mISDN/drivers/isdn/hardware/mISDN/avm_fritz.c

1398 lines
36 KiB
C

/* $Id$
*
* fritz_pci.c low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
* Thanks to AVM, Berlin for informations
*
* Author Karsten Keil (keil@isdn4linux.de)
*
* This file is (c) under GNU PUBLIC LICENSE
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/isapnp.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include "mISDN_dch.h"
#include "mISDN_bch.h"
#include "isac.h"
#include "mISDNl1.h"
#include "helper.h"
#include "debug.h"
#define SPIN_DEBUG
#define LOCK_STATISTIC
#include "hw_lock.h"
static const char *avm_pci_rev = "$Revision$";
enum {
AVM_FRITZ_PCI,
AVM_FRITZ_PNP,
AVM_FRITZ_PCIV2,
};
#ifndef PCI_VENDOR_ID_AVM
#define PCI_VENDOR_ID_AVM 0x1244
#endif
#ifndef PCI_DEVICE_ID_AVM_FRITZ
#define PCI_DEVICE_ID_AVM_FRITZ 0xa00
#endif
#ifndef PCI_DEVICE_ID_AVM_A1_V2
#define PCI_DEVICE_ID_AVM_A1_V2 0xe00
#endif
#define HDLC_FIFO 0x0
#define HDLC_STATUS 0x4
#define CHIP_WINDOW 0x10
#define CHIP_INDEX 0x4
#define AVM_HDLC_1 0x00
#define AVM_HDLC_2 0x01
#define AVM_ISAC_FIFO 0x02
#define AVM_ISAC_REG_LOW 0x04
#define AVM_ISAC_REG_HIGH 0x06
#define AVM_STATUS0_IRQ_ISAC 0x01
#define AVM_STATUS0_IRQ_HDLC 0x02
#define AVM_STATUS0_IRQ_TIMER 0x04
#define AVM_STATUS0_IRQ_MASK 0x07
#define AVM_STATUS0_RESET 0x01
#define AVM_STATUS0_DIS_TIMER 0x02
#define AVM_STATUS0_RES_TIMER 0x04
#define AVM_STATUS0_ENA_IRQ 0x08
#define AVM_STATUS0_TESTBIT 0x10
#define AVM_STATUS1_INT_SEL 0x0f
#define AVM_STATUS1_ENA_IOM 0x80
#define HDLC_MODE_ITF_FLG 0x01
#define HDLC_MODE_TRANS 0x02
#define HDLC_MODE_CCR_7 0x04
#define HDLC_MODE_CCR_16 0x08
#define HDLC_MODE_TESTLOOP 0x80
#define HDLC_INT_XPR 0x80
#define HDLC_INT_XDU 0x40
#define HDLC_INT_RPR 0x20
#define HDLC_INT_MASK 0xE0
#define HDLC_STAT_RME 0x01
#define HDLC_STAT_RDO 0x10
#define HDLC_STAT_CRCVFRRAB 0x0E
#define HDLC_STAT_CRCVFR 0x06
#define HDLC_STAT_RML_MASK 0x3f00
#define HDLC_CMD_XRS 0x80
#define HDLC_CMD_XME 0x01
#define HDLC_CMD_RRS 0x20
#define HDLC_CMD_XML_MASK 0x3f00
/* Fritz PCI v2.0 */
#define AVM_HDLC_FIFO_1 0x10
#define AVM_HDLC_FIFO_2 0x18
#define AVM_HDLC_STATUS_1 0x14
#define AVM_HDLC_STATUS_2 0x1c
#define AVM_ISACSX_INDEX 0x04
#define AVM_ISACSX_DATA 0x08
/* data struct */
struct hdlc_stat_reg {
#ifdef __BIG_ENDIAN
u_char fill __attribute__((packed));
u_char mode __attribute__((packed));
u_char xml __attribute__((packed));
u_char cmd __attribute__((packed));
#else
u_char cmd __attribute__((packed));
u_char xml __attribute__((packed));
u_char mode __attribute__((packed));
u_char fill __attribute__((packed));
#endif
};
typedef struct hdlc_hw {
union {
u_int ctrl;
struct hdlc_stat_reg sr;
} ctrl;
u_int stat;
} hdlc_hw_t;
typedef struct _fritzpnppci {
struct _fritzpnppci *prev;
struct _fritzpnppci *next;
struct pci_dev *pdev;
u_int type;
u_int irq;
u_int addr;
mISDN_HWlock_t lock;
isac_chip_t isac;
hdlc_hw_t hdlc[2];
dchannel_t dch;
bchannel_t bch[2];
} fritzpnppci;
static int lock_dev(void *data, int nowait)
{
register mISDN_HWlock_t *lock = &((fritzpnppci *)data)->lock;
return(lock_HW(lock, nowait));
}
static void unlock_dev(void *data)
{
register mISDN_HWlock_t *lock = &((fritzpnppci *)data)->lock;
unlock_HW(lock);
}
/* Interface functions */
static u_char
ReadISAC(void *fc, u_char offset)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
register long addr = ((fritzpnppci *)fc)->addr;
register u_char val;
outb(idx, addr + CHIP_INDEX);
val = inb(addr + CHIP_WINDOW + (offset & 0xf));
return (val);
}
static void
WriteISAC(void *fc, u_char offset, u_char value)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
register long addr = ((fritzpnppci *)fc)->addr;
outb(idx, addr + CHIP_INDEX);
outb(value, addr + CHIP_WINDOW + (offset & 0xf));
}
static void
ReadISACfifo(void *fc, u_char * data, int size)
{
register long addr = ((fritzpnppci *)fc)->addr;
outb(AVM_ISAC_FIFO, addr + CHIP_INDEX);
insb(addr + CHIP_WINDOW, data, size);
}
static void
WriteISACfifo(void *fc, u_char * data, int size)
{
register long addr = ((fritzpnppci *)fc)->addr;
outb(AVM_ISAC_FIFO, addr + CHIP_INDEX);
outsb(addr + CHIP_WINDOW, data, size);
}
static unsigned char
fcpci2_read_isac(void *fc, unsigned char offset)
{
register long addr = ((fritzpnppci *)fc)->addr;
unsigned char val;
