RX_TS0,
E1_AE_RESET
};
static const struct value_string e1_align_evt_names[] = {
{ E1_AE_RX_TS0, "E1_AE_RX_TS0" },
{ E1_AE_RESET, "E1_AE_RESET" },
{ 0, NULL }
};
/* get a TS0 byte from the history. delta 0 == current, delte 1 == previous, ... */
static uint8_t get_ts0_hist(struct osmo_e1f_instance *e1i, uint8_t delta)
{
return e1i->rx.ts0_history[((e1i->rx.frame_nr + 16)-delta) % 16];
}
/* ITU-T G.706 Section 4.1.1 */
static bool frame_alignment_lost(struct osmo_e1f_instance *e1i)
{
if (e1i->rx.frame_nr % 2)
return false;
/* Frame alignment will be assumed to have been lost when three consecutive incorrect
* frame alignment signals have been received. */
if (!is_correct_fas(get_ts0_hist(e1i, 0)) &&
!is_correct_fas(get_ts0_hist(e1i, 2)) &&
!is_correct_fas(get_ts0_hist(e1i, 4)))
return true;
else
return false;
}
/* ITU-T G.706 Section 4.1.2 */
static bool frame_alignment_recovered(struct osmo_e1f_instance *e1i)
{
/* two consecutive FAS with one non-FAS interspersed */
if (is_correct_fas(get_ts0_hist(e1i, 0)) &&
!is_correct_fas(get_ts0_hist(e1i, 1)) &&
is_correct_fas(get_ts0_hist(e1i, 2)))
return true;
else
return false;
}
/* ITU-T G.706 Section 4.2 */
static bool crc_mframe_alignment_achieved(struct osmo_e1f_instance *e1i)
{
/* if current TS0 byte is FAS, we cannot detect alignment */
if (is_correct_fas(get_ts0_hist(e1i, 0)))
return false;
if ((get_ts0_hist(e1i, 0) >> 7) == 1 &&
(get_ts0_hist(e1i, 2) >> 7) == 1 &&
(get_ts0_hist(e1i, 4) >> 7) == 0 &&
(get_ts0_hist(e1i, 6) >> 7) == 1 &&
(get_ts0_hist(e1i, 8) >> 7) == 0 &&
(get_ts0_hist(e1i, 10) >> 7) == 0)
return true;
else
return false;
}
/* Get the CRC4 that was received from our Rx TS0 history */
static uint8_t crc4_from_ts0_hist(struct osmo_e1f_instance *e1i, bool smf2)
{
uint8_t crc = 0;
uint8_t offset = 0;
if (smf2)
offset = 8;
crc |= (e1i->rx.ts0_history[0+offset] >> 7) << 3;
crc |= (e1i->rx.ts0_history[2+offset] >> 7) << 2;
crc |= (e1i->rx.ts0_history[4+offset] >> 7) << 1;
crc |= (e1i->rx.ts0_history[6+offset] >> 7) << 0;
return crc;
}
/* update the current in-progress CRC4 value with data from \a rx_frame */
static void e1_rx_update_crc4(struct osmo_e1f_instance *e1i, const uint8_t *rx_frame)
{
uint8_t ts0;
ts0 = rx_frame[0];
/* mask off the C bits */
if (is_correct_fas(ts0))
ts0 &= 0x7F;
e1i->rx.crc4 = crc4itu_update(e1i->rx.crc4, &ts0, 1);
/* add the remaining bytes/bits */
e1i->rx.crc4 = crc4itu_update(e1i->rx.crc4, rx_frame+1, ARRAY_SIZE(e1i->ts)-1);
}
/* FSM State handler */
static void e1_align_search_frame(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct osmo_e1f_instance *e1i = (struct osmo_e1f_instance *) fi->priv;
if (frame_alignment_recovered(e1i)) {
/* if we detected the 2nd FAS, we must be in FN 2 (or at least FN%2=0 */
e1i->rx.frame_nr = 2;
notify_user(e1i, E1_NTFY_EVT_ALIGN_FRAME, true, NULL);
osmo_fsm_inst_state_chg(fi, E1_AS_SEARCH_CRC_MFRAME, 0, 0);
}
}
/* FSM State handler */
static void e1_align_search_crc_mframe(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct osmo_e1f_instance *e1i = (struct osmo_e1f_instance *) fi->priv;
if (crc_mframe_alignment_achieved(e1i)) {
/* if we detected the 6-bit CRC multiframe signal, we must be in FN 11 */
