/* $Id$ * * mISDN driver for Colognechip HFC-S USB chip * * Author : Martin Bachem (info@colognechip.com) * - based on the HiSax hfcusb.c driver by Peter Sprenger * - based on a mISDN skel driver by Karten Keil * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * TODO * - hotplug disconnect the USB TA does not unregister mISDN Controller * /proc/capi/controller is still "ready"... * --> use rmmod before disconnecting the TA * - E channel features * */ #include #include #include #include #include "channel.h" #include "layer1.h" #include "debug.h" #include "hfcs_usb.h" #define DRIVER_NAME "mISDN_hfcsusb" const char *hfcsusb_rev = "$Revision$"; #define MAX_CARDS 8 #define MODULE_PARM_T "1-8i" static int hfcsusb_cnt; static u_int protocol[MAX_CARDS] = {2,2,2,2,2,2,2,2}; static int layermask[MAX_CARDS]; static mISDNobject_t hw_mISDNObj; static int debug = 0x1FFFF; // 0; #ifdef MODULE #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif MODULE_PARM(debug, "1i"); MODULE_PARM(protocol, MODULE_PARM_T); MODULE_PARM(layermask, MODULE_PARM_T); #endif struct _hfcsusb_t; /* forward definition */ /***************************************************************/ /* structure defining input+output fifos (interrupt/bulk mode) */ /***************************************************************/ struct usb_fifo; /* forward definition */ typedef struct iso_urb_struct { struct urb *purb; __u8 buffer[ISO_BUFFER_SIZE]; /* buffer incoming/outgoing USB URB data */ struct usb_fifo *owner_fifo; /* pointer to owner fifo */ } iso_urb_struct; typedef struct usb_fifo { int fifonum; /* fifo index attached to this structure */ int active; /* fifo is currently active */ struct _hfcsusb_t *card; /* pointer to main structure */ int pipe; /* address of endpoint */ __u8 usb_packet_maxlen; /* maximum length for usb transfer */ unsigned int max_size; /* maximum size of receive/send packet */ __u8 intervall; /* interrupt interval */ struct urb *urb; /* transfer structure for usb routines */ __u8 buffer[128]; /* buffer USB INT OUT URB data */ int bit_line; /* how much bits are in the fifo? */ volatile __u8 usb_transfer_mode; /* switched between ISO and INT */ iso_urb_struct iso[2]; /* need two urbs to have one always for pending */ __u8 ch_idx; /* link BChannel Fifos to chan[ch_idx] */ int last_urblen; /* remember length of last packet */ } usb_fifo; typedef struct _hfcsusb_t { struct list_head list; channel_t chan[4]; // B1,B2,D,(PCM) struct usb_device *dev; /* our device */ struct usb_interface *intf; /* used interface */ int if_used; /* used interface number */ int alt_used; /* used alternate config */ int cfg_used; /* configuration index used */ int vend_idx; /* index in hfcsusb_idtab */ int packet_size; int iso_packet_size; int disc_flag; /* 1 if device was disonnected to avoid some USB actions */ usb_fifo fifos[HFCUSB_NUM_FIFOS]; /* structure holding all fifo data */ /* control pipe background handling */ ctrl_buft ctrl_buff[HFC_CTRL_BUFSIZE]; /* buffer holding queued data */ volatile int ctrl_in_idx, ctrl_out_idx, ctrl_cnt; /* input/output pointer + count */ struct urb *ctrl_urb; /* transfer structure for control channel */ struct usb_ctrlrequest ctrl_write; /* buffer for control write request */ struct usb_ctrlrequest ctrl_read; /* same for read request */ int ctrl_paksize; /* control pipe packet size */ int ctrl_in_pipe, ctrl_out_pipe; /* handles for control pipe */ volatile __u8 threshold_mask; /* threshold in fifo flow control */ __u8 old_led_state, led_state; __u8 portmode; /* TE ?, NT ?, NT Timer runnning? */ int nt_timer; } hfcsusb_t; /* private vendor specific data */ typedef struct { __u8 led_scheme; // led display scheme signed short led_bits[8]; // array of 8 possible LED bitmask settings char *vend_name; // device name } hfcsusb_vdata; /****************************************/ /* data defining the devices to be used */ /****************************************/ static struct usb_device_id hfcsusb_idtab[] = { { USB_DEVICE(0x0959, 0x2bd0), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_OFF, {4, 0, 2, 1}, "ISDN USB TA (Cologne Chip HFC-S USB based)"}), }, { USB_DEVICE(0x0675, 0x1688), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {1, 2, 0, 0}, "DrayTek miniVigor 128 USB ISDN TA"}), }, { USB_DEVICE(0x07b0, 0x0007), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Billion tiny USB ISDN TA 128"}), }, { USB_DEVICE(0x0742, 0x2008), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "Stollmann USB TA"}), }, { USB_DEVICE(0x0742, 0x2009), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "Aceex USB ISDN TA"}), }, { USB_DEVICE(0x0742, 0x200A), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "OEM USB ISDN TA"}), }, { USB_DEVICE(0x08e3, 0x0301), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {2, 0, 1, 4}, "Olitec USB RNIS"}), }, { USB_DEVICE(0x07fa, 0x0846), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Bewan Modem RNIS USB"}), }, { USB_DEVICE(0x07fa, 0x0847), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Djinn Numeris USB"}), }, { USB_DEVICE(0x07b0, 0x0006), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Twister ISDN TA"}), }, { } }; /* some function prototypes */ static int hfcsusb_l2l1(mISDNinstance_t *inst, struct sk_buff *skb); static int setup_bchannel(channel_t * bch, int protocol); static void hfcsusb_ph_command(hfcsusb_t * card, u_char command); static void release_card(hfcsusb_t * card); /******************************************************/ /* start next background transfer for control channel */ /******************************************************/ static void ctrl_start_transfer(hfcsusb_t * card) { if (card->ctrl_cnt) { card->ctrl_urb->pipe = card->ctrl_out_pipe; card->ctrl_urb->setup_packet = (u_char *) & card->ctrl_write; card->ctrl_urb->transfer_buffer = NULL; card->ctrl_urb->transfer_buffer_length = 0; card->ctrl_write.wIndex = cpu_to_le16(card->ctrl_buff[card->ctrl_out_idx].hfcs_reg); card->ctrl_write.wValue = cpu_to_le16(card->ctrl_buff[card->ctrl_out_idx].reg_val); usb_submit_urb(card->ctrl_urb, GFP_ATOMIC); /* start transfer */ } } /* ctrl_start_transfer */ /************************************/ /* queue a control transfer request */ /* to write HFC-S USB register */ /* return 0 on success. */ /************************************/ static int queued_Write_hfc(hfcsusb_t * card, __u8 reg, __u8 val) { ctrl_buft *buf; if (card->ctrl_cnt >= HFC_CTRL_BUFSIZE) return (1); /* no space left */ buf = &card->ctrl_buff[card->ctrl_in_idx]; /* pointer to new index */ buf->hfcs_reg = reg; buf->reg_val = val; if (++card->ctrl_in_idx >= HFC_CTRL_BUFSIZE) card->ctrl_in_idx = 0; /* pointer wrap */ if (++card->ctrl_cnt == 1) ctrl_start_transfer(card); return (0); } /***************************************************************/ /* control completion routine handling background control cmds */ /***************************************************************/ static void ctrl_complete(struct urb *urb, struct pt_regs *regs) { hfcsusb_t *card = (hfcsusb_t *) urb->context; ctrl_buft *buf; urb->dev = card->dev; if (card->ctrl_cnt) { buf = &card->ctrl_buff[card->ctrl_out_idx]; card->ctrl_cnt--; /* decrement actual count */ if (++card->ctrl_out_idx >= HFC_CTRL_BUFSIZE) card->ctrl_out_idx = 0; /* pointer wrap */ ctrl_start_transfer(card); /* start next transfer */ } } /***************************************************/ /* write led data to auxport & invert if necessary */ /***************************************************/ static void write_led(hfcsusb_t * card, __u8 led_state) { if (led_state != card->old_led_state) { card->old_led_state = led_state; queued_Write_hfc(card, HFCUSB_P_DATA, led_state); } } /*********************/ /* handle LED bits */ /*********************/ static void set_led_bit(hfcsusb_t * card, signed short led_bits, int unset) { if (unset) { if (led_bits < 0) card->led_state |= abs(led_bits); else card->led_state &= ~led_bits; } else { if (led_bits < 0) card->led_state &= ~abs(led_bits); else card->led_state |= led_bits; } } /************************/ /* handle LED requests */ /************************/ static void handle_led(hfcsusb_t * card, int event) { hfcsusb_vdata *driver_info = (hfcsusb_vdata *) hfcsusb_idtab[card->vend_idx].driver_info; if (driver_info->led_scheme == LED_OFF) { return; } switch (event) { case LED_POWER_ON: set_led_bit(card, driver_info->led_bits[0], 0); set_led_bit(card, driver_info->led_bits[1], 1); set_led_bit(card, driver_info->led_bits[2], 1); set_led_bit(card, driver_info->led_bits[3], 1); break; case LED_POWER_OFF: set_led_bit(card, driver_info->led_bits[0], 1); set_led_bit(card, driver_info->led_bits[1], 1); set_led_bit(card, driver_info->led_bits[2], 1); set_led_bit(card, driver_info->led_bits[3], 1); break; case LED_S0_ON: set_led_bit(card, driver_info->led_bits[1], 0); break; case LED_S0_OFF: set_led_bit(card, driver_info->led_bits[1], 1); break; case LED_B1_ON: set_led_bit(card, driver_info->led_bits[2], 0); break; case LED_B1_OFF: set_led_bit(card, driver_info->led_bits[2], 1); break; case LED_B2_ON: set_led_bit(card, driver_info->led_bits[3], 0); break; case LED_B2_OFF: set_led_bit(card, driver_info->led_bits[3], 1); break; } write_led(card, card->led_state); } /*********************************/ /* S0 state change event handler */ /*********************************/ static void S0_new_state(channel_t * dch) { u_int prim = PH_SIGNAL | INDICATION; u_int para = 0; hfcsusb_t *card = dch->inst.privat; if (card->portmode & PORT_MODE_TE) { if (dch->debug) mISDN_debugprint(&card->chan[D].inst, "%s: TE %d", __FUNCTION__, dch->state); switch (dch->state) { case (0): prim = PH_CONTROL | INDICATION; para = HW_RESET; break; case (3): prim = PH_CONTROL | INDICATION; para = HW_DEACTIVATE; handle_led(card, LED_S0_OFF); break; case (5): case (8): para = ANYSIGNAL; break; case (6): para = INFO2; break; case (7): para = INFO4_P8; handle_led(card, LED_S0_ON); break; default: return; } if (dch->state== 7) test_and_set_bit(FLG_ACTIVE, &dch->Flags); else test_and_clear_bit(FLG_ACTIVE, &dch->Flags); } else { if (dch->debug) mISDN_debugprint(&card->chan[D].inst, "%s: NT %d", __FUNCTION__, dch->state); switch (dch->state) { case (1): test_and_clear_bit(FLG_ACTIVE, &dch->Flags); card->nt_timer = 0; card->portmode &= ~NT_ACTIVATION_TIMER; prim = PH_DEACTIVATE | INDICATION; para = 0; handle_led(card, LED_S0_OFF); break; case (2): if (card->nt_timer < 0) { card->nt_timer = 0; card->portmode &= ~NT_ACTIVATION_TIMER; hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); } else { card->portmode |= NT_ACTIVATION_TIMER; card->nt_timer = NT_T1_COUNT; /* allow G2 -> G3 transition */ queued_Write_hfc(card, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); } return; case (3): test_and_set_bit(FLG_ACTIVE, &dch->Flags); card->nt_timer = 0; card->portmode &= ~NT_ACTIVATION_TIMER; prim = PH_ACTIVATE | INDICATION; para = 0; handle_led(card, LED_S0_ON); break; case (4): card->nt_timer = 0; card->portmode &= ~NT_ACTIVATION_TIMER; return; default: break; } mISDN_queue_data(&dch->inst, dch->inst.id | MSG_BROADCAST, MGR_SHORTSTATUS | INDICATION, test_bit(FLG_ACTIVE, &dch->Flags) ? SSTATUS_L1_ACTIVATED : SSTATUS_L1_DEACTIVATED, 0, NULL, 0); } mISDN_queue_data(&dch->inst, FLG_MSG_UP, prim, para, 0, NULL, 0); } /******************************/ /* trigger S0 state changes */ /******************************/ static void state_handler(hfcsusb_t * card, __u8 new_l1_state) { if (new_l1_state == card->chan[D].state || new_l1_state < 1 || new_l1_state > 8) return; card->chan[D].state = new_l1_state; S0_new_state(&card->chan[D]); } /* * B-channel setup routine, setup the selected B-channel mode for a given * protocol * It also maybe change the B-channel timeslot to match the allocated slot * * basic protocol values * -1 used for first time setup during init * ISDN_PID_NONE unused channel, idle mode (disconnected) * ISDN_PID_L1_B_64TRANS 64 kBit transparent * ISDN_PID_L1_B_64HDLC 64 kBit HDLC framing * * if the hardware supports more protocols, they should be handled too */ static int setup_bchannel(channel_t * bch, int protocol) { __u8 conhdlc, sctrl, sctrl_r; /* conatainer for new register vals */ hfcsusb_t *card = bch->inst.privat; if (bch->debug & L1_DEB_HSCX) mISDN_debugprint(&bch->inst, "protocol %x-->%x channel(%d)", bch->state, protocol, bch->channel); /* setup val for CON_HDLC */ conhdlc = 0; if (protocol > ISDN_PID_NONE) conhdlc = 8; /* enable FIFO */ switch (protocol) { case (-1): /* used for init */ bch->state = -1; /* fall trough */ case (ISDN_PID_NONE): if (bch->state == ISDN_PID_NONE) return (0); /* already in idle state */ bch->state = ISDN_PID_NONE; test_and_clear_bit(FLG_HDLC, &bch->Flags); test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_PID_L1_B_64TRANS): conhdlc |= 2; bch->state = protocol; set_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_PID_L1_B_64HDLC): bch->state = protocol; set_bit(FLG_HDLC, &bch->Flags); break; default: mISDN_debugprint(&bch->inst, "prot not known %x", protocol); return (-ENOPROTOOPT); } if (protocol >= ISDN_PID_NONE) { /* set FIFO to transmit register */ queued_Write_hfc(card, HFCUSB_FIFO, (bch->channel)?2:0); queued_Write_hfc(card, HFCUSB_CON_HDLC, conhdlc); /* reset fifo */ queued_Write_hfc(card, HFCUSB_INC_RES_F, 2); /* set FIFO to receive register */ queued_Write_hfc(card, HFCUSB_FIFO, ((bch->channel)?3:1)); queued_Write_hfc(card, HFCUSB_CON_HDLC, conhdlc); /* reset fifo */ queued_Write_hfc(card, HFCUSB_INC_RES_F, 2); sctrl = 0x40 + ((card->portmode & PORT_MODE_TE)?0x00:0x04); sctrl_r = 0x0; if (card->chan[B1].state) { sctrl |= ((card->chan[B1].channel)?2:1); sctrl_r |= ((card->chan[B1].channel)?2:1); } if (card->chan[B2].state) { sctrl |= ((card->chan[B2].channel)?2:1); sctrl_r |= ((card->chan[B2].channel)?2:1); } queued_Write_hfc(card, HFCUSB_SCTRL, sctrl); queued_Write_hfc(card, HFCUSB_SCTRL_R, sctrl_r); if (protocol > ISDN_PID_NONE) { handle_led(card, ((bch->channel)?LED_B2_ON:LED_B1_ON)); } else { handle_led(card, ((bch->channel)?LED_B2_OFF:LED_B1_OFF)); } } return (0); } static void hfcsusb_ph_command(hfcsusb_t * card, u_char command) { if (card->chan[D].debug & L1_DEB_ISAC) mISDN_debugprint(&card->chan[D].inst, "hfcsusb_ph_command %x", command); switch (command) { case HFC_L1_ACTIVATE_TE: /* force sending sending INFO1 */ queued_Write_hfc(card, HFCUSB_STATES, 0x14); /* start l1 activation */ queued_Write_hfc(card, HFCUSB_STATES, 0x04); break; case HFC_L1_FORCE_DEACTIVATE_TE: queued_Write_hfc(card, HFCUSB_STATES, 0x10); queued_Write_hfc(card, HFCUSB_STATES, 0x03); break; case HFC_L1_ACTIVATE_NT: queued_Write_hfc(card, HFCUSB_STATES, HFCUSB_ACTIVATE | HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); break; case HFC_L1_DEACTIVATE_NT: queued_Write_hfc(card, HFCUSB_STATES, HFCUSB_DO_ACTION); break; } } /*************************************/ /* Layer 1 D-channel hardware access */ /*************************************/ static int handle_dmsg(channel_t *dch, struct sk_buff *skb) { int ret = 0; mISDN_head_t *hh = mISDN_HEAD_P(skb); hfcsusb_t *hw = dch->hw; if (hh->prim == (PH_SIGNAL | REQUEST)) { ret = -EINVAL; } else if (hh->prim == (PH_CONTROL | REQUEST)) { if (hh->dinfo == HW_RESET) { if (dch->state != 0) hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); skb_trim(skb, 0); return(mISDN_queueup_newhead(&dch->inst, 0, PH_CONTROL | INDICATION,HW_POWERUP, skb)); } else if (hh->dinfo == HW_DEACTIVATE) { if (dch->next_skb) { dev_kfree_skb(dch->next_skb); dch->next_skb = NULL; } test_and_clear_bit(FLG_TX_NEXT, &dch->Flags); test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); #ifdef FIXME if (test_and_clear_bit(FLG_L1_DBUSY, &dch->Flags)) dchannel_sched_event(dch, D_CLEARBUSY); #endif } else if (hh->dinfo == HW_POWERUP) { hfcsusb_ph_command(hw, HFC_L1_FORCE_DEACTIVATE_TE); } else { if (dch->debug & L1_DEB_WARN) mISDN_debugprint(&dch->inst, "hfcsusb_l1hw unknown ctrl %x", hh->dinfo); ret = -EINVAL; } } else if (hh->prim == (PH_ACTIVATE | REQUEST)) { if (hw->portmode & PORT_MODE_NT) { hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_NT); } else { if (dch->debug & L1_DEB_WARN) mISDN_debugprint(&dch->inst, "%s: PH_ACTIVATE none NT mode", __FUNCTION__); ret = -EINVAL; } } else if (hh->prim == (PH_DEACTIVATE | REQUEST)) { if (hw->portmode & PORT_MODE_NT) { hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); if (test_and_clear_bit(FLG_TX_NEXT, &dch->Flags)) { dev_kfree_skb(dch->next_skb); dch->next_skb = NULL; } if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); test_and_clear_bit(FLG_ACTIVE, &dch->Flags); } else { if (dch->debug & L1_DEB_WARN) mISDN_debugprint(&dch->inst, "%s: PH_DEACTIVATE none NT mode", __FUNCTION__); ret = -EINVAL; } } else if ((hh->prim & MISDN_CMD_MASK) == MGR_SHORTSTATUS) { u_int temp = hh->dinfo & SSTATUS_ALL; // remove SSTATUS_BROADCAST_BIT if ((hw->portmode & PORT_MODE_NT) && (temp == SSTATUS_ALL || temp == SSTATUS_L1)) { if (hh->dinfo & SSTATUS_BROADCAST_BIT) temp = dch->inst.id | MSG_BROADCAST; else temp = hh->addr | FLG_MSG_TARGET; skb_trim(skb, 0); hh->dinfo = test_bit(FLG_ACTIVE, &dch->Flags) ? SSTATUS_L1_ACTIVATED : SSTATUS_L1_DEACTIVATED; hh->prim = MGR_SHORTSTATUS | CONFIRM; return(mISDN_queue_message(&dch->inst, temp, skb)); } ret = -EOPNOTSUPP; } else { printk(KERN_WARNING "%s %s: unknown prim(%x)\n", dch->inst.name, __FUNCTION__, hh->prim); ret = -EAGAIN; } if (!ret) dev_kfree_skb(skb); return (ret); } /*************************************/ /* Layer 1 B-channel hardware access */ /*************************************/ static int handle_bmsg(channel_t *bch, struct sk_buff *skb) { int ret = 0; mISDN_head_t *hh = mISDN_HEAD_P(skb); if ((hh->prim == (PH_ACTIVATE | REQUEST)) || (hh->prim == (DL_ESTABLISH | REQUEST))) { if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { ret = setup_bchannel(bch, bch->inst.pid.protocol[1]); if (bch->inst.pid.protocol[2] == ISDN_PID_L2_B_TRANS) test_and_set_bit(FLG_L2DATA, &bch->Flags); } #ifdef FIXME if (bch->inst.pid.protocol[2] == ISDN_PID_L2_B_RAWDEV) if (bch->dev) if_link(&bch->dev->rport.pif, hh->prim | CONFIRM, 0, 0, NULL, 0); #endif skb_trim(skb, 0); return(mISDN_queueup_newhead(&bch->inst, 0, hh->prim | CONFIRM, ret, skb)); } else if ((hh->prim == (PH_DEACTIVATE | REQUEST)) || (hh->prim == (DL_RELEASE | REQUEST)) || ((hh->prim == (PH_CONTROL | REQUEST) && (hh->dinfo == HW_DEACTIVATE)))) { if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) { dev_kfree_skb(bch->next_skb); bch->next_skb = NULL; } if (bch->tx_skb) { dev_kfree_skb(bch->tx_skb); bch->tx_skb = NULL; } bch->tx_idx = 0; if (bch->rx_skb) { dev_kfree_skb(bch->rx_skb); bch->rx_skb = NULL; } test_and_clear_bit(FLG_L2DATA, &bch->Flags); test_and_clear_bit(FLG_TX_BUSY, &bch->Flags); setup_bchannel(bch, ISDN_PID_NONE); test_and_clear_bit(FLG_ACTIVE, &bch->Flags); skb_trim(skb, 0); if (hh->prim != (PH_CONTROL | REQUEST)) { #ifdef FIXME if (bch->inst.pid.protocol[2] == ISDN_PID_L2_B_RAWDEV) if (bch->dev) if_link(&bch->dev->rport.pif, hh->prim | CONFIRM, 0, 0, NULL, 0); #endif if (!mISDN_queueup_newhead(&bch->inst, 0, hh->prim | CONFIRM, 0, skb)) return(0); } } else if (hh->prim == (PH_CONTROL | REQUEST)) { // do not handle PH_CONTROL | REQUEST ?? } else { printk(KERN_WARNING "%s %s: unknown prim(%x)\n", bch->inst.name, __FUNCTION__, hh->prim); ret = -EAGAIN; } if (!ret) dev_kfree_skb(skb); return (ret); } /******************************/ /* Layer2 -> Layer 1 Transfer */ /******************************/ static int hfcsusb_l2l1(mISDNinstance_t *inst, struct sk_buff *skb) { channel_t *chan = container_of(inst, channel_t, inst); int ret = 0; mISDN_head_t *hh = mISDN_HEAD_P(skb); if ((hh->prim == PH_DATA_REQ) || (hh->prim == DL_DATA_REQ)) { ret = channel_senddata(chan, hh->dinfo, skb); if (ret > 0) { /* data gets transmitted later in USB ISO OUT traffic */ ret = 0; } return(ret); } if (test_bit(FLG_DCHANNEL, &chan->Flags)) { ret = handle_dmsg(chan, skb); if (ret != -EAGAIN) return(ret); ret = -EINVAL; } if (test_bit(FLG_BCHANNEL, &chan->Flags)) { ret = handle_bmsg(chan, skb); if (ret != -EAGAIN) return(ret); ret = -EINVAL; } if (!ret) dev_kfree_skb(skb); return(ret); } static int hfcsusb_manager(void *data, u_int prim, void *arg) { hfcsusb_t *hw = NULL; mISDNinstance_t *inst = data; struct sk_buff *skb; int channel = -1; int i; channel_t *chan = NULL; u_long flags; if (!data) { MGR_HASPROTOCOL_HANDLER(prim, arg, &hw_mISDNObj) printk(KERN_ERR "%s %s: no data prim %x arg %p\n", hw->chan[D].inst.name, __FUNCTION__, prim, arg); return (-EINVAL); } spin_lock_irqsave(&hw_mISDNObj.lock, flags); /* find channel and card */ list_for_each_entry(hw, &hw_mISDNObj.ilist, list) { i = 0; while (i < MAX_CHAN) { if (hw->chan[i].Flags && &hw->chan[i].inst == inst) { channel = i; chan = &hw->chan[i]; break; } i++; } if (channel >= 0) break; } spin_unlock_irqrestore(&hw_mISDNObj.lock, flags); if (channel < 0) { printk(KERN_ERR "%s: no card/channel found data %p prim %x arg %p\n", __FUNCTION__, data, prim, arg); return (-EINVAL); } switch (prim) { case MGR_REGLAYER | CONFIRM: mISDN_setpara(chan, &inst->st->para); break; case MGR_UNREGLAYER | REQUEST: if ((skb = create_link_skb(PH_CONTROL | REQUEST, HW_DEACTIVATE, 0, NULL, 0))) { if (hfcsusb_l2l1(inst, skb)) dev_kfree_skb(skb); } else printk(KERN_WARNING "no SKB in %s MGR_UNREGLAYER | REQUEST\n", __FUNCTION__); hw_mISDNObj.ctrl(inst, MGR_UNREGLAYER | REQUEST, NULL); break; case MGR_CLRSTPARA | INDICATION: arg = NULL; case MGR_ADDSTPARA | INDICATION: mISDN_setpara(chan, arg); break; case MGR_RELEASE | INDICATION: if (channel == 2) { release_card(hw); } else { hw_mISDNObj.refcnt--; } break; case MGR_SETSTACK | INDICATION: if ((channel != 2) && (inst->pid.global == 2)) { if ((skb = create_link_skb(PH_ACTIVATE | REQUEST, 0, 0, NULL, 0))) { if (hfcsusb_l2l1(inst, skb)) dev_kfree_skb(skb); } if (inst->pid.protocol[2] == ISDN_PID_L2_B_TRANS) mISDN_queue_data(inst, FLG_MSG_UP, DL_ESTABLISH | INDICATION, 0, 0, NULL, 0); else mISDN_queue_data(inst, FLG_MSG_UP, PH_ACTIVATE | INDICATION, 0, 0, NULL, 0); } break; case MGR_GLOBALOPT | REQUEST: if (arg) { // FIXME: detect cards with HEADSET u_int *gopt = arg; *gopt = GLOBALOPT_INTERNAL_CTRL | GLOBALOPT_EXTERNAL_EQUIPMENT | GLOBALOPT_HANDSET; } else return (-EINVAL); break; case MGR_SELCHANNEL | REQUEST: // no special procedure return (-EINVAL); PRIM_NOT_HANDLED(MGR_CTRLREADY | INDICATION); default: printk(KERN_WARNING "%s %s: prim %x not handled\n", hw->chan[D].inst.name, __FUNCTION__, prim); return (-EINVAL); } return (0); } /***********************************************/ /* collect data from interrupt or isochron in */ /***********************************************/ static void collect_rx_frame(usb_fifo * fifo, __u8 * data, unsigned int len, int finish) { hfcsusb_t *card = fifo->card; channel_t *ch = &card->chan[fifo->ch_idx]; struct sk_buff *skb; /* data buffer for upper layer */ int fifon; if (!len) return; fifon = fifo->fifonum; if (!ch->rx_skb) { ch->rx_skb = alloc_stack_skb(ch->maxlen + 3, ch->up_headerlen); if (!ch->rx_skb) { printk(KERN_DEBUG "%s: No mem for rx_skb\n", __FUNCTION__); return; } } memcpy(skb_put(ch->rx_skb, len), data, len); if (test_bit(FLG_HDLC, &ch->Flags)) { /* we have a complete hdlc packet */ if (finish) { if ((ch->rx_skb->len > 3) && (!(ch->rx_skb->data[ch->rx_skb->len - 1]))) { /* remove CRC & status */ skb_trim(ch->rx_skb, ch->rx_skb->len - 3); if (ch->rx_skb->len < MISDN_COPY_SIZE) { skb = alloc_stack_skb(ch->rx_skb->len, ch->up_headerlen); if (skb) { memcpy(skb_put(skb, ch->rx_skb->len), ch->rx_skb->data, ch->rx_skb->len); skb_trim(ch->rx_skb, 0); } else { skb = ch->rx_skb; ch->rx_skb = NULL; } } else { skb = ch->rx_skb; ch->rx_skb = NULL; } queue_ch_frame(ch, INDICATION, MISDN_ID_ANY, skb); } else { printk ("HFC-S USB: CRC or minlen ERROR\n"); } } } else { if (ch->rx_skb->len >= TRANSP_PACKET_SIZE) { /* deliver transparent data to layer2 */ queue_ch_frame(ch, INDICATION, MISDN_ID_ANY, ch->rx_skb); ch->rx_skb = NULL; } } } void fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *buf, int num_packets, int packet_size, int interval, usb_complete_t complete, void *context) { int k; spin_lock_init(&urb->lock); urb->dev = dev; urb->pipe = pipe; urb->complete = complete; urb->number_of_packets = num_packets; urb->transfer_buffer_length = packet_size * num_packets; urb->context = context; urb->transfer_buffer = buf; urb->transfer_flags = URB_ISO_ASAP; urb->actual_length = 0; urb->interval = interval; for (k = 0; k < num_packets; k++) { urb->iso_frame_desc[k].offset = packet_size * k; urb->iso_frame_desc[k].length = packet_size; urb->iso_frame_desc[k].actual_length = 0; } } /*****************************************************/ /* receive completion routine for all ISO tx fifos */ /*****************************************************/ static void rx_iso_complete(struct urb *urb, struct pt_regs *regs) { iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context; usb_fifo *fifo = context_iso_urb->owner_fifo; hfcsusb_t *card = fifo->card; int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, status; unsigned int iso_status; __u8 *buf; static __u8 eof[8]; fifon = fifo->fifonum; status = urb->status; if (fifo->active && !status) { num_isoc_packets = iso_packets[fifon]; maxlen = fifo->usb_packet_maxlen; for (k = 0; k < num_isoc_packets; ++k) { len = urb->iso_frame_desc[k].actual_length; offset = urb->iso_frame_desc[k].offset; buf = context_iso_urb->buffer + offset; iso_status = urb->iso_frame_desc[k].status; if (iso_status && !card->disc_flag) printk(KERN_INFO "HFC-S USB: ISO packet failure - status:%x", iso_status); if (fifo->last_urblen != maxlen) { /* the threshold mask is in the 2nd status byte */ card->threshold_mask = buf[1]; /* care for L1 state