outl(offset, addr + AVM_ISACSX_INDEX);
val = inl(addr + AVM_ISACSX_DATA);
return val;
}
static void
fcpci2_write_isac(void *fc, unsigned char offset, unsigned char value)
{
register long addr = ((fritzpnppci *)fc)->addr;
outl(offset, addr + AVM_ISACSX_INDEX);
outl(value, addr + AVM_ISACSX_DATA);
}
static void
fcpci2_read_isac_fifo(void *fc, unsigned char * data, int size)
{
register long addr = ((fritzpnppci *)fc)->addr;
int i;
outl(0, addr + AVM_ISACSX_INDEX);
for (i = 0; i < size; i++)
data[i] = inl(addr + AVM_ISACSX_DATA);
}
static void
fcpci2_write_isac_fifo(void *fc, unsigned char * data, int size)
{
register long addr = ((fritzpnppci *)fc)->addr;
int i;
outl(0, addr + AVM_ISACSX_INDEX);
for (i = 0; i < size; i++)
outl(data[i], addr + AVM_ISACSX_DATA);
}
static inline
bchannel_t *Sel_BCS(fritzpnppci *fc, int channel)
{
if (fc->bch[0].protocol && (fc->bch[0].channel == channel))
return(&fc->bch[0]);
else if (fc->bch[1].protocol && (fc->bch[1].channel == channel))
return(&fc->bch[1]);
else
return(NULL);
}
static inline void
__write_ctrl_pnp(fritzpnppci *fc, hdlc_hw_t *hdlc, int channel, int which) {
register u_char idx = channel ? AVM_HDLC_2 : AVM_HDLC_1;
outb(idx, fc->addr + CHIP_INDEX);
if (which & 4)
outb(hdlc->ctrl.sr.mode, fc->addr + CHIP_WINDOW + HDLC_STATUS + 2);
if (which & 2)
outb(hdlc->ctrl.sr.xml, fc->addr + CHIP_WINDOW + HDLC_STATUS + 1);
if (which & 1)
outb(hdlc->ctrl.sr.cmd, fc->addr + CHIP_WINDOW + HDLC_STATUS);
}
static inline void
__write_ctrl_pci(fritzpnppci *fc, hdlc_hw_t *hdlc, int channel) {
register u_int idx = channel ? AVM_HDLC_2 : AVM_HDLC_1;
outl(idx, fc->addr + CHIP_INDEX);
outl(hdlc->ctrl.ctrl, fc->addr + CHIP_WINDOW + HDLC_STATUS);
}
static inline void
__write_ctrl_pciv2(fritzpnppci *fc, hdlc_hw_t *hdlc, int channel) {
outl(hdlc->ctrl.ctrl, fc->addr + channel ? AVM_HDLC_STATUS_2 : AVM_HDLC_STATUS_1);
}
void
write_ctrl(bchannel_t *bch, int which) {
fritzpnppci *fc = bch->inst.data;
hdlc_hw_t *hdlc = bch->hw;
if (fc->dch.debug & L1_DEB_HSCX)
debugprint(&bch->inst, "hdlc %c wr%x ctrl %x",
'A' + bch->channel, which, hdlc->ctrl.ctrl);
switch(fc->type) {
case AVM_FRITZ_PCIV2:
__write_ctrl_pciv2(fc, hdlc, bch->channel);
break;
case AVM_FRITZ_PCI:
__write_ctrl_pci(fc, hdlc, bch->channel);
break;
case AVM_FRITZ_PNP:
__write_ctrl_pnp(fc, hdlc, bch->channel, which);
break;
}
}
static inline u_int
__read_status_pnp(u_long addr, u_int channel)
{
register u_int stat;
outb(channel ? AVM_HDLC_2 : AVM_HDLC_1, addr + CHIP_INDEX);
stat = inb(addr + CHIP_WINDOW + HDLC_STATUS);
if (stat & HDLC_INT_RPR)
stat |= (inb(addr + CHIP_WINDOW + HDLC_STATUS + 1)) << 8;
return (stat);
}
static inline u_int
__read_status_pci(u_long addr, u_int channel)
{
outl(channel ? AVM_HDLC_2 : AVM_HDLC_1, addr + CHIP_INDEX);
return inl(addr + CHIP_WINDOW + HDLC_STATUS);
}
static inline u_int
__read_status_pciv2(u_long addr, u_int channel)
{
return inl(addr + channel ? AVM_HDLC_STATUS_2 : AVM_HDLC_STATUS_1);
}
static u_int
read_status(fritzpnppci *fc, int channel)
{
switch(fc->type) {
case AVM_FRITZ_PCIV2:
return(__read_status_pciv2(fc->addr, channel));
case AVM_FRITZ_PCI:
return(__read_status_pci(fc->addr, channel));
case AVM_FRITZ_PNP:
return(__read_status_pnp(fc->addr, channel));
}
/* dummy */
return(0);
}
static int
modehdlc(bchannel_t *bch, int bc, int protocol)
{
int hdlc_ch = bch->channel;
hdlc_hw_t *hdlc = bch->hw;
if (bch->debug & L1_DEB_HSCX)
debugprint(&bch->inst, "hdlc %c protocol %x-->%x ch %d-->%d",
'A' + hdlc_ch, bch->protocol, protocol, hdlc_ch, bc);
hdlc->ctrl.ctrl = 0;
switch (protocol) {
case (-1): /* used for init */
bch->protocol = -1;
bch->channel = bc;
bc = 0;
case (ISDN_PID_NONE):
if (bch->protocol == ISDN_PID_NONE)
break;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bch, 5);
bch->protocol = ISDN_PID_NONE;
bch->channel = bc;
break;
case (ISDN_PID_L1_B_64TRANS):
bch->protocol = protocol;
bch->channel = bc;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bch, 5);
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd = 0;
bch_sched_event(bch, B_XMTBUFREADY);
break;
case (ISDN_PID_L1_B_64HDLC):
bch->protocol = protocol;
bch->channel = bc;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = HDLC_MODE_ITF_FLG;
write_ctrl(bch, 5);
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd = 0;