e1i->rx.frame_nr = 11;
/* FIXME: "at least two valid CRC multiframe alignment signals can be located within
* 8 ms, the time separating two CRC multiframe alignment signals being 2 ms or a
* multiple of 2 ms" */
notify_user(e1i, E1_NTFY_EVT_ALIGN_CRC_MFRAME, true, NULL);
osmo_fsm_inst_state_chg(fi, E1_AS_ALIGNED_CRC_MFRAME, 0, 0);
} else {
/* if no mframe alignment is established within 8ms (64 frames), fall back */
if (e1i->rx.num_ts0_in_mframe_search >= 64) {
e1i->rx.num_ts0_in_mframe_search = 0;
osmo_fsm_inst_state_chg(fi, E1_AS_SEARCH_FRAME, 0, 0);
}
e1i->rx.num_ts0_in_mframe_search++;
}
}
static void e1_aligned_common(struct osmo_e1f_instance *e1i)
{
uint8_t inb = get_ts0_hist(e1i, 0);
/* All non-FAS frames contain "A" bit in TS0 */
if (!is_correct_fas(inb & 0x7F)) {
bool old_alarm = e1i->rx.remote_alarm;
/* frame not containing the frame alignment signal */
if (inb & 0x20)
e1i->rx.remote_alarm = true;
else
e1i->rx.remote_alarm = false;
if (old_alarm != e1i->rx.remote_alarm)
notify_user(e1i, E1_NTFY_EVT_REMOTE_ALARM, e1i->rx.remote_alarm, NULL);
}
}
/* FSM State handler */
static void e1_aligned_crc_mframe(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct osmo_e1f_instance *e1i = (struct osmo_e1f_instance *) fi->priv;
if (frame_alignment_lost(e1i)) {
osmo_fsm_inst_state_chg(fi, E1_AS_SEARCH_FRAME, 0, 0);
return;
}
if (e1i->crc4_enabled) {
uint8_t crc_rx;
bool crc4_error;
/* check if we just received a complete CRC4 */
switch (e1i->rx.frame_nr) {
case 7:
case 15:
crc_rx = crc4_from_ts0_hist(e1i, e1i->rx.frame_nr == 15 ? true : false);
if (crc_rx != e1i->rx.crc4_last_smf)
crc4_error = true;
else
crc4_error = false;
if (crc4_error != e1i->tx.crc4_error) {
notify_user(e1i, E1_NTFY_EVT_CRC_ERROR, crc4_error, NULL);
e1i->tx.crc4_error = crc4_error;
}
/* rotate computed CRC4 one further */
e1i->rx.crc4_last_smf = e1i->rx.crc4;
e1i->rx.crc4 = crc4itu_init();
break;
default:
break;
}
/* check if the remote side reports any CRC errors */
switch (e1i->rx.frame_nr) {
case 13:
case 15:
crc4_error = false;
if ((get_ts0_hist(e1i, 0) >> 7) == 0)
crc4_error = true;
if (crc4_error != e1i->rx.remote_crc4_error) {
notify_user(e1i, E1_NTFY_EVT_REMOTE_CRC_ERROR, crc4_error, NULL);
e1i->rx.remote_crc4_error = crc4_error;
}
break;
}
}
e1_aligned_common(e1i);
}
/* FSM State handler */
static void e1_aligned_basic(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct osmo_e1f_instance *e1i = (struct osmo_e1f_instance *) fi->priv;
if (frame_alignment_lost(e1i)) {
osmo_fsm_inst_state_chg(fi, E1_AS_SEARCH_FRAME, 0, 0);
return;
}
e1_aligned_common(e1i);
}
static const struct osmo_fsm_state e1_align_states[] = {
[E1_AS_SEARCH_FRAME] = {
.name = "SEARCH_FRAME",
.in_event_mask = S(E1_AE_RX_TS0),
.out_state_mask = S(E1_AS_SEARCH_FRAME) |
S(E1_AS_SEARCH_CRC_MFRAME) |
S(E1_AS_ALIGNED_BASIC),
.action = e1_align_search_frame,
},
[E1_AS_SEARCH_CRC_MFRAME] = {
.name = "SEARCH_CRC_MFRAME",
.in_event_mask = S(E1_AE_RX_TS0),
.out_state_mask = S(E1_AS_SEARCH_FRAME) |
S(E1_AS_SEARCH_CRC_MFRAME) |
S(E1_AS_ALIGNED_CRC_MFRAME),
.action = e1_align_search_crc_mframe,
},
[E1_AS_ALIGNED_CRC_MFRAME] = {
.name = "ALIGNED_CRC_MFRAME",
.in_event_mask = S(E1_AE_RX_TS0),