only for D-Channel to avoid overlapped iso completions */ if (fifon == HFCUSB_D_RX) { /* the S0 state is in the upper half of the 1st status byte */ state_handler(card, buf[0] >> 4); } eof[fifon] = buf[0] & 1; if (len > 2) collect_rx_frame(fifo, buf + 2, len - 2, (len < maxlen) ? eof[fifon] : 0); } else { collect_rx_frame(fifo, buf, len, (len < maxlen) ? eof[fifon] : 0); } fifo->last_urblen = len; } fill_isoc_urb(urb, fifo->card->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, rx_iso_complete, urb->context); errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { printk(KERN_INFO "HFC-S USB: error submitting ISO URB: %d \n", errcode); } } else { if (status && !card->disc_flag) { printk(KERN_INFO "HFC-S USB: rx_iso_complete : " "urb->status %d, fifonum %d\n", status, fifon); } } } /* rx_iso_complete */ /*********************************************************/ /* receive completion routine for all interrupt rx fifos */ /*********************************************************/ static void rx_int_complete(struct urb *urb, struct pt_regs *regs) { int len; int status; __u8 *buf, maxlen, fifon; usb_fifo *fifo = (usb_fifo *) urb->context; hfcsusb_t *card = fifo->card; static __u8 eof[8]; urb->dev = card->dev; /* security init */ fifon = fifo->fifonum; if ((!fifo->active) || (urb->status)) { printk(KERN_INFO "HFC-S USB: RX-Fifo %i is going down (%i)", fifon, urb->status); fifo->urb->interval = 0; /* cancel automatic rescheduling */ return; } len = urb->actual_length; buf = fifo->buffer; maxlen = fifo->usb_packet_maxlen; if (fifo->last_urblen != fifo->usb_packet_maxlen) { /* the threshold mask is in the 2nd status byte */ card->threshold_mask = buf[1]; /* the S0 state is in the upper half of the 1st status byte */ state_handler(card, buf[0] >> 4); eof[fifon] = buf[0] & 1; /* if we have more than the 2 status bytes -> collect data */ if (len > 2) collect_rx_frame(fifo, buf + 2, urb->actual_length - 2, (len < maxlen) ? eof[fifon] : 0); } else { collect_rx_frame(fifo, buf, urb->actual_length, (len < maxlen) ? eof[fifon] : 0); } fifo->last_urblen = urb->actual_length; status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { printk(KERN_INFO "HFC-S USB: error resubmitting URN at rx_int_complete...\n"); } } /* rx_int_complete */ /***********************************/ /* check if new buffer for channel */ /* is waitinng is transmitt queue */ /***********************************/ int next_tx_frame(hfcsusb_t * hw, __u8 channel) { channel_t *ch = &hw->chan[channel]; if (ch->tx_skb) dev_kfree_skb(ch->tx_skb); if (test_and_clear_bit(FLG_TX_NEXT, &ch->Flags)) { ch->tx_skb = ch->next_skb; if (ch->tx_skb) { mISDN_head_t *hh = mISDN_HEAD_P(ch->tx_skb); ch->next_skb = NULL; test_and_clear_bit(FLG_TX_NEXT, &ch->Flags); ch->tx_idx = 0; queue_ch_frame(ch, CONFIRM, hh->dinfo, NULL); return (1); } else { printk(KERN_WARNING "%s channel(%i) TX_NEXT without skb\n", ch->inst.name, channel); test_and_clear_bit(FLG_TX_NEXT, &ch->Flags); } } else ch->tx_skb = NULL; test_and_clear_bit(FLG_TX_BUSY, &ch->Flags); return (0); } /*****************************************************/ /* transmit completion routine for all ISO tx fifos */ /*****************************************************/ static void tx_iso_complete(struct urb *urb, struct pt_regs *regs) { iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context; usb_fifo *fifo = context_iso_urb->owner_fifo; hfcsusb_t *card = fifo->card; channel_t *ch = &card->chan[fifo->ch_idx]; int k, tx_offset, num_isoc_packets, sink, remain, current_len, errcode; int frame_complete, fifon, status; __u8 threshbit; __u8 threshtable[8] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80 }; fifon = fifo->fifonum; status = urb->status; tx_offset = 0; if (fifo->active && !status) { /* is FifoFull-threshold set for our channel? */ threshbit = threshtable[fifon] & card->threshold_mask; num_isoc_packets = iso_packets[fifon]; /* predict dataflow to avoid fifo overflow */ if (fifon >= HFCUSB_D_TX) { sink = (threshbit) ? SINK_DMIN : SINK_DMAX; } else { sink = (threshbit) ? SINK_MIN : SINK_MAX; } fill_isoc_urb(urb, fifo->card->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, tx_iso_complete, urb->context); memset(context_iso_urb->buffer, 0, sizeof(context_iso_urb->buffer)); frame_complete = 0; /* Generate next Iso Packets */ for (k = 0; k < num_isoc_packets; ++k) { if (ch->tx_skb) { remain = ch->tx_skb->len - ch->tx_idx; } else { remain = 0; } if (remain>0) { /* we lower data margin every msec */ fifo->bit_line -= sink; current_len = (0 - fifo->bit_line) / 8; /* maximum 15 byte for every ISO packet makes our life easier */ if (current_len > 14) current_len = 14; current_len = (remain <= current_len) ? remain : current_len; /* how much bit do we put on the line? */ fifo->bit_line += current_len * 8; context_iso_urb->buffer[tx_offset] = 0; if (current_len == remain) { if (test_bit(FLG_HDLC, &ch->Flags)) { /* here frame completion */ context_iso_urb->buffer[tx_offset] = 1; /* add 2 byte flags and 16bit CRC at end of ISDN frame */ fifo->bit_line += 32; } frame_complete = 1; } /* copy tx data to iso-urb buffer */ memcpy(context_iso_urb->buffer + tx_offset + 1, (ch->tx_skb->data + ch->tx_idx), current_len); ch->tx_idx += current_len; /* define packet delimeters within the URB buffer */ urb->iso_frame_desc[k].offset = tx_offset; urb->iso_frame_desc[k].length = current_len + 1; tx_offset += (current_len + 1); } else { urb->iso_frame_desc[k].offset = tx_offset++; urb->iso_frame_desc[k].length = 1; fifo->bit_line -= sink; /* we lower data margin every msec */ if (fifo->bit_line < BITLINE_INF) { fifo->bit_line = BITLINE_INF; } } if (frame_complete) next_tx_frame(card, fifo->ch_idx); } errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { printk(KERN_INFO "HFC-S USB: error submitting ISO URB: %d \n", errcode); } /* abuse DChannel tx iso completion to trigger NT mode state changes tx_iso_complete is assumed to be called every fifo->intervall ms */ if ((fifon == HFCUSB_D_TX) && (card->portmode & PORT_MODE_NT) && (card->portmode & NT_ACTIVATION_TIMER)) { if ((--card->nt_timer) < 0) S0_new_state(&card->chan[D]); } } else { if (status && !card->disc_flag) { printk(KERN_INFO "HFC-S USB: tx_iso_complete : urb->status %s (%i), fifonum=%d\n", symbolic(urb_errlist, status), status, fifon); } } } /* allocs urbs and start isoc transfer with two pending urbs to avoid gaps in the transfer chain */ static int start_isoc_chain(usb_fifo * fifo, int num_packets_per_urb, usb_complete_t complete, int packet_size) { int i, k, errcode; printk(KERN_INFO "HFC-S USB: starting ISO-chain for Fifo %i\n", fifo->fifonum); /* allocate Memory for Iso out Urbs */ for (i = 0; i < 2; i++) { if (!