bch_sched_event(bch, B_XMTBUFREADY);
break;
default:
debugprint(&bch->inst, "prot not known %x", protocol);
return(-ENOPROTOOPT);
}
return(0);
}
static void
hdlc_empty_fifo(bchannel_t *bch, int count)
{
register u_int *ptr;
u_char *p;
u_char idx = bch->channel ? AVM_HDLC_2 : AVM_HDLC_1;
int cnt=0;
fritzpnppci *fc = bch->inst.data;
if ((fc->dch.debug & L1_DEB_HSCX) && !(fc->dch.debug & L1_DEB_HSCX_FIFO))
debugprint(&bch->inst, "hdlc_empty_fifo %d", count);
if (bch->rx_idx + count > MAX_DATA_MEM) {
if (fc->dch.debug & L1_DEB_WARN)
debugprint(&bch->inst, "hdlc_empty_fifo: incoming packet too large");
return;
}
ptr = (u_int *) p = bch->rx_buf + bch->rx_idx;
bch->rx_idx += count;
if (fc->type == AVM_FRITZ_PCIV2) {
while (cnt < count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
*ptr++ = in_le32((unsigned *)(fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1 +_IO_BASE));
#else
*ptr++ = in_be32((unsigned *)(fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1 +_IO_BASE));
#endif /* CONFIG_APUS */
#else
*ptr++ = inl(fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
#endif /* __powerpc__ */
cnt += 4;
}
} else if (fc->type == AVM_FRITZ_PCI) {
outl(idx, fc->addr + CHIP_INDEX);
while (cnt < count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
*ptr++ = in_le32((unsigned *)(fc->addr + CHIP_WINDOW +_IO_BASE));
#else
*ptr++ = in_be32((unsigned *)(fc->addr + CHIP_WINDOW +_IO_BASE));
#endif /* CONFIG_APUS */
#else
*ptr++ = inl(fc->addr + CHIP_WINDOW);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
outb(idx, fc->addr + CHIP_INDEX);
while (cnt < count) {
*p++ = inb(fc->addr + CHIP_WINDOW);
cnt++;
}
}
if (fc->dch.debug & L1_DEB_HSCX_FIFO) {
char *t = bch->blog;
if (fc->type == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
bch->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugprint(&bch->inst, bch->blog);
}
}
#define HDLC_FIFO_SIZE 32
static void
hdlc_fill_fifo(bchannel_t *bch)
{
fritzpnppci *fc = bch->inst.data;
hdlc_hw_t *hdlc = bch->hw;
int count, cnt =0;
u_char *p;
u_int *ptr;
if ((bch->debug & L1_DEB_HSCX) && !(bch->debug & L1_DEB_HSCX_FIFO))
debugprint(&bch->inst, __FUNCTION__);
count = bch->tx_len - bch->tx_idx;
if (count <= 0)
return;
p = bch->tx_buf + bch->tx_idx;
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XME;
if (count > HDLC_FIFO_SIZE) {
count = HDLC_FIFO_SIZE;
} else {
if (bch->protocol != ISDN_PID_L1_B_64TRANS)
hdlc->ctrl.sr.cmd |= HDLC_CMD_XME;
}
if ((bch->debug & L1_DEB_HSCX) && !(bch->debug & L1_DEB_HSCX_FIFO))
debugprint(&bch->inst, "%s: %d/%d", __FUNCTION__,
count, bch->tx_idx);
ptr = (u_int *) p;
bch->tx_idx += count;
hdlc->ctrl.sr.xml = ((count == HDLC_FIFO_SIZE) ? 0 : count);
if (fc->type == AVM_FRITZ_PCIV2) {
__write_ctrl_pciv2(fc, hdlc, bch->channel);
while (cnt<count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
out_le32((unsigned *)(fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1 +_IO_BASE), *ptr++);
#else
out_be32((unsigned *)(fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1 +_IO_BASE), *ptr++);
#endif /* CONFIG_APUS */
#else
outl(*ptr++, fc->addr + bch->channel ? AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
#endif /* __powerpc__ */
cnt += 4;
}
} else if (fc->type == AVM_FRITZ_PCI) {
__write_ctrl_pci(fc, hdlc, bch->channel);
while (cnt<count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
out_le32((unsigned *)(fc->addr + CHIP_WINDOW +_IO_BASE), *ptr++);
#else
out_be32((unsigned *)(fc->addr + CHIP_WINDOW +_IO_BASE), *ptr++);
#endif /* CONFIG_APUS */
#else
outl(*ptr++, fc->addr + CHIP_WINDOW);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
__write_ctrl_pnp(fc, hdlc, bch->channel, 3);
while (cnt<count) {
outb(*p++, fc->addr + CHIP_WINDOW);
cnt++;
}
}
if (bch->debug & L1_DEB_HSCX_FIFO) {
char *t = bch->blog;
if (fc->type == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
bch->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugprint(&bch->inst, bch->blog);
}
}
static void
HDLC_irq(bchannel_t *bch, u_int stat) {
int len;
struct sk_buff *skb;
hdlc_hw_t *hdlc = bch->hw;
if (bch->debug & L1_DEB_HSCX)
debugprint(&bch->inst, "ch%d stat %#x", bch->channel, stat);
if (stat & HDLC_INT_RPR) {
if (stat & HDLC_STAT_RDO) {
if (bch->debug & L1_DEB_HSCX)
debugprint(&bch->inst, "RDO");