.out_state_mask = S(E1_AS_SEARCH_FRAME) |
S(E1_AS_SEARCH_CRC_MFRAME) |
S(E1_AS_ALIGNED_CRC_MFRAME),
.action = e1_aligned_crc_mframe,
},
[E1_AS_ALIGNED_BASIC] = {
.name = "ALIGNED_BASIC",
.in_event_mask = S(E1_AE_RX_TS0),
.out_state_mask = S(E1_AS_SEARCH_FRAME),
.action = e1_aligned_basic,
},
};
static void e1_allstate(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
struct osmo_e1f_instance *e1i = (struct osmo_e1f_instance *) fi->priv;
switch (event) {
case E1_AE_RESET:
e1i->rx.num_ts0_in_mframe_search = 0;
osmo_fsm_inst_state_chg(fi, E1_AS_SEARCH_FRAME, 0, 0);
break;
}
}
static struct osmo_fsm e1_align_fsm = {
.name = "e1-align",
.states = e1_align_states,
.num_states = ARRAY_SIZE(e1_align_states),
.allstate_event_mask = S(E1_AE_RESET),
.allstate_action = e1_allstate,
.log_subsys = DLGLOBAL,
.event_names = e1_align_evt_names,
};
static void align_fsm_reset(struct osmo_e1f_instance *e1i)
{
osmo_fsm_inst_dispatch(e1i->rx.fi, E1_AE_RESET, NULL);
}
static void e1_rx_hist_add(struct osmo_e1f_instance *e1i, uint8_t inb)
{
e1i->rx.ts0_history[e1i->rx.frame_nr] = inb;
if (e1i->rx.ts0_hist_len < 16)
e1i->rx.ts0_hist_len++;
}
static void e1_rx_ts0(struct osmo_e1f_instance *e1i, uint8_t inb)
{
/* append just-received byte to the TS0 receive history buffer */
e1_rx_hist_add(e1i, inb);
/* notify the FSM that a new TS0 byte was received */
osmo_fsm_inst_dispatch(e1i->rx.fi, E1_AE_RX_TS0, NULL);
e1i->rx.frame_nr = (e1i->rx.frame_nr + 1) % 16;
}
static void e1_rx_tsN(struct osmo_e1f_instance_ts *e1t, uint8_t inb)
{
struct msgb *msg;
int count, rc;
if (!e1t->rx.enabled)
return;
if (!e1t->rx.msg)
e1t->rx.msg = msgb_alloc(e1t->rx.granularity, "E1 Rx");
msg = e1t->rx.msg;
OSMO_ASSERT(msg);
switch (e1t->mode) {
case OSMO_E1F_TS_RAW:
/* append byte at end of msgb */
msgb_put_u8(msg, inb);
/* flush msgb, if full */
if (msgb_tailroom(msg) <= 0) {
goto flush;
}
break;
case OSMO_E1F_TS_HDLC_CRC:
rc = osmo_isdnhdlc_decode(&e1t->rx.hdlc, &inb, 1, &count,
msgb_data(msg), msgb_tailroom(msg));
switch (rc) {
case -OSMO_HDLC_FRAMING_ERROR:
fprintf(stdout, "Framing Error\n");
break;
case -OSMO_HDLC_CRC_ERROR:
fprintf(stdout, "CRC Error\n");
break;
case -OSMO_HDLC_LENGTH_ERROR:
fprintf(stdout, "Length Error\n");
break;
case 0:
/* no output yet */
break;
default:
msgb_put(msg, rc);
goto flush;
}
break;
}
return;
flush:
if (!e1t->rx.data_cb)
msgb_free(msg);
else
e1t->rx.data_cb(e1t, msg);
e1t->rx.msg = NULL;
}
/*! Receive a single E1 frame of 32x8 (=256) bits
* \param e1i E1 instance for which the frame was received
* \param[in] in_frame caller-provided buffer of 32 octets
*
* The idea is that whoever calls us will already have done the bit-alignment,
* i.e. the first bit of TS0 of the frame will be octet-aligned and hence the
* entire 256bit buffer is provided as octet-aligned 32bytes in \a in_frame.
*/
int osmo_e1f_rx_frame(struct osmo_e1f_instance *e1i, const uint8_t *in_frame)
{
int i;
e1_rx_update_crc4(e1i, in_frame);
e1_rx_ts0(e1i, in_frame[0]);
for (i = 1; i < ARRAY_SIZE(e1i->ts); i++) {
struct osmo_e1f_instance_ts *e1t = &e1i->ts[i];
e1_rx_tsN(e1t, in_frame[i]);
}
return 0;
}
int osmo_e1f_init(void)
{
return osmo_fsm_register(&e1_align_fsm);
}