(fifo->iso[i].purb)) { fifo->iso[i].purb = usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); if (!(fifo->iso[i].purb)) { printk(KERN_INFO "alloc urb for fifo %i failed!!!", fifo->fifonum); } fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; /* Init the first iso */ if (ISO_BUFFER_SIZE >= (fifo->usb_packet_maxlen * num_packets_per_urb)) { fill_isoc_urb(fifo->iso[i].purb, fifo->card->dev, fifo->pipe, fifo->iso[i].buffer, num_packets_per_urb, fifo->usb_packet_maxlen, fifo->intervall, complete, &fifo->iso[i]); memset(fifo->iso[i].buffer, 0, sizeof(fifo->iso[i].buffer)); /* defining packet delimeters in fifo->buffer */ for (k = 0; k < num_packets_per_urb; k++) { fifo->iso[i].purb-> iso_frame_desc[k].offset = k * packet_size; fifo->iso[i].purb-> iso_frame_desc[k].length = packet_size; } } else { printk(KERN_INFO "HFC-S USB: ISO Buffer size to small!\n"); } } fifo->bit_line = BITLINE_INF; errcode = usb_submit_urb(fifo->iso[i].purb, GFP_KERNEL); fifo->active = (errcode >= 0) ? 1 : 0; if (errcode < 0) { printk(KERN_INFO "HFC-S USB: %s URB nr:%d\n", symbolic(urb_errlist, errcode), i); }; } return (fifo->active); } /* stops running iso chain and frees their pending urbs */ static void stop_isoc_chain(usb_fifo * fifo) { int i; for (i = 0; i < 2; i++) { if (fifo->iso[i].purb) { printk(KERN_INFO "HFC-S USB: %s for fifo %i.%i\n", __FUNCTION__, fifo->fifonum, i); usb_kill_urb(fifo->iso[i].purb); usb_free_urb(fifo->iso[i].purb); fifo->iso[i].purb = NULL; } } if (fifo->urb) { usb_kill_urb(fifo->urb); usb_free_urb(fifo->urb); fifo->urb = NULL; } fifo->active = 0; } /***************************************************/ /* start the interrupt transfer for the given fifo */ /***************************************************/ static void start_int_fifo(usb_fifo * fifo) { int errcode; printk(KERN_INFO "HFC-S USB: starting intr IN fifo:%d\n", fifo->fifonum); if (!fifo->urb) { fifo->urb = usb_alloc_urb(0, GFP_KERNEL); if (!fifo->urb) return; } usb_fill_int_urb(fifo->urb, fifo->card->dev, fifo->pipe, fifo->buffer, fifo->usb_packet_maxlen, rx_int_complete, fifo, fifo->intervall); fifo->active = 1; /* must be marked active */ errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); if (errcode) { printk(KERN_INFO "HFC-S USB: submit URB error(start_int_info): status:%i\n", errcode); fifo->active = 0; } } /* Hardware Initialization */ int setup_hfcsusb(hfcsusb_t * card) { usb_fifo *fifo; int i, err; u_char b; /* check the chip id */ if (read_usb(card, HFCUSB_CHIP_ID, &b) != 1) { printk(KERN_INFO "HFC-USB: cannot read chip id\n"); return (1); } if (b != HFCUSB_CHIPID) { printk(KERN_INFO "HFC-S USB: Invalid chip id 0x%02x\n", b); return (1); } /* first set the needed config, interface and alternate */ err = usb_set_interface(card->dev, card->if_used, card->alt_used); /* do Chip reset */ write_usb(card, HFCUSB_CIRM, 8); /* aux = output, reset off */ write_usb(card, HFCUSB_CIRM, 0x10); /* set USB_SIZE to match the the wMaxPacketSize for INT or BULK transfers */ write_usb(card, HFCUSB_USB_SIZE, (card->packet_size / 8) | ((card->packet_size / 8) << 4)); /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */ write_usb(card, HFCUSB_USB_SIZE_I, card->iso_packet_size); /* enable PCM/GCI master mode */ write_usb(card, HFCUSB_MST_MODE1, 0); /* set default values */ write_usb(card, HFCUSB_MST_MODE0, 1); /* enable master mode */ /* init the fifos */ write_usb(card, HFCUSB_F_THRES, (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); fifo = card->fifos; for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { write_usb(card, HFCUSB_FIFO, i); /* select the desired fifo */ fifo[i].max_size = (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; fifo[i].last_urblen = 0; /* set 2 bit for D- & E-channel */ write_usb(card, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); /* rx hdlc, enable IFF for D-channel */ write_usb(card, HFCUSB_CON_HDLC, ((i == HFCUSB_D_TX) ? 0x09 : 0x08)); write_usb(card, HFCUSB_INC_RES_F, 2); /* reset the fifo */ } if (card->portmode & PORT_MODE_NT) { write_usb(card, HFCUSB_SCTRL, 0x44); /* disable B transmitters + capacitive mode, enable NT mode */ write_usb(card, HFCUSB_CLKDEL, CLKDEL_NT); /* clock delay value */ write_usb(card, HFCUSB_STATES, 1 | 0x10); /* set deactivated mode */ write_usb(card, HFCUSB_STATES, 1); /* enable state machine */ } else { write_usb(card, HFCUSB_SCTRL, 0x40); /* disable B transmitters + capacitive mode, enable TE mode */ write_usb(card, HFCUSB_CLKDEL, CLKDEL_TE); /* clock delay value */ write_usb(card, HFCUSB_STATES, 3 | 0x10); /* set deactivated mode */ write_usb(card, HFCUSB_STATES, 3); /* enable state machine */ } write_usb(card, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ card->disc_flag = 0; card->led_state = 0; card->old_led_state = 0; /* init the background machinery for control requests */ card->ctrl_read.bRequestType = 0xc0; card->ctrl_read.bRequest = 1; card->ctrl_read.wLength = cpu_to_le16(1); card->ctrl_write.bRequestType = 0x40; card->ctrl_write.bRequest = 0; card->ctrl_write.wLength = 0; usb_fill_control_urb(card->ctrl_urb, card->dev, card->ctrl_out_pipe, (u_char *) & card->ctrl_write, NULL, 0, ctrl_complete, card); /* Init All Fifos */ for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { card->fifos[i].iso[0].purb = NULL; card->fifos[i].iso[1].purb = NULL; card->fifos[i].active = 0; } /* 3 (+1) INT IN + 3 ISO OUT */ if (card->cfg_used == CNF_3INT3ISO || card->cfg_used == CNF_4INT3ISO) { start_int_fifo(card->fifos + HFCUSB_D_RX); /* if (card->fifos[HFCUSB_PCM_RX].pipe) start_int_fifo(card->fifos + HFCUSB_PCM_RX); */ start_int_fifo(card->fifos + HFCUSB_B1_RX); start_int_fifo(card->fifos + HFCUSB_B2_RX); } /* 3 (+1) ISO IN + 3 ISO OUT */ if (card->cfg_used == CNF_3ISO3ISO || card->cfg_used == CNF_4ISO3ISO) { start_isoc_chain(card->fifos + HFCUSB_D_RX, ISOC_PACKETS_D, rx_iso_complete, 16); /* if (card->fifos[HFCUSB_PCM_RX].pipe) start_isoc_chain(card->fifos + HFCUSB_PCM_RX, ISOC_PACKETS_D, rx_iso_complete, 16); */ start_isoc_chain(card->fifos + HFCUSB_B1_RX, ISOC_PACKETS_B, rx_iso_complete, 16); start_isoc_chain(card->fifos + HFCUSB_B2_RX, ISOC_PACKETS_B, rx_iso_complete, 