else
debugprint(&bch->inst, "ch%d stat %#x", bch->channel, stat);
hdlc->ctrl.sr.xml = 0;
hdlc->ctrl.sr.cmd |= HDLC_CMD_RRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_RRS;
write_ctrl(bch, 1);
bch->rx_idx = 0;
} else {
if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
len = 32;
hdlc_empty_fifo(bch, len);
if ((stat & HDLC_STAT_RME) || (bch->protocol == ISDN_PID_L1_B_64TRANS)) {
if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
(bch->protocol == ISDN_PID_L1_B_64TRANS)) {
if (!(skb = dev_alloc_skb(bch->rx_idx)))
printk(KERN_WARNING "HDLC: receive out of memory\n");
else {
memcpy(skb_put(skb, bch->rx_idx),
bch->rx_buf, bch->rx_idx);
skb_queue_tail(&bch->rqueue, skb);
}
bch->rx_idx = 0;
bch_sched_event(bch, B_RCVBUFREADY);
} else {
if (bch->debug & L1_DEB_HSCX)
debugprint(&bch->inst, "invalid frame");
else
debugprint(&bch->inst, "ch%d invalid frame %#x", bch->channel, stat);
bch->rx_idx = 0;
}
}
}
}
if (stat & HDLC_INT_XDU) {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bch->tx_len) {
bch->tx_idx = 0;
if (bch->debug & L1_DEB_WARN)
debugprint(&bch->inst, "ch%d XDU", bch->channel);
} else if (bch->debug & L1_DEB_WARN)
debugprint(&bch->inst, "ch%d XDU without data", bch->channel);
hdlc->ctrl.sr.xml = 0;
hdlc->ctrl.sr.cmd |= HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc_fill_fifo(bch);
} else if (stat & HDLC_INT_XPR) {
if (bch->tx_idx < bch->tx_len) {
hdlc_fill_fifo(bch);
} else {
bch->tx_idx = 0;
if (test_and_clear_bit(BC_FLG_TX_NEXT, &bch->Flag)) {
if (bch->next_skb) {
bch->tx_len = bch->next_skb->len;
memcpy(bch->tx_buf,
bch->next_skb->data, bch->tx_len);
hdlc_fill_fifo(bch);
bch_sched_event(bch, B_XMTBUFREADY);
} else {
bch->tx_len = 0;
printk(KERN_WARNING "hdlc tx irq TX_NEXT without skb\n");
test_and_clear_bit(BC_FLG_TX_BUSY, &bch->Flag);
}
} else {
bch->tx_len = 0;
test_and_clear_bit(BC_FLG_TX_BUSY, &bch->Flag);
bch_sched_event(bch, B_XMTBUFREADY);
}
}
}
}
static inline void
HDLC_irq_main(fritzpnppci *fc)
{
u_int stat;
bchannel_t *bch;
stat = read_status(fc, 0);
if (stat & HDLC_INT_MASK) {
if (!(bch = Sel_BCS(fc, 0))) {
if (fc->bch[0].debug)
debugprint(&fc->bch[0].inst, "hdlc spurious channel 0 IRQ");
} else
HDLC_irq(bch, stat);
}
stat = read_status(fc, 1);
if (stat & HDLC_INT_MASK) {
if (!(bch = Sel_BCS(fc, 1))) {
if (fc->bch[1].debug)
debugprint(&fc->bch[1].inst, "hdlc spurious channel 1 IRQ");
} else
HDLC_irq(bch, stat);
}
}
static void
avm_pcipnp_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
fritzpnppci *fc = dev_id;
u_long flags;
u_char val;
u_char sval;
spin_lock_irqsave(&fc->lock.lock, flags);
#ifdef SPIN_DEBUG
fc->lock.spin_adr = (void *)0x2001;
#endif
sval = inb(fc->addr + 2);
if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
/* possible a shared IRQ reqest */
#ifdef SPIN_DEBUG
fc->lock.spin_adr = NULL;
#endif
spin_unlock_irqrestore(&fc->lock.lock, flags);
return;
}
if (test_and_set_bit(STATE_FLAG_BUSY, &fc->lock.state)) {
printk(KERN_ERR "%s: STATE_FLAG_BUSY allready activ, should never happen state:%x\n",
__FUNCTION__, fc->lock.state);
#ifdef SPIN_DEBUG
printk(KERN_ERR "%s: previous lock:%p\n",
__FUNCTION__, fc->lock.busy_adr);
#endif
#ifdef LOCK_STATISTIC
fc->lock.irq_fail++;
#endif
} else {
#ifdef LOCK_STATISTIC
fc->lock.irq_ok++;
#endif
#ifdef SPIN_DEBUG
fc->lock.busy_adr = avm_pcipnp_interrupt;
#endif
}
test_and_set_bit(STATE_FLAG_INIRQ, &fc->lock.state);
#ifdef SPIN_DEBUG
fc->lock.spin_adr = NULL;
#endif
spin_unlock_irqrestore(&fc->lock.lock, flags);
if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
val = ReadISAC(fc, ISAC_ISTA);
ISAC_interrupt(&fc->dch, val);
}
if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
HDLC_irq_main(fc);
}
if (fc->type == AVM_FRITZ_PNP) {
WriteISAC(fc, ISAC_MASK, 0xFF);
WriteISAC(fc, ISAC_MASK, 0x0);
}
spin_lock_irqsave(&fc->lock.lock, flags);
#ifdef SPIN_DEBUG
fc->lock.spin_adr = (void *)0x2002;
#endif
if (!test_and_clear_bit(STATE_FLAG_INIRQ, &fc->lock.state)) {
}
if (!test_and_clear_bit(STATE_FLAG_BUSY, &fc->lock.state)) {
printk(KERN_ERR "%s: STATE_FLAG_BUSY not locked state(%x)\n",
__FUNCTION__, fc->lock.state);
}
#ifdef SPIN_DEBUG
fc->lock.busy_adr = NULL;
fc->lock.spin_adr = NULL;
#endif
spin_unlock_irqrestore(&fc->lock.lock, flags);
}
static int
hdlc_down(mISDNif_t *hif, struct sk_buff *skb)
{
bchannel_t *bch;
int ret = -EINVAL;
mISDN_head_t *hh;
if (!hif || !skb)
return(ret);
hh = mISDN_HEAD_P(skb);
bch = hif->fdata;
if ((hh->prim == PH_DATA_REQ) ||
(hh->prim == (DL_DATA | REQUEST))) {
if (bch->next_skb) {
debugprint(&bch->inst, " l2l1 next_skb exist this shouldn't happen");
return(-EBUSY);
}
bch->inst.lock(bch->inst.data, 0);
if (test_and_set_bit(BC_FLG_TX_BUSY, &bch->Flag)) {
test_and_set_bit(BC_FLG_TX_NEXT, &bch->Flag);
bch->next_skb = skb;
bch->inst.unlock(bch->inst.data);
return(0);
} else {
bch->tx_len = skb->len;
memcpy(bch->tx_buf, skb->data, bch->tx_len);
bch->tx_idx = 0;
hdlc_fill_fifo(bch);
bch->inst.unlock(bch->inst.data);
skb_trim(skb, 0);
return(if_newhead(&bch->inst.up, hh->prim | CONFIRM,
DINFO_SKB, skb));
}
} else if ((hh->prim == (PH_ACTIVATE | REQUEST)) ||
(hh->prim == (DL_ESTABLISH | REQUEST))) {
if (test_and_set_bit(BC_FLG_ACTIV, &bch->Flag))
ret = 0;
else {
bch->inst.lock(bch->inst.data,0);
ret = modehdlc(bch, bch->channel,
bch->inst.pid.protocol[1]);
bch->inst.unlock(bch->inst.data);
}
skb_trim(skb, 0);
return(if_newhead(&bch->inst.up, hh->prim | CONFIRM, ret, skb));
} else if ((hh->prim == (PH_DEACTIVATE | REQUEST)) ||
(hh->prim == (DL_RELEASE | REQUEST)) ||
(hh->prim == (MGR_DISCONNECT | REQUEST))) {
bch->inst.lock(bch->inst.data,0);
if (test_and_clear_bit(BC_FLG_TX_NEXT, &bch->Flag)) {
dev_kfree_skb(bch->next_skb);
bch->next_skb = NULL;
}
test_and_clear_bit(BC_FLG_TX_BUSY, &bch->Flag);
modehdlc(bch, bch->channel, 0);
test_and_clear_bit(BC_FLG_ACTIV, &bch->Flag);
bch->inst.unlock(bch->inst.data);
skb_trim(skb, 0);
if (hh->prim != (MGR_DISCONNECT | REQUEST))
if (!if_newhead(&bch->inst.up, hh->prim | CONFIRM, 0, skb))
return(0);
ret = 0;
} else {
printk(KERN_WARNING "hdlc_down unknown prim(%x)\n", hh->prim);
ret = -EINVAL;
}
if (!ret)
dev_kfree_skb(skb);
return(ret);
}
static void
inithdlc(fritzpnppci *fc)
{
modehdlc(&fc->bch[0], 0, -1);
modehdlc(&fc->bch[1], 1, -1);
}
void
clear_pending_hdlc_ints(fritzpnppci *fc)
{
u_int val;
val = read_status(fc, 0);
debugprint(&fc->dch.inst, "HDLC 1 STA %x", val);
val = read_status(fc, 1);
debugprint(&fc->dch.inst, "HDLC 2 STA %x", val);
}
static void
reset_avmpcipnp(fritzpnppci *fc)
{
long flags;
printk(KERN_INFO "AVM PCI/PnP: reset\n");
save_flags(flags);
sti();
outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, fc->addr + 2);
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, fc->addr + 2);
outb(AVM_STATUS1_ENA_IOM | fc->irq, fc->addr + 3);
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(fc->addr + 3));
restore_flags(flags);
}
static int init_card(fritzpnppci *fc)
{
int irq_cnt, cnt = 3;
long flags;
u_int shared = SA_SHIRQ;
if (fc->type == AVM_FRITZ_PNP)
shared = 0;
save_flags(flags);
irq_cnt = kstat_irqs(fc->irq);
printk(KERN_INFO "AVM Fritz!PCI: IRQ %d count %d\n", fc->irq, irq_cnt);
lock_dev(fc, 0);
if (request_irq(fc->irq, avm_pcipnp_interrupt, SA_SHIRQ,
"AVM Fritz!PCI", fc)) {
printk(KERN_WARNING "mISDN: couldn't get interrupt %d\n",
fc->irq);
unlock_dev(fc);
return(-EIO);
}
while (cnt) {
int ret;
ISAC_clear_pending_ints(&fc->dch);
if ((ret=ISAC_init(&fc->dch))) {
printk(KERN_WARNING "mISDN: ISAC_init failed with %d\n", ret);
break;
}
clear_pending_hdlc_ints(fc);
inithdlc(fc);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
fc->addr + 2);
WriteISAC(fc, ISAC_MASK, 0);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
AVM_STATUS0_ENA_IRQ, fc->addr + 2);
/* RESET Receiver and Transmitter */
WriteISAC(fc, ISAC_CMDR, 0x41);
unlock_dev(fc);
sti();
/* Timeout 10ms */
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout((10*HZ)/1000);
restore_flags(flags);
printk(KERN_INFO "AVM Fritz!PCI: IRQ %d count %d\n",
fc->irq, kstat_irqs(fc->irq));
if (kstat_irqs(fc->irq) == irq_cnt) {
printk(KERN_WARNING
"AVM Fritz!PCI: IRQ(%d) getting no interrupts during init %d\n",
fc->irq, 4 - cnt);
if (cnt == 1) {
return (-EIO);
} else {
reset_avmpcipnp(fc);
cnt--;
}
} else {
return(0);
}
lock_dev(fc, 0);
}
unlock_dev(fc);
return(-EIO);
}
#define MAX_CARDS 4
#define MODULE_PARM_T "1-4i"
static int fritz_cnt;
static u_int protocol[MAX_CARDS];
static int layermask[MAX_CARDS];
static mISDNobject_t fritz;
static int debug;
#ifdef MODULE
MODULE_AUTHOR("Karsten Keil");
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif
MODULE_PARM(debug, "1i");
MODULE_PARM(io, MODULE_PARM_T);
MODULE_PARM(protocol, MODULE_PARM_T);
MODULE_PARM(irq, MODULE_PARM_T);
MODULE_PARM(layermask, MODULE_PARM_T);
#endif
static char FritzName[] = "Fritz!PCI";
static struct pci_device_id fcpci_ids[] __devinitdata = {
{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1 , PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) "Fritz!Card PCI" },
{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1_V2, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) "Fritz!Card PCI v2" },
{ }
};
MODULE_DEVICE_TABLE(pci, fcpci_ids);
static struct isapnp_device_id fcpnp_ids[] __devinitdata = {
{ ISAPNP_VENDOR('A', 'V', 'M'), ISAPNP_FUNCTION(0x0900),
ISAPNP_VENDOR('A', 'V', 'M'), ISAPNP_FUNCTION(0x0900),
(unsigned long) "Fritz!Card PnP" },
{ }
};
MODULE_DEVICE_TABLE(isapnp, fcpnp_ids);
int
setup_fritz(fritzpnppci *fc)
{
u_int val, ver;
if (check_region((fc->addr), 32)) {
printk(KERN_WARNING
"mISDN: %s config port %x-%x already in use\n",
"AVM Fritz!PCI",
fc->addr,
fc->addr + 31);
return(-EIO);
} else {
request_region(fc->addr, 32,
(fc->type == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP");
}
switch (fc->type) {
case AVM_FRITZ_PCI:
val = inl(fc->addr);
printk(KERN_INFO "AVM PCI: stat %#x\n", val);
printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
val & 0xff, (val>>8) & 0xff);
outl(AVM_HDLC_1, fc->addr + CHIP_INDEX);
ver = inl(fc->addr + CHIP_WINDOW + HDLC_STATUS) >> 24;
printk(KERN_INFO "AVM PnP: HDLC version %x\n", ver & 0xf);
fc->dch.read_reg = &ReadISAC;
fc->dch.write_reg = &WriteISAC;
fc->dch.read_fifo = &ReadISACfifo;
fc->dch.write_fifo = &WriteISACfifo;
fc->dch.type = ISAC_TYPE_ISAC;
break;
case AVM_FRITZ_PCIV2:
val = inl(fc->addr);
printk(KERN_INFO "AVM PCI V2: stat %#x\n", val);
printk(KERN_INFO "AVM PCI V2: Class %X Rev %d\n",
val & 0xff, (val>>8) & 0xff);
ver = inl(fc->addr + AVM_HDLC_STATUS_1) >> 24;
printk(KERN_INFO "AVM PnP: HDLC version %x\n", ver & 0xf);
fc->dch.read_reg = &fcpci2_read_isac;
fc->dch.write_reg = &fcpci2_write_isac;
fc->dch.read_fifo = &fcpci2_read_isac_fifo;
fc->dch.write_fifo = &fcpci2_write_isac_fifo;
fc->dch.type = ISAC_TYPE_ISACSX;
break;
case AVM_FRITZ_PNP:
val = inb(fc->addr);
ver = inb(fc->addr + 1);
printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
outb(AVM_HDLC_1, fc->addr + CHIP_INDEX);
ver = inb(fc->addr + CHIP_WINDOW + 7);
printk(KERN_INFO "AVM PnP: HDLC version %x\n", ver & 0xf);
reset_avmpcipnp(fc);
fc->dch.read_reg = &ReadISAC;
fc->dch.write_reg = &WriteISAC;
fc->dch.read_fifo = &ReadISACfifo;
fc->dch.write_fifo = &WriteISACfifo;
fc->dch.type = ISAC_TYPE_ISAC;
break;
default:
release_region(fc->addr, 32);
printk(KERN_WARNING "AVM unknown type %d\n", fc->type);
return(-ENODEV);
}
printk(KERN_INFO "mISDN: %s config irq:%d base:0x%X\n",
(fc->type == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" :
(fc->type == AVM_FRITZ_PCIV2) ? "AVM Fritz!PCIv2" : "AVM Fritz!PnP",
fc->irq, fc->addr);
fc->dch.hw = &fc->isac;
lock_dev(fc, 0);
#ifdef SPIN_DEBUG
printk(KERN_ERR "spin_lock_adr=%p now(%p)\n", &fc->lock.busy_adr, fc->lock.busy_adr);
printk(KERN_ERR "busy_lock_adr=%p now(%p)\n", &fc->lock.busy_adr, fc->lock.busy_adr);
#endif
unlock_dev(fc);
return(0);
}
static void
release_card(fritzpnppci *card)
{
#ifdef LOCK_STATISTIC
printk(KERN_INFO "try_ok(%d) try_wait(%d) try_mult(%d) try_inirq(%d)\n",
card->lock.try_ok, card->lock.try_wait, card->lock.try_mult, card->lock.try_inirq);
printk(KERN_INFO "irq_ok(%d) irq_fail(%d)\n",
card->lock.irq_ok, card->lock.irq_fail);
#endif
lock_dev(card, 0);
outb(0, card->addr + 2);
free_irq(card->irq, card);
modehdlc(&card->bch[0], 0, ISDN_PID_NONE);
modehdlc(&card->bch[1], 1, ISDN_PID_NONE);
ISAC_free(&card->dch);
release_region(card->addr, 32);
free_bchannel(&card->bch[1]);
free_bchannel(&card->bch[0]);
free_dchannel(&card->dch);
REMOVE_FROM_LISTBASE(card, ((fritzpnppci *)fritz.ilist));
unlock_dev(card);
if (card->type == AVM_FRITZ_PNP) {
if (card->pdev->deactivate)
card->pdev->deactivate(card->pdev);
} else
pci_disable_device(card->pdev);
pci_set_drvdata(card->pdev, NULL);
kfree(card);
fritz.refcnt--;
}
static int
fritz_manager(void *data, u_int prim, void *arg) {
fritzpnppci *card = fritz.ilist;
mISDNinstance_t *inst = data;