16); } start_isoc_chain(card->fifos + HFCUSB_D_TX, ISOC_PACKETS_D, tx_iso_complete, 1); start_isoc_chain(card->fifos + HFCUSB_B1_TX, ISOC_PACKETS_B, tx_iso_complete, 1); start_isoc_chain(card->fifos + HFCUSB_B2_TX, ISOC_PACKETS_B, tx_iso_complete, 1); handle_led(card, LED_POWER_ON); return (0); } static void release_card(hfcsusb_t * card) { int i; u_long flags; if (debug & 0x10000) printk(KERN_DEBUG "%s\n", __FUNCTION__); setup_bchannel(&card->chan[B1], ISDN_PID_NONE); setup_bchannel(&card->chan[B2], ISDN_PID_NONE); mISDN_freechannel(&card->chan[B1]); mISDN_freechannel(&card->chan[B2]); mISDN_freechannel(&card->chan[D]); hw_mISDNObj.ctrl(&card->chan[D].inst, MGR_UNREGLAYER | REQUEST, NULL); spin_lock_irqsave(&hw_mISDNObj.lock, flags); list_del(&card->list); spin_unlock_irqrestore(&hw_mISDNObj.lock, flags); schedule_timeout((80 * HZ) / 1000); /* Timeout 80ms */ /* tell all fifos to terminate */ for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { if (card->fifos[i].usb_transfer_mode == USB_ISOC) { if (card->fifos[i].active > 0) { stop_isoc_chain(&card->fifos[i]); } } else { if (card->fifos[i].active > 0) { card->fifos[i].active = 0; } if (card->fifos[i].urb) { usb_kill_urb(card->fifos[i].urb); usb_free_urb(card->fifos[i].urb); card->fifos[i].urb = NULL; } } card->fifos[i].active = 0; } /* wait for all URBS to terminate */ if (card->ctrl_urb) { usb_kill_urb(card->ctrl_urb); usb_free_urb(card->ctrl_urb); card->ctrl_urb = NULL; } hfcsusb_cnt--; if (card->intf) usb_set_intfdata(card->intf, NULL); kfree(card); } static int setup_instance(hfcsusb_t * card) { int i, err; mISDN_pid_t pid; u_long flags; spin_lock_irqsave(&hw_mISDNObj.lock, flags); list_add_tail(&card->list, &hw_mISDNObj.ilist); spin_unlock_irqrestore(&hw_mISDNObj.lock, flags); card->chan[D].debug = debug; /* link card->fifos[] to card->chan[] */ card->fifos[HFCUSB_D_RX].ch_idx = D; card->fifos[HFCUSB_D_TX].ch_idx = D; card->fifos[HFCUSB_B1_RX].ch_idx = B1; card->fifos[HFCUSB_B1_TX].ch_idx = B1; card->fifos[HFCUSB_B2_RX].ch_idx = B2; card->fifos[HFCUSB_B2_TX].ch_idx = B2; card->fifos[HFCUSB_PCM_RX].ch_idx = PCM; card->fifos[HFCUSB_PCM_TX].ch_idx = PCM; card->chan[D].channel = D; card->chan[D].state = 0; card->chan[D].inst.hwlock = NULL; card->chan[D].inst.pid.layermask = ISDN_LAYER(0); card->chan[D].inst.pid.protocol[0] = ISDN_PID_L0_TE_S0; card->chan[D].inst.class_dev.dev = &card->dev->dev; mISDN_init_instance(&card->chan[D].inst, &hw_mISDNObj, card, hfcsusb_l2l1); sprintf(card->chan[D].inst.name, "hfcsusb_%d", hfcsusb_cnt + 1); mISDN_set_dchannel_pid(&pid, protocol[hfcsusb_cnt], layermask[hfcsusb_cnt]); mISDN_initchannel(&card->chan[D], MSK_INIT_DCHANNEL, MAX_DFRAME_LEN_L1); card->chan[D].hw = card; card->portmode = 0; for (i = B1; i <= B2; i++) { card->chan[i].channel = i; mISDN_init_instance(&card->chan[i].inst, &hw_mISDNObj, card, hfcsusb_l2l1); card->chan[i].inst.pid.layermask = ISDN_LAYER(0); card->chan[i].inst.hwlock = NULL; card->chan[i].inst.class_dev.dev = &card->dev->dev; card->chan[i].debug = debug; sprintf(card->chan[i].inst.name, "%s B%d", card->chan[D].inst.name, i + 1); mISDN_initchannel(&card->chan[i], MSK_INIT_BCHANNEL, MAX_DATA_MEM); card->chan[i].hw = card; #ifdef FIXME if (card->chan[i].dev) { card->chan[i].dev->wport.pif.func = hfcsusb_l2l1; card->chan[i].dev->wport.pif.fdata = &card->chan[i]; } #endif } card->chan[PCM].channel = PCM; if (protocol[hfcsusb_cnt] & 0x10) { // NT Mode printk (KERN_INFO "%s wants NT Mode\n", card->chan[D].inst.name); card->chan[D].inst.pid.protocol[0] = ISDN_PID_L0_NT_S0; card->chan[D].inst.pid.protocol[1] = ISDN_PID_L1_NT_S0; pid.protocol[0] = ISDN_PID_L0_NT_S0; pid.protocol[1] = ISDN_PID_L1_NT_S0; card->chan[D].inst.pid.layermask |= ISDN_LAYER(1); pid.layermask |= ISDN_LAYER(1); if (layermask[i] & ISDN_LAYER(2)) pid.protocol[2] = ISDN_PID_L2_LAPD_NET; /* select NT mode with activated NT Timer (T1) */ card->portmode |= (PORT_MODE_NT | NT_ACTIVATION_TIMER); } else { printk (KERN_INFO "%s wants TE Mode\n", card->chan[D].inst.name); // TE Mode card->chan[D].inst.pid.protocol[0] = ISDN_PID_L0_TE_S0; card->portmode |= PORT_MODE_TE; } if (debug) printk(KERN_DEBUG "hfcsusb card %p dch %p bch1 %p bch2 %p\n", card, &card->chan[D], &card->chan[B1], &card->chan[B2]); err = setup_hfcsusb(card); if (err) { mISDN_freechannel(&card->chan[D]); mISDN_freechannel(&card->chan[B2]); mISDN_freechannel(&card->chan[B1]); spin_lock_irqsave(&hw_mISDNObj.lock, flags); list_del(&card->list); spin_unlock_irqrestore(&hw_mISDNObj.lock, flags); kfree(card); return (err); } hfcsusb_cnt++; err = hw_mISDNObj.ctrl(NULL, MGR_NEWSTACK | REQUEST, &card->chan[D].inst); if (err) { release_card(card); return (err); } for (i = B1; i <= B2; i++) { err = hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_NEWSTACK | REQUEST, &card->chan[i].inst); if (err) { printk(KERN_ERR "MGR_ADDSTACK bchan error %d\n", err); hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_DELSTACK | REQUEST, NULL); return (err); } setup_bchannel(&card->chan[i], -1); } if (debug) printk(KERN_DEBUG "%s lm %x\n", __FUNCTION__, pid.layermask); err = hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_SETSTACK | REQUEST, &pid); if (err) { printk(KERN_ERR "MGR_SETSTACK REQUEST dch err(%d)\n", err); hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_DELSTACK | REQUEST, NULL); return (err); } hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_CTRLREADY | INDICATION, NULL); usb_set_intfdata(card->intf, card); return (0); } /*************************************************/ /* function called to probe a new plugged device */ /*************************************************/ static int hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); hfcsusb_t *card; struct usb_host_interface *iface = intf->cur_altsetting; struct usb_host_interface *iface_used = NULL; struct usb_host_endpoint *ep; int ifnum = iface->desc.bInterfaceNumber; int i, idx, alt_idx, probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, ep_addr; int cmptbl[16], small_match, iso_packet_size, packet_size, alt_used = 0; hfcsusb_vdata *driver_info; vend_idx = 0xffff; for (i = 0; hfcsusb_idtab[i].idVendor; i++) { if ((le16_to_cpu(dev->descriptor.idVendor) == hfcsusb_idtab[i].idVendor) && (le16_to_cpu(dev->descriptor.idProduct) == hfcsusb_idtab[i].idProduct)) { vend_idx = i; continue; } } printk(KERN_INFO "HFC-S USB: probing interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n", ifnum, iface->desc.bAlternateSetting, intf->minor, vend_idx); if (vend_idx == 0xffff) { printk(KERN_WARNING "HFC-S USB: no valid vendor found in USB descriptor\n"); return (-EIO); } /* if vendor and product ID is OK, start probing alternate settings */ alt_idx = 0; small_match = 0xffff; /* default settings */ iso_packet_size = 16; packet_size = 64; while (alt_idx < intf->num_altsetting) { iface = intf->altsetting + alt_idx; probe_alt_setting = iface->desc.bAlternateSetting; cfg_used = 0; /* check for config EOL element */ while (validconf[cfg_used][0]) { cfg_found = 1; vcf = validconf[cfg_used]; /* first endpoint descriptor */ ep = iface->endpoint; memcpy(cmptbl, vcf, 16 * sizeof(int)); /* check for all endpoints in this alternate setting */ for (i = 0; i < iface->desc.bNumEndpoints; i++) { ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; attr = ep->desc.bmAttributes; if (cmptbl[idx] == EP_NUL) { cfg_found = 0; } if (attr == USB_ENDPOINT_XFER_INT && cmptbl[idx] == EP_INT) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_BULK && cmptbl[idx] == EP_BLK) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_ISOC && cmptbl[idx] == EP_ISO) cmptbl[idx] = EP_NUL; /* check if all INT endpoints match minimum interval */ if (attr == USB_ENDPOINT_XFER_INT && ep->desc.bInterval < vcf[17]) { cfg_found = 0; } ep++; } for (i = 0; i < 16; i++) { /* all entries must be EP_NOP or EP_NUL for a valid config */ if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) cfg_found = 0; } if (cfg_found) { if (cfg_used < small_match) { small_match = cfg_used; alt_used = probe_alt_setting; iface_used = iface; } } cfg_used++; } alt_idx++; } /* (alt_idx < intf->num_altsetting) */ /* not found a valid USB Ta Endpoint config */ if (small_match == 0xffff) { printk(KERN_WARNING "HFC-S USB: no valid endpoint found in USB descriptor\n"); return (-EIO); } iface = iface_used; card = kmalloc(sizeof(hfcsusb_t), GFP_KERNEL); if (!card) return (-ENOMEM); /* got no mem */ memset(card, 0, sizeof(hfcsusb_t)); ep = iface->endpoint; vcf = validconf[small_match]; for (i = 0; i < iface->desc.bNumEndpoints; i++) { usb_fifo *f; ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; f = &card->fifos[idx & 7]; /* init Endpoints */ if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) { ep++; continue; } switch (ep->desc.bmAttributes) { case USB_ENDPOINT_XFER_INT: f->pipe = usb_rcvintpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_INT; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_BULK: if (ep_addr & 0x80) f->pipe = usb_rcvbulkpipe(dev, ep->desc.bEndpointAddress); else f->pipe = usb_sndbulkpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_BULK; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_ISOC: if (ep_addr & 0x80) f->pipe = usb_rcvisocpipe(dev, ep->desc.bEndpointAddress); else f->pipe = usb_sndisocpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_ISOC; iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; default: f->pipe = 0; } /* switch attribute */ if (f->pipe) { f->fifonum = idx & 7; f->card = card; f->usb_packet_maxlen = le16_to_cpu(ep->desc.wMaxPacketSize); f->intervall = ep->desc.bInterval; } ep++; } card->dev = dev; /* save device */ card->if_used = ifnum; /* save used interface */ card->alt_used = alt_used; /* and alternate config */ card->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ card->cfg_used = vcf[16]; /* store used config */ card->vend_idx = vend_idx; /* store found vendor */ card->packet_size = packet_size; card->iso_packet_size = iso_packet_size; /* create the control pipes needed for register access */ card->ctrl_in_pipe = usb_rcvctrlpipe(card->dev, 0); card->ctrl_out_pipe = usb_sndctrlpipe(card->dev, 0); card->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); driver_info = (hfcsusb_vdata *) hfcsusb_idtab[vend_idx].driver_info; printk(KERN_INFO "HFC-S USB: detected \"%s\"\n", driver_info->vend_name); printk(KERN_INFO "HFC-S USB: Endpoint-Config: %s (if=%d alt=%d)\n", conf_str[small_match], ifnum, alt_used); card->intf = intf; if (setup_instance(card)) { return (-EIO); } return (0); } /****************************************************/ /* function called when an active device is removed */ /****************************************************/ static void hfcsusb_disconnect(struct usb_interface *intf) { hfcsusb_t *card = usb_get_intfdata(intf); printk(KERN_INFO "HFC-S USB: device disconnect\n"); if (!card) { if (debug & 0x10000) printk(KERN_DEBUG "%s : NO CONTEXT!\n", __FUNCTION__); return; } if (debug & 0x10000) printk(KERN_DEBUG "%s\n", __FUNCTION__); card->disc_flag = 1; hw_mISDNObj.ctrl(card->chan[D].inst.st, MGR_DELSTACK | REQUEST, NULL); // release_card(card); usb_set_intfdata(intf, NULL); } /* hfcsusb_disconnect */ /************************************/ /* our driver information structure */ /************************************/ static struct usb_driver hfcsusb_drv = { .owner = THIS_MODULE, .name = DRIVER_NAME, .id_table = hfcsusb_idtab, .probe = hfcsusb_probe, .disconnect = hfcsusb_disconnect, }; static int __init hfcsusb_init(void) { int err; printk(KERN_INFO "hfcsusb driver Rev. %s (debug=%i)\n", mISDN_getrev(hfcsusb_rev), debug); #ifdef MODULE hw_mISDNObj.owner = THIS_MODULE; #endif spin_lock_init(&hw_mISDNObj.lock); INIT_LIST_HEAD(&hw_mISDNObj.ilist); hw_mISDNObj.name = DRIVER_NAME; hw_mISDNObj.own_ctrl = hfcsusb_manager; hw_mISDNObj.DPROTO.protocol[0] = ISDN_PID_L0_TE_S0 | ISDN_PID_L0_NT_S0; hw_mISDNObj.DPROTO.protocol[1] = ISDN_PID_L1_NT_S0; hw_mISDNObj.BPROTO.protocol[1] = ISDN_PID_L1_B_64TRANS | ISDN_PID_L1_B_64HDLC; hw_mISDNObj.BPROTO.protocol[2] = ISDN_PID_L2_B_TRANS | ISDN_PID_L2_B_RAWDEV; if ((err = mISDN_register(&hw_mISDNObj))) { printk(KERN_ERR "Can't register hfcsusb error(%d)\n", err); return (err); } if (usb_register(&hfcsusb_drv)) { printk(KERN_INFO "hfcsusb: Unable to register hfcsusb module at usb stack\n"); goto out; } return 0; out: mISDN_unregister(&hw_mISDNObj); return err; } static void __exit hfcsusb_cleanup(void) { int err; hfcsusb_t *card, *next; if (debug & 0x10000) printk(KERN_DEBUG "%s\n", __FUNCTION__); list_for_each_entry_safe(card, next, &hw_mISDNObj.ilist, list) { handle_led(card, LED_POWER_OFF); } if ((err = mISDN_unregister(&hw_mISDNObj))) { printk(KERN_ERR "Can't unregister hfcsusb error(%d)\n", err); } /* unregister Hardware */ usb_deregister(&hfcsusb_drv); /* release our driver */ } module_init(hfcsusb_init); module_exit(hfcsusb_cleanup);