struct sk_buff *skb;
int channel = -1;
if (!data) {
printk(KERN_ERR "%s: no data prim %x arg %p\n",
__FUNCTION__, prim, arg);
return(-EINVAL);
}
while(card) {
if (&card->dch.inst == inst) {
channel = 2;
break;
}
if (&card->bch[0].inst == inst) {
channel = 0;
break;
}
if (&card->bch[1].inst == inst) {
inst = &card->bch[1].inst;
channel = 1;
break;
}
card = card->next;
}
if (channel<0) {
printk(KERN_ERR "%s: no channel data %p prim %x arg %p\n",
__FUNCTION__, data, prim, arg);
return(-EINVAL);
}
switch(prim) {
case MGR_REGLAYER | CONFIRM:
if (!card) {
printk(KERN_WARNING "%s: no card found\n", __FUNCTION__);
return(-ENODEV);
}
break;
case MGR_UNREGLAYER | REQUEST:
if (!card) {
printk(KERN_WARNING "%s: no card found\n",
__FUNCTION__);
return(-ENODEV);
} else {
if (channel == 2) {
inst->down.fdata = &card->dch;
if ((skb = create_link_skb(PH_CONTROL | REQUEST,
HW_DEACTIVATE, 0, NULL, 0))) {
if (ISAC_l1hw(&inst->down, skb))
dev_kfree_skb(skb);
}
} else {
inst->down.fdata = &card->bch[channel];
if ((skb = create_link_skb(MGR_DISCONNECT | REQUEST,
0, 0, NULL, 0))) {
if (hdlc_down(&inst->down, skb))
dev_kfree_skb(skb);
}
}
fritz.ctrl(inst->up.peer, MGR_DISCONNECT | REQUEST,
&inst->up);
fritz.ctrl(inst, MGR_UNREGLAYER | REQUEST, NULL);
}
break;
case MGR_RELEASE | INDICATION:
if (!card) {
printk(KERN_WARNING "%s: no card found\n",
__FUNCTION__);
return(-ENODEV);
} else {
if (channel == 2) {
release_card(card);
} else {
fritz.refcnt--;
}
}
break;
case MGR_CONNECT | REQUEST:
if (!card) {
printk(KERN_WARNING "%s: connect request failed\n",
__FUNCTION__);
return(-ENODEV);
}
return(ConnectIF(inst, arg));
break;
case MGR_SETIF | REQUEST:
case MGR_SETIF | INDICATION:
if (!card) {
printk(KERN_WARNING "%s: setif failed\n", __FUNCTION__);
return(-ENODEV);
}
if (channel==2)
return(SetIF(inst, arg, prim, ISAC_l1hw, NULL,
&card->dch));
else
return(SetIF(inst, arg, prim, hdlc_down, NULL,
&card->bch[channel]));
break;
case MGR_DISCONNECT | REQUEST:
case MGR_DISCONNECT | INDICATION:
if (!card) {
printk(KERN_WARNING "%s: del interface request failed\n",
__FUNCTION__);
return(-ENODEV);
}
return(DisConnectIF(inst, arg));
break;
case MGR_SETSTACK | CONFIRM:
if (!card) {
printk(KERN_WARNING "%s: setstack failed\n", __FUNCTION__);
return(-ENODEV);
}
if ((channel!=2) && (inst->pid.global == 2)) {
inst->down.fdata = &card->bch[channel];
if ((skb = create_link_skb(PH_ACTIVATE | REQUEST,
0, 0, NULL, 0))) {
if (hdlc_down(&inst->down, skb))
dev_kfree_skb(skb);
}
if (inst->pid.protocol[2] == ISDN_PID_L2_B_TRANS)
if_link(&inst->up, DL_ESTABLISH | INDICATION,
0, 0, NULL, 0);
else
if_link(&inst->up, PH_ACTIVATE | INDICATION,
0, 0, NULL, 0);
}
break;
default:
printk(KERN_WARNING "%s: prim %x not handled\n",
__FUNCTION__, prim);
return(-EINVAL);
}
return(0);
}
static int __devinit setup_instance(fritzpnppci *card)
{
int i, err;
mISDN_pid_t pid;
pci_set_drvdata(card->pdev, card);
APPEND_TO_LIST(card, ((fritzpnppci *)fritz.ilist));
card->dch.debug = debug;
card->dch.inst.obj = &fritz;
lock_HW_init(&card->lock);
card->dch.inst.lock = lock_dev;
card->dch.inst.unlock = unlock_dev;
card->dch.inst.data = card;
card->dch.inst.pid.layermask = ISDN_LAYER(0);
card->dch.inst.pid.protocol[0] = ISDN_PID_L0_TE_S0;
card->dch.inst.up.owner = &card->dch.inst;
card->dch.inst.down.owner = &card->dch.inst;
fritz.ctrl(NULL, MGR_DISCONNECT | REQUEST, &card->dch.inst.down);
sprintf(card->dch.inst.name, "Fritz%d", fritz_cnt+1);
set_dchannel_pid(&pid, protocol[fritz_cnt], layermask[fritz_cnt]);
init_dchannel(&card->dch);
for (i=0; i<2; i++) {
card->bch[i].channel = i;
card->bch[i].inst.obj = &fritz;
card->bch[i].inst.data = card;
card->bch[i].inst.pid.layermask = ISDN_LAYER(0);
card->bch[i].inst.up.owner = &card->bch[i].inst;
card->bch[i].inst.down.owner = &card->bch[i].inst;
fritz.ctrl(NULL, MGR_DISCONNECT | REQUEST, &card->bch[i].inst.down);
card->bch[i].inst.lock = lock_dev;
card->bch[i].inst.unlock = unlock_dev;
card->bch[i].debug = debug;
sprintf(card->bch[i].inst.name, "%s B%d", card->dch.inst.name, i+1);
init_bchannel(&card->bch[i]);
card->bch[i].hw = &card->hdlc[i];
}
printk(KERN_DEBUG "fritz card %p dch %p bch1 %p bch2 %p\n",
card, &card->dch, &card->bch[0], &card->bch[1]);
err = setup_fritz(card);
if (err) {
free_dchannel(&card->dch);
free_bchannel(&card->bch[1]);
free_bchannel(&card->bch[0]);
REMOVE_FROM_LISTBASE(card, ((fritzpnppci *)fritz.ilist));
kfree(card);
return(err);
}
fritz_cnt++;
err = fritz.ctrl(NULL, MGR_NEWSTACK | REQUEST, &card->dch.inst);
if (err) {
release_card(card);
return(err);
}
for (i=0; i<2; i++) {
err = fritz.ctrl(card->dch.inst.st, MGR_NEWSTACK | REQUEST, &card->bch[i].inst);
if (err) {
printk(KERN_ERR "MGR_ADDSTACK bchan error %d\n", err);
fritz.ctrl(card->dch.inst.st, MGR_DELSTACK | REQUEST, NULL);
return(err);
}
}
err = fritz.ctrl(card->dch.inst.st, MGR_SETSTACK | REQUEST, &pid);
if (err) {
printk(KERN_ERR "MGR_SETSTACK REQUEST dch err(%d)\n", err);
fritz.ctrl(card->dch.inst.st, MGR_DELSTACK | REQUEST, NULL);
return(err);
}
err = init_card(card);
if (err) {
fritz.ctrl(card->dch.inst.st, MGR_DELSTACK | REQUEST, NULL);
return(err);
}
printk(KERN_INFO "fritz %d cards installed\n", fritz_cnt);
return(0);
}
static int __devinit fritzpci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = -ENOMEM;
fritzpnppci *card;
if (!(card = kmalloc(sizeof(fritzpnppci), GFP_ATOMIC))) {
printk(KERN_ERR "No kmem for fritzcard\n");
return(err);
}
memset(card, 0, sizeof(fritzpnppci));
if (pdev->device == PCI_DEVICE_ID_AVM_A1_V2)
card->type = AVM_FRITZ_PCIV2;
else
card->type = AVM_FRITZ_PCI;
card->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
kfree(card);
return(err);
}
printk(KERN_INFO "mISDN_fcpcipnp: found adapter %s at %s\n",
(char *) ent->driver_data, pdev->slot_name);
card->addr = pci_resource_start(pdev, 1);
card->irq = pdev->irq;
err = setup_instance(card);
return(err);
}
static int __devinit fritzpnp_probe(struct pci_dev *pdev, const struct isapnp_device_id *ent)
{
int err = -ENOMEM;
fritzpnppci *card;
if (!(card = kmalloc(sizeof(fritzpnppci), GFP_ATOMIC))) {
printk(KERN_ERR "No kmem for fritzcard\n");
return(err);
}
memset(card, 0, sizeof(fritzpnppci));
card->type = AVM_FRITZ_PNP;
card->pdev = pdev;
pdev->prepare(pdev);
pdev->deactivate(pdev); // why?
pdev->activate(pdev);
card->addr = pdev->resource[0].start;
card->irq = pdev->irq_resource[0].start;
printk(KERN_INFO "mISDN_fcpcipnp: found adapter %s at IO %#x irq %d\n",
(char *) ent->driver_data, card->addr, card->irq);
err = setup_instance(card);
return(err);
}
static void __devexit fritz_remove(struct pci_dev *pdev)
{
fritzpnppci *card = pci_get_drvdata(pdev);
if (card)
fritz.ctrl(card->dch.inst.st, MGR_DELSTACK | REQUEST, NULL);
else
printk(KERN_WARNING "%s: drvdata allready removed\n", __FUNCTION__);
}
static struct pci_driver fcpci_driver = {
name: "fcpci",
probe: fritzpci_probe,
remove: __devexit_p(fritz_remove),
id_table: fcpci_ids,
};
static struct isapnp_driver fcpnp_driver = {
name: "fcpnp",
probe: fritzpnp_probe,
remove: __devexit_p(fritz_remove),
id_table: fcpnp_ids,
};
static int __init Fritz_init(void)
{
int err, pci_nr_found;
char tmp[64];
strcpy(tmp, avm_pci_rev);
printk(KERN_INFO "AVM Fritz PCI/PnP driver Rev. %s\n", mISDN_getrev(tmp));
SET_MODULE_OWNER(&fritz);
fritz.name = FritzName;
fritz.own_ctrl = fritz_manager;
fritz.DPROTO.protocol[0] = ISDN_PID_L0_TE_S0;
fritz.BPROTO.protocol[1] = ISDN_PID_L1_B_64TRANS |
ISDN_PID_L1_B_64HDLC;
fritz.BPROTO.protocol[2] = ISDN_PID_L2_B_TRANS;
fritz.prev = NULL;
fritz.next = NULL;
if ((err = mISDN_register(&fritz))) {
printk(KERN_ERR "Can't register Fritz PCI error(%d)\n", err);
return(err);
}
err = pci_register_driver(&fcpci_driver);
if (err < 0)
goto out;
pci_nr_found = err;
err = isapnp_register_driver(&fcpnp_driver);
if (err < 0)
goto out_unregister_pci;
#if !defined(CONFIG_HOTPLUG) || defined(MODULE)
if (pci_nr_found + err == 0) {
err = -ENODEV;
goto out_unregister_isapnp;
}
#endif
return 0;
#if !defined(CONFIG_HOTPLUG) || defined(MODULE)
out_unregister_isapnp:
isapnp_unregister_driver(&fcpnp_driver);
#endif
out_unregister_pci:
pci_unregister_driver(&fcpci_driver);
out:
return err;
}
static void __exit Fritz_cleanup(void)
{
int err;
if ((err = mISDN_unregister(&fritz))) {
printk(KERN_ERR "Can't unregister Fritz PCI error(%d)\n", err);
}
while(fritz.ilist) {
printk(KERN_ERR "Fritz PCI card struct not empty refs %d\n",
fritz.refcnt);
release_card(fritz.ilist);
}
isapnp_unregister_driver(&fcpnp_driver);
pci_unregister_driver(&fcpci_driver);
}
module_init(Fritz_init);
module_exit(Fritz_